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Abstract

This paper investigates support vector machine (SVM) with a discrete kernel,
named electric network kernel, defined on the vertex set of an undirected graph.
Emphasis is laid on mathematical analysis of its theoretical properties with the aid
of electric network theory. SVM with this kernel admits physical interpretations
in terms of resistive electric networks; in particular, the SVM decision function
corresponds to an electric potential. Preliminary computational results indicate
reasonable promise of the proposed kernel in comparison with the Hamming and
diffusion kernels.

1 Introduction
Support vector machine (SVM) has come to be very popular in machine learning and
data mining communities. SVM is a binary classifier using an optimal hyperplane
learned from given training data. Through kernel functions, which are a kind of simi-
larity functions defined on the data space, the data can be implicitly embedded into a
high (possibly infinite) dimensional Hilbert space. With this kernel trick, SVM achieves
a nonlinear classification with low computational cost.

Input data from real world problems, such as text data, DNA sequences and hyper-
links in World Wide Web, is often endowed with discrete structures. Theory and applica-
thon of “kernels on discrete structures” are pioneered by D. Haussler [5], C. Watkins [14]
and R. I. Kondor and J. Lafferty [8]. Haussler and Watkins independently introduced
the concept of convolution kernels. Kondor and Lafferty utilized spectral graph theory
to introduce diffusion kernels, which are discrete kernels defined on vertices of graphs.

In this paper we propose a novel class of discrete kernels on vertices of an undirected
graph. Our approach is closely related to that of Kondor and Lafferty, but is based on
electric network theory rather than on spectral graph theory. Accordingly we will name
the proposed kernels electric network $ke$ nels. SVM using an electric network kernel
admits natural physical interpretations. The vertices with positive label and negative
label correspond, respectively, to terminals with +1 electric potential and -1 electric
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potential. The resulting decision function corresponds to an electric potential, and the
separating hyperplane to points with potential equal to zero.

Emphasis is laid on mathematical analysis of the electric network kernel with the
aid of electric network theory. Another interesting special case is where the underlying
graph is a tensor product of complete graphs. By exploiting symmetry of this graph, we
provide an explicit formula for the electric network kernel, which makes it possible to
apply the electric network kernel to large-scale practical problems. In our preliminary
computational experiment the electric network kernel shows fairly good performance for
some data sets, as compared with the Hamming and diffusion kernels.

This paper is organized as follows. In Section 2, we review SVM and its formu-
lation as optimization problems. In Section 3, we propose our kernel and investigate
its properties. Physical interpretations to SVM with our kernel are also explained. In
Section 4, we deal with the case of a tensor product of complete graphs, and show some
computational results for some real world problems.

This paper is based on [6] but with new results described in Section 4.

2 Support Vector Machines
In this section, we review SVM and its formulation as optimization problems; see [11],
[13] for details. Let $\mathcal{X}$ be an input data space, e.g. $\mathrm{R}^{n}$ , $\{0, 1\}^{n}$ , text data and DNA
sequence, etc. A symmetric function $K$ : $\mathcal{X}\cross \mathcal{X}arrow \mathrm{R}$ is said to be a kernel on $\mathcal{X}$ if it
satisfies the Mercer condition:

For any finite subset $\mathrm{Y}$ of $\mathcal{X}$

matrix $(K(x, y)|x$ , $y\in \mathrm{Y})$ is positive semidefinite. (2.1)

For a kernel $K$ , it is well known that there exists some Hilbert space 7{ with inner
product $\langle$ ., $\cdot\rangle$ and a map $\phi$ : $1arrow \mathit{1}_{\mathit{4}}$ such that

$K(x, y)=\langle$ $(x), $\phi(y)\rangle$ $(x, y\in \mathcal{X})$ .

Given a labeled training set $(x_{1}, \eta_{1})$ , $(x_{2}, \eta_{2})$ , $\ldots$ , $(x_{m}, \eta_{m})\in \mathcal{X}\cross\{\pm 1\}$ , SVM classifier
is obtained by solving the optimization problem

$\min_{\alpha\in \mathrm{R}^{m}}$ $\frac{1}{2}\sum_{1\leq i,j\leq m}\alpha_{i}\alpha_{j}\eta_{i}\eta_{j}K(x_{i}, x_{j})-\sum_{1\leq i\leq m}\alpha_{i}$

$\mathrm{s}.\mathrm{t}$ .
$\sum_{1\leq i\leq m}\eta_{i}\alpha_{i}=0,0\leq\alpha_{i}\leq C$

$(i=1, \ldots, m)$ ,

where $C$ is a penalty parameter that is a positive real number or $+$-op. If $C=+\mathrm{o}\mathrm{o}$ , it
is called the hard margin $SVM$ formulation. If $C<+\mathrm{o}\mathrm{o}$ , it is called the 1-norm soft
margin $SVM$ formulation.
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For our purpose, it is convenient to consider the equivalent problem

[SVM] : $\mathrm{m}$

$u\in \mathrm{i}\mathrm{n}_{m}$ $\frac{1}{2}\sum_{1\leq i,j\leq m}u_{i}u_{j}K(x_{i}, x_{j})-\sum_{1\leq i\leq m}\eta_{i}u_{i}$

$\mathrm{s}$ .t.
$1 \leq\sum_{i\leq m}u_{i}=0,$

(2.2)

$0\leq\eta_{i}u_{\iota}\leq C$ $(i=1, \ldots, m)$ , (2.3)

where $u_{i}=$ ($/i\mathit{0}li$ for $i=1$ , $\ldots$ , $m$ .
Let $u^{*}\in \mathrm{R}^{m}$ be an optimal solution of the problem [SVM] and $b^{*}\in \mathrm{R}$ be the

Lagrange multiplier of constraint (2.2) at $n’$ . where the Lagrange function of [SVM] is
supposed to be defined as

$L(u, \lambda, \mu, b)$ $=$ $\frac{1}{2}\sum_{1\leq i,j\leq m}u_{i}ujK(x_{i,j}x)-\sum_{1\leq i\leq m}\eta_{i}u_{i}$

-

$\sum_{1\leq i\leq m}\lambda_{i}\eta_{i}u_{i}-\sum_{i1\leq\sim\leq m}\mu_{i}(\eta_{i}u_{i}-C)\mathrm{i}$ $b \sum_{1\leq i\leq m}u_{i}$
,

where $u\in \mathrm{R}^{m}$ , $\lambda$ , $”\in \mathrm{R}_{\geq 0}^{m}$ , and $b\in$ R. Then the decision function $f$ : $\mathcal{X}arrow$ $\mathrm{R}$ is given
as

$m$

$f(x)=$ $\mathrm{p}$ $u_{i}^{*}K(x_{i}, x)+b^{*}$ $(x\in \mathcal{X})$ . (2.4)
$i=1$

That is, we classify a given data $x$ according to the sign of $f(x)$ . Adata $x_{i}$ with $\eta_{i}u_{i}^{*}>0$

is called a support vector. In the case of the 1-riorm soft margin SVM, a support vector
$x_{i}$ is called a normal support vector if $0<\eta_{i}u_{i}^{*}<C$ and a bounded support vector if
$\eta_{i}u_{i}^{*}=C.$

3 Proposed Kernel and Its Properties
Let $(V, E, r)$ be a resistive electric network with vertex set $V$ , edge set $E$ , and resistors
on edges with the resistances represented by $r$ : $Earrow \mathrm{R}_{>0}$ . We assume that the graph
$(V, E)$ is connected. Let $D:V\cross Varrow \mathrm{R}$ be a distance function on $V$ defined as

$D(x, y)=$ resistance between $x$ and $y$ $(X, j\in V)$ . (3.1)

Fix some vertex $x_{0}\in V$ as a root, and define a symmetric function $K$ : $V\cross Varrow \mathrm{R}$ on
$V$ as

$K(x, y)=\{D(x, x_{0})+D(y, x_{0})-D(x, y)\}/2$ $(x, y\in V)$ . (3.2)

Seeing that $K(x_{0}, y)=0$ for all $y\in V,$ we define a symmetric matrix $\hat{K}$ by

$\hat{K}=$ $(K(x, y)|x$ , $y\in V\backslash \{x_{0}\})$ . (3.3)

Remark 3.1. Given a distance function $D$ , the function $K$ defined by (3.2) is called
the Gromov product.
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Let $L$ be the node admittance matrix defined as

$L(x, y)=\{$
$\mathrm{p}$ { $(r(e))^{-1}|x$ is an endpoint of $e\in E$ } if $x=y$

$-(r(xy))^{-1}$ if $x\neq y$
$(x, y\in V)$ . (3.4)

If all resistances are equal to 1, then $L$ coincides with the Laplacian matrix of graph
$(V, E)$ . Let $\hat{L}$ be a symmetric matrix defined as

$\hat{L}=$ $(L(x, y)|x$ , $y\in V\mathit{3}$ $\{x_{0}\})$ .

Note that $\hat{L}$ satisfies
$\hat{L}(x, y)$ $\leq$ $0$ ($x$ a $y$ ), (3.5)

$\sum_{z\in V\backslash \{x\mathrm{o}\}}\hat{L}(x, z)$

$\geq$ $0$ $(x\in V\backslash \{x_{0}\})$ . (3.6)

Henc$\mathrm{e}$

$\hat{L}$ is a nonsingular diagonally dominant symmetric $M$-matrix. In particular, $\hat{L}$ is
positive definite. A matrix whose inverse is an $\mathrm{M}$-matrix is called an inverse M-matrix.
The following relationship between $K$ and $L$ is well known in electric network theory;
see [4] for example.

Proposition 3.2. We have $\hat{K}^{-1}=L$ . In particular $I\hat{\mathrm{f}}$

is an inverse M-matrix.

Hence, $K$ in (3.2) satisfies the Mercer condition. We shall call such $K$ an electric
network kernel.

Remark 3.3. An electric network kernel $K$ of $(V, E, r)$ with root $x_{0}$ coincides with
discrete Green’s function of $(V, E, r)$ taking $\{x_{0}\}$ as a boundary condition [2].

We consider the SVM on electric network $(V, E, r)$ with the kernel $K$ of (3.2). Let
$\{(x_{i}, \eta_{i})\}_{i=}1,\ldots,7m\subseteq V\cross\{\pm 1\}$ be a training data set, where we assume that $x_{i}(i=$
$1$ , $\ldots$ , $m$) are all distinct. Just as the SVM with a diffusion kernel, we assume that
$\{x_{1}, \ldots, x_{m}\}$ is a subset of the vertex set $V$ ; accordingly we put $V=\{x_{1}, \ldots, x_{n}\}\acute{\mathrm{w}}\mathrm{i}\mathrm{t}\mathrm{h}$

$n$ $\geq m.$

Lemma 3.4. The optimization problem [SVM] is determined independently of the choice
of a root $x_{0}\in V$

Proof. The objective function of [SVM] is in fact independent of $x_{0}$ , since its quadratic
term can be rewritten as

$\sum i,ju:ujK(xi, xj)$ $=$ $\sum_{\mathrm{i},\mathrm{j}}u,u_{\mathrm{j}}(D(x_{i}, x_{0})+D(xj, x_{0})-D(x_{i}, x_{j}))/2$

$=$ $\sum j^{u}j\sum iuiD(xi, x_{0})$ $-(1/2) \sum_{i,j}u_{i}u_{j}D(x_{i,j}x)$

$=$ $-(1$ /2 $) \sum_{i,j}u_{i}u_{j}D(x_{i}, x_{j})$ ,

where the last equality follows from the constraint (2.2). $\square$

Next we give physical interpretations to the problem [SVM] with the aid of nonlinear
network theory (see [7, Chapter $\mathrm{I}\mathrm{V}]$ ). Suppose that we are given an electric network
$(V, E, r)$ and labeled training data set $\{(x_{t}, \eta_{i})\}_{i=1,\ldots,m}\subseteq V\cross\{\pm 1\}$ , where $x_{1}$ , $\ldots$ , $x_{m}$

are all distinct. We connect voltage sources to $(V, E, r)$ as follows:
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Figure 1: Physical interpretation

For each $x_{i}$ with $1\leq i\leq m,$ connect to the earth a voltage source whose
electric potential is $\eta_{i}$ and the current flowing into $x_{i}$ is restricted to $[0, C]$

if $\eta_{i}=1$ and $[-C, 0]$ if $\eta_{i}=-1$ .
By using voltage sources, current sources and diodes, this network can be realized as in
Figure 1.

Let $A=$ $(A(x, e)|x\in V$, $e\in E)$ be the incidence matrix of $(V, E)$ with some fixed
orientation of edges and let $R=$ diag(r(e) $|e\in E$ ) be the diagonal matrix whose
diagonals are the resistances of edges.

The electric current in this network is given as an optimal solution of the problem:

[FLOW] :
$\min_{(\zeta,\xi)}$

$\frac{1}{2}(^{\mathrm{T}}R(;$
$- \sum_{i=1}^{m}\eta_{i}\xi_{i}$

$\mathrm{s}.\mathrm{t}$ . $A\zeta=(\begin{array}{l}\xi 0\end{array})$

$\sum_{1\leq i\leq m}\xi_{i}=0,$

$0\leq\eta_{i}\xi_{i}\leq C$ $(i=1, \ldots, m)$ ,

where $\langle$ represents the currents in edges and $\xi_{i}$ represents the current flowing into $x_{i}$

for $i=1$ , $\ldots$ , $m$ . The first and second terms of the objective function of [FLOW]
represents current potential of edges $E$ and of the voltage sources respectively. The
electric potential of this network is given as an optimal solution of the problem:

[POT] : $\mathrm{m}\mathrm{r}$
$\frac{1}{2}p^{\mathrm{T}}AR^{-1}A^{\mathrm{T}}p+C\sum_{i=1}^{m}\max\{0,1-\eta_{i}p_{i}\}$ ,

where $p_{i}$ represents the potential on vertex $x_{i}$ for $i=1$ , $\ldots$ , $n$ . The first and second
terms of the objective function of [POT] represent voltage potentials of edges $E$ and of
the voltage sources respectively.
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Proposition 3.5. The electric current $(\zeta^{*}, \xi^{*})$ in this network is uniquely dete rmined.
If there exists $i\in\{1, \ldots m\}\}$ with $0<\eta_{i}\xi_{i}^{*}<C,$ then the electric potential is also
uniquely determined.

Proof. The first assertion follows from the uniqueness theorem [7, Theorem 16.2]. Note
that [FLOW] and [POT] are a dual pair. Hence if such $\xi_{i}^{*}$ exists, from complementarity
condition, any optimal solution $p^{*}$ of [POT] must satisfy $p_{i}^{*}=\eta_{i}$ . Consequently, the
potentials of other vertices are also uniquely determined by Ohm’s law $p(x)-p(y)\square =$
$R(xy)$ (; (xy) for $xy\in E$ , $x$ , $y\in$ $V$ .

The following theorem indicates the relationship between SVM problem and this
electric network.

Theorem 3.6. Let $u^{*}$ be the optimal solution of [SVM]. Then $u_{i}^{*}$ coincides with the
electric current flowing into $x_{i}$ for $i=1$ , $\ldots$ , $m$ . Moreover, the decision function $f$

of (2.4) for [SVM] is an electric potential.

Proof. The problem [FLOW] is equivalent to

[FLOW] : $\min_{\xi}$
$W( \xi)-\sum_{i=1}^{m}\eta_{i}\xi_{i}$

$\mathrm{s}$ .t.
$1 \leq\sum_{i\leq m}\xi_{i}=0,$

$0\leq\eta_{i}\xi_{i}\leq C$ $(i=1, \ldots, m)$ ,

where $W:\mathrm{R}^{m}arrow \mathrm{R}$ is defined as

$W( \xi)=\min_{\zeta}\{\frac{1}{2}\zeta^{\mathrm{T}}R\zeta|A\zeta=(\begin{array}{l}\xi 0\end{array})$ $\}1$

By the Lagrange multiplier method, we can easily show that

$W( \xi)=\frac{1}{2}1\leq$V$m\xi_{i}\xi_{j}K(x_{i}, x_{:})$
.

This implies that the problem [FLOW] coincides with [SVM]. Next we show the latter
part. From the fact that [FLOW] and [POT] are a dual pair, it can be shown that
the decision function $f$ : $Varrow \mathrm{R}$ defined by (2.4) satisfies the optimality condition of
[POT]. $\square$

From Proposition 3.5 and Theorem 3.6, we see that the electric potential coincides
with the decision function of [SVM], provided that the optimal solution of [SVM] has
a normal support vector. Furthermore, the Lagrange multiplier $b^{*}$ corresponds to the
electric potential of the root vertex $x_{0}$ , if the potential is normalized in such a way that
the earth has zero electric potential.

Next we consider the case of the hard-margin SVM. The following proposition indi-
cates that solving [SVM] with $C=+\mathrm{o}\mathrm{o}$ reduces to solving linear equations.
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Proposition 3.7. For the electric network kernel If, an optimal solution u of the
unconstrained optimization problem

[SVM’] : $\min$
$\frac{1}{2}\sum_{1\leq l,j\leq m}u_{i}u,\cdot K(x_{i}, x_{j})-\sum_{1\leq i\leq m}\eta_{i}u_{i}$

$u6\mathrm{R}^{m}$

$\mathrm{s}.\mathrm{t}$ .
$\sum_{1\leq i\leq m}u_{i}=0$

is also optimal to [SVM] with $C=+ao$ .

Proof. Suppose that $/i$ $=+1$ for $1\leq i\leq k$ and $\eta_{i}=-1$ for $k+1\leq i\leq m.$ By a variant
of Lemma 3.4, we may take $x_{m}$ as the root. Then problem [SVM’] is equivalent to

$u \mathrm{m}_{m-1}^{\mathrm{i}\mathrm{n}}1\sum_{1\leq i,j\leq m-1}u_{i}u_{j}K(x_{i}, x_{j})-\sum_{1\leq i\leq k}2u_{i}$,

where we substitute $u_{m}=- \sum_{1\leq i\leq m-1}u_{i}$ in [SVM’]. Let $\overline{K}=(K(x_{i},x_{j})|1\leq i,j\leq$

$m-1)$ . Hence the optimal solution $u^{*}\in \mathrm{R}^{m}$ is given by

$u_{i}^{*}$ $=$
$2 \sum_{1\leq j\leq k}(\overline{K}^{-\tilde{1}})_{ij}$

$(1\leq i\leq m-1)$ ,

$u_{m}^{*}$ $=$ -2
$\sum_{1\leq j\leq k}$ $\sum_{1\leq h\leq m-1}(\overline{K})_{hj}1$

.

Since $\overline{K}$ is an inverse $M$-matrix by Proposition 3.2, we have

$u_{i}^{*}\geq 0$ $(1 \leq i\leq k)$ , $u_{i}^{*}\leq 0$ $(k+1\leq i\leq m)$ .

Hence $u^{*}$ satisfies the inequality constraint of [SVM] and is optimal. $\square$

Hence, in the case of the hard-margin SVM, the following correspondence holds.

SVM electric network
positive label data +1 voltage sources
negative label data -1 voltage sources

optimal solution of [SVM] electric current from voltage sources
decision function electric potential

The following corollaries immediately follow from these physical interpretation, where
we assume the hard-margin SVM.

Corollary 3.8. Let $u^{*}\in \mathrm{R}^{m}$ be the optimal solution of [SVM]. Then, for $i\in\{1, \ldots, m\}$ ,
$x_{i}$ is a support vector, &. $e.$ , $\mathit{7}\mathit{1}:>0$ if and only if there exists a path from $x_{i}$ to some $Xj$

with $\eta_{i}\neq\eta_{j}$ such that it contains no other labeled training vertex (data).

Suppose that there exists some training data $x$ such that the deletion of $x$ from $(V, E)$

makes two or more connected components, i.e., $x$ is an articulation point of $(V, E)$ . Let
$U_{1}$ , $\ldots$ , $U_{k}$ be the vertex sets of the connected components after the deletion of $x$ . Let
$(U_{1}\cup\{x\}, E_{1})$ , $\ldots$ , $(U_{k}\cup\{x\}, E_{k})$ be subgraphs of $(V, E)$ . Restricting training data set
to each subgraph, we obtain SVM problems $[\mathrm{S}\mathrm{V}\mathrm{M}_{1}]$ , $\ldots$ , $[\mathrm{S}\mathrm{V}\mathrm{M}_{k}]$ .
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Corollary 3.9. Under the above assumption, the optimal solution of [SVM] can be
represented as the sum of optimal solutions of $[\mathrm{S}\mathrm{V}\mathrm{M}_{1}]$ , $\ldots$ , $[\mathrm{S}\mathrm{V}\mathrm{M}_{\mathrm{k}}]$ . Consequently, for
each $i\in\{1, \ldots, k\}$ , the restriction to $U_{i}\cup\{x\}$ of the decision function of the hard-margin
[SVM] coincides with the decision function of $[\mathrm{S}\mathrm{V}\mathrm{M}_{i}]$ .

Remark 3.10. SVM with an electric network kernel falls in the scope of discrete convex
analysis [9], which is a theory of convex functions with additional combinatorial struc-
tures. Specifically, the objective function of [SVM] with an electric network kernel is an
$M$-convex function in continuous variables, and the optimization problem [SVM] is an

$\mathrm{M}$-convex function minimization problem.

Remark 3.11. Smola and Kondor [12] consider various kernels constructed from the
Laplacian matrix $L$ of an undirected graph $(V, E)$ . In particular, they introduced the
kernel

$K=(I+\sigma L)^{-1}$ ,

where $\sigma$ is a positive parameter. In our view, this kernel corresponds to the electric
network kernel of a modified graph $(V\cup\{x_{0}\}, E\cup\{yx_{0}|y\in V\})$ with a newly introduced
root vertex $x_{0}$ .

The computation of elements of $D$ or $K$ through numerical inversion of $\hat{L}$ is highly
expensive because the size of $\hat{L}$ is usually very large. In Section 4, we consider an N-
tensor product of $k$-complete graphs that admits efficient computation of the elements
of $K$ .

4 SVM on Tensor Product of Complete Graphs

4.1 Explicit formula for the resistance
In this section, we consider the case where $(V, E)$ is an $N$-tensor product of fc-complete
graphs defined as

$V$ $=$ $\{0, 1, 2, \ldots, k-1\}^{N}$ .
$E$ $=$ $\{xy|x, y\in V, d_{\mathrm{H}}(x, y)=1\}$ ,

where $d_{\mathrm{H}}$ : $V\mathrm{x}Varrow \mathrm{R}$ is the Hamming distance defined as

$d_{\mathrm{H}}(x, y)=\{i\in\{1, \ldots, /\mathrm{V}\}|x^{i}\neq y^{i}\}$ ,

where $x^{i}$ denotes the $i$th component of $x\in V,$

In the case of $k=2,$ this graph coincides with an $N$-dimensional hypercube. We
regard $(V, E)$ as an electric network where all resistances of edges are equal to 1. Hence
the node admittance matrix of $(V, E)$ coincides with the Laplacian matrix.

By symmetry of this graph, the resistance $D$ between two vertex pair is given as
a function in the Hamming distance of the pair as follows. The proof is presented in
Subsection 4.3.
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Theorem 4.1. The resistance D : $\mathrm{T}^{\gamma}\cross Varrow \mathrm{R}$ of an $N$ -tensor product of k-complete
graphs $(\mathrm{T}^{\gamma},$E) is given by

$D(x, y)=$

$\{$

$\frac{1}{2^{N-2}}\sum_{s=1,3,5}^{d},\ldots\sum_{u=0}^{N-d}$ $(\begin{array}{l}ds\end{array})(\begin{array}{l}N-du\end{array})$ $\frac{1}{2(s+u)}$ if $k=2,$

$s=1,3,5,\ldots$ $100 \sum_{u=0}^{Nd}(_{S}^{d})(^{d-s}t)(_{u}^{N-d})$

$\cross\frac{2^{2-s}k^{-N+s+t+u}}{k(s+t+u)}(\frac{1}{2}-\frac{1}{k})^{t}(1-\frac{1}{k})^{u}$ if $k\geq 3$ ,

(4.1)

where $d=d_{\mathrm{H}}(x, y)$ .

The theorem implies, in particular, that each element of kernel $K$ can be computed
with $O(N^{4})$ arithmetic operations. This makes it possible to apply the electric network
kernel to large-scale practical problems on this class of graphs.

Remark 4.2. The computational efficiency of the formula (4.1) relies essentially on the
fact that the number of distinct eigenvalues of the Laplacian matrix of $(V, E)$ is bounded
by $O(N)$ ; see Subsection 4.3. In a more general case where the graph is an N-tensor
product of complete graphs of different sizes, the number of distinct eigenvalues may
possibly be exponential in $N$ . Our approach in Subsection 4.3 hints at a difficulty of
obtaining a computationally efficient formula for this class of graphs.

4.2 Experimental results
Here, we describe preliminary experiments with our electric network kernels on tensor
products of complete graphs. In order to estimate the performance, we compare the
electric network kernel with the Hamming kernel and the diffusion kernel [8] using
benchmark data having binary attributes. By the Hamming kernel we mean the kernel
defined as

$K(x, y)=N-d_{\mathrm{H}}(x, y)$ $(x, y\in\{0,1\}^{N})$ .
The diffusion kernel and the electric network kernel are implemented to LIBSVM pack-
age [1], which is one of the common SVM package programs. For benchmark data
sets, we use Hepatitis, Votes, LED2-3, and Breast Cancer taken from UCI Machine
Learning Repository [10] (Table 4.1). For the first three data sets, we regard these input
spaces as hypercubes, i.e., $k=2$ in (4.1). In Hepatitis data set, we use 12 binary at-
tributes of all 20 attributes. LED2-3 data set is made through the data generating tool
in [10] by adding 10% noise. For Breast Cancer data set, we regard its input space as
9-tensor product of 10-complete graphs, i.e., $N=9$ and $k=10$ in (4.1).

Table 4.2 shows the experimental results with Hamming kernel (HK), diffusion kernel
(DK), and electric network kernel (ENK) for these data sets, where Ace means the ratio
of correct answers averaged over 40 random 5-fold cross validations and SVs is the
number of support vectors for whole data set. Results are reported for the setting of
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Table 4.1: Data sets

Data set Size Positive Negative Attribute
Hepatitis 155 32 123 12

Votes 435 168 267 16
LED2-3 1914 937 977 7

Breast Cancer 699 251 458 9

Table 4.2: Experimental results

$\mathrm{H}\mathrm{K}$ DK ENK
Data set SVs Ace (C) SVs Ace $(C, \beta)$ SVs Acc (C)

Hepatitis 60 79.125 (64) 60 79.775 (256, 3.5) 106 77.725 (256)
Votes 36 95.975 (4.0) 53 .025 (512, 3.0) 274 84.450 (128)

$\mathrm{L}\mathrm{E}\mathrm{D}2-3$ 386 89.550 (2.0) 392 89.700 (0.2, 3.0) 388 89.800 (70)
$\underline{\mathrm{B}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{t}}$Cancer152 $-9\underline{7.271(0.02)242}$97.000(2,0.3) 463 81.713 (200)

HK $=$ Hamming kernel, DK $=$ diffusion kernel, ENK $=$ electric network kernel.

the soft margin parameter $C$ and the diffusion coefficient 4 achieving the best cross
validated error rate.

For Hepatitis and LED2-3 data sets, three kernels show almost equivalent perfor-
mance. For Votes and Breast Cancer data set, However, our ENK shows somewhat
poor performance than others. In Hepatitis, Votes, and Breast Cancer, ENK has
larger SVs than other kernels. This phenomenon can be explained by Corollary 3.8 as
follows. Since these three data sets are well separated than LED2-3, the soft margin
SVM with ENK is close to the hard margin SVM. Hence it is expected from Corollary
3.8 that these SVM with ENK have many $\mathrm{S}\mathrm{V}\mathrm{s}$ .

The above results indicate that our electric network kernel works well as an SVM
kernel. It is fair to say, however, that more extensive experiments against various kinds
of data sets are required before its performance can be confirmed with more precision
and confidence. Comprehensive computational study is left as a future research topic.

4.3 Proof of Theorem 4.1
First, we consider the spectra of a $k$-complete graph. Let $L$ be the Laplacian matrix of
a $\mathrm{f}\mathrm{c}$-complete graph with vertex set $[k]=\{0,1, \ldots, k-1\}$ , i.e.,

$L(x, y)=\{$
$k-1$ if $x=y$

$(x, y\in[k])$ .-1 otherwise

The spectra of $L$ is given as follows (see [3]).
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Lemma 4.3. L has the eigenvalues 0 with multiplicity 1 and k with multiplicity k–1.
The eigenvector for 0 is given by

$p_{0}=$ $(\begin{array}{l}11\vdots 1\end{array})$ (4.2)

and the eigenvectors for $k-1$ are given by

$p_{1}=\{$

1
$\backslash$

$-1$

0
.$\cdot$.

/

, $p_{2}=(\begin{array}{l}1\mathrm{l}-20\vdots\end{array})$ : $p_{3}=($

1
$\backslash$

$1$

1
-3
0
.$\cdot$.

$\int$

, $\ldots’.p_{k-1}=$ $(\begin{array}{ll} 1 1 \vdots 1-k +1\end{array})$ (4.3)

Let $\Lambda$ and $g$ be diagonal matrices with diagonal elements given by

$\Lambda(x)=\{$
0if $x=0$
$k$ otherwise

$(x\in[k])$ , (4.4)

$g(x)=\{$
$1/k$ if $x=0$

$1/x(x+1)$ otherwise
$(x\in[k])$ , (4.5)

and $P$ and $Q$ be matrices defined as

$P(x, y)=p_{y}^{x}$ , $Q(x, y)=g(x)P(y, x)$ $(x, y\in[k])$ , (4.6)

where $p_{y}^{x}$ means the $x$-component of the eigenvector $p_{y}$ . By the orthogonality of $p_{y}$ ’S,
we have

$\sum_{z\in[k]}P(x, z)Q(z, y)=\delta(x, y)$
$(x, y\in[k])$ , (4.7)

where $\delta$ is the Kronecker’s delta. Then $L$ can be diagonalized as

$L(x, y)= \sum_{z\in[k]}\Lambda(z)P(x, z)Q(z, y)$
$(x, y\in[k])$ . (4.8)

Second, we derive the diagonalization of the Laplacian matrix $L_{N}$ of an \^A-tensor

product of $k$-complete graphs. Note that $L_{N}$ can be represented as

$L_{N}(x, y)= \sum_{i=1}^{N}L(x^{i}, y^{i})\prod_{j=1,j\neq i}^{N}\delta(x^{j}, y^{j})$ $(x, y\in[k]^{N})$ .
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From (4.7) and (4.8), $L_{N}$ can be diagonalized as

$L_{N}(x, y)$ $=$
$\sum N\sum\Lambda(z^{i})P(x^{i}, z^{i})Q(z^{i}, y^{i})$ $\prod N$ $\sum P(x^{j}, z^{j})Q(z^{j}, y^{j})$

$i=1z^{i}\in[k]$ $r=$ l,i-ji $z^{j}\in[k]$

$= \sum_{z\in[k]^{N}}(\sum_{i=1}^{N}\Lambda(z^{i}))\prod_{j=1}^{N}P(x^{j}, z^{j})Q(z^{j}, y^{j})$

$= \sum_{z\in[k]^{N}}\Lambda_{N}(z)P_{N}(x, z)Q_{N}(z, y)$
$(x, y\in[k]^{N})$ ,

where $\Lambda_{N}$ , $P_{N}$ and $Q_{N}$ are defined as

$\Lambda_{N}(x)=\sum_{i=1}^{N}\Lambda(x^{i})$ , $P_{N}(x, y)= \prod_{j=1}^{N}P(x^{j}, y^{j})$ , $Q_{N}(x, y)= \prod_{j=1}^{N}Q(x^{\mathrm{j}}, y^{j})$ $(x, y\in[k]^{N})$ .

(4.9)
Note that $Q_{N}$ is the inverse of $P_{N}$ .

Finally, we drive the formula for the resistance. We take $0=$ (0,0, $\ldots$ , 0) as the root.
Let $\hat{L}_{N},\hat{P}_{N}$ and $\hat{Q}_{N}$ be the restrictions of $L_{N}$ , $P_{N}$ and $Q_{N}$ to $[k]^{N}\backslash \{0\}$ respectively.
Then we have

$\hat{L}_{N}(x, y)$

$= \sum_{z\in[k]^{N}\backslash \{0\}}\Lambda_{N}(z)\hat{P}_{N}(x, z)\hat{Q}_{N}(z, y)$

$(x, y\in[k]^{N}\backslash \{0\})$ ,

$(\hat{L}_{N})^{-1}(x, y)$

$= \sum_{z\in[k]^{N}\backslash \{0\}}(1/\Lambda_{N}(z))(\hat{Q}_{N})^{-1}(x, z)(\hat{P}_{N})^{-1}(z, y)$

$(x, y\in[k]^{N}\backslash \{0\})$ .

From the fact that $P_{N}$ is the inverse of $Q_{N}$ and definitions of $Pn$ , $Q_{N}$ , $P$ and $Q$ , it is
easy to verify that

$(\hat{P}_{N})^{-1}(x, y)$ $=$ $Q_{N}(x, y)-Q_{N}(x, 0)Q_{N}(0, y)/Q_{N}(0,0)$

$=g_{N}(x)(P_{N}(y, x)-1)$ ,
$(\hat{Q}_{N})^{-1}(x, y)$ $=$ $P_{N}(x, y)$$)-P_{N}(x, 0)P_{N}(0, y)/P_{N}(0,0)$

$=$ $P_{N}(x, y)-1,$

where $g_{N}(y)= \prod i_{=1}g(y^{i})$ . Hence we have

$D$ (x, $0$ ) $=K(x, x)= \hat{L}_{N}^{-1}(x, x)=\sum_{z\in[k]^{N}\backslash \{0\}}\frac{g_{N}(z)}{\Lambda_{N}(z)}(P_{N}(x, z)-1)^{2}$. (4.10)

$(x, 0)$

$–[-k]^{N}$

$S_{A,B,C}=\{z\in[k]^{N}|z^{i}=1(i\in A), z^{i}\geq 2(i\in B), z^{i}\geq 1(i\in C)z^{i}=0(i\not\in A\cup B\cup C)\}$ .
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Let $s=\# A,$ $t=\# B$ and $u=\# C$ with $s+t+u$ $\neq 0$ Then we have

$\sum_{z\in 6_{A,B,C}^{\tau}}\frac{g_{N}(z)}{\Lambda_{N}(z)}(P_{N}(x, z)-1)^{2}$

$= \sum_{z\in S_{A,B,C}}\frac{g_{N}(z)}{k(s+t+u)}(\prod_{i=1}^{d}P(1, z^{i})\prod_{i=d+1}^{N}P(0, z^{i})-1)^{2}$

$= \frac{\{(-1)^{s}-1\}^{2}}{k(s+t+u)}\sum_{z\in S_{A_{1}B,C}}\prod_{i=1}^{N}g(z^{i})$

$= \frac{\{(-1)^{s}-1\}^{2}}{k^{\wedge}(s+t+u)}\sum_{z\in S_{A_{1}B,C}}g(1)^{s}g(0)^{N-s-t-u}\prod_{i\in B}g(z^{i})\prod_{j\in C}g(z^{j})$

$= \frac{\{(-1)^{s}-1\}^{2}}{k(s+t+u)}2^{-s}k^{-N+s+t+u}$

$\cross.\prod_{-\prime \mathrm{D}}(\frac{1}{6}[perp]\ldots+\frac{1}{k(k+1)}).\prod_{-\wedge\cap}(\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{k(k+1)})$

$= \sum_{z\in S_{A,B,C}}\frac{g_{N}(z)}{k(s+t+u)}(\prod_{i=1}^{u}P(1, z^{i})\prod_{i=d+1}^{\mathit{1}\prime}P(0, z^{i})-1$

$= \frac{\{(-1)^{s}-1\}^{2}}{k(s+t+u)}\sum_{z\in S_{A_{1}B,C}}\prod_{i=1}^{\mathrm{J}\prime}g(z^{i})$

$= \frac{\{(-1)^{s}-1\}^{2}}{k^{\wedge}(s+t+u)}\sum_{z\in S_{A_{1}B,C}}g(1)^{s}g(0)^{N-s-t-u}\prod_{i\in B}g(z^{i})\prod_{j\in C}g(z^{j})$

$= \frac{\{(-1)^{s}-1\}^{2}}{k(s+t+u)}2^{-s}k^{-N+s+t+u}$

$\cross.\prod_{p*\subset}(\frac{1}{6}[perp]\ldots+\frac{1}{k(k+1)}).\prod_{-\prime\cap}(\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{k(k+1)})$

$\cross i\in B11(\overline{6}\overline{k(k+1)})[perp]\ldots+j$J\in JC $(\overline{2}\overline{6}\overline{k(k+}++\cdots+$

$= \frac{\{(-1)^{s}-1\}^{2}}{k(s+t+u)}2^{-s}k^{-N+8+t+u}(\frac{1}{2}-\frac{1}{k})^{t}(1-\frac{1}{k})^{u}$

In the case of $k>3.$ we have

$D(x, 0)$

$= \sum_{C\subseteq}\sum_{zA,B\subseteq\{\begin{array}{l}1\prime d\{\}\end{array}\},A\cap B=\emptyset\in S_{A,B,C}}\frac{g_{N}(z)}{\Lambda_{N}(z)}(P_{N}(x, z)-1)^{2}$

$= \sum_{s=1,3}^{d},\ldots\sum_{t=0}^{d-s}\sum_{u=0}^{N-d}$ $(\begin{array}{l}ds\end{array})(\begin{array}{l}d-st\end{array})(\begin{array}{l}N-du\end{array})$ $\frac{2^{2-s}k^{-N+s+t+u}}{k(s+t+u)}(\frac{1}{2}-\frac{1}{k})^{t}(1-\frac{1}{k})^{u}$

In the case of $k=2$ , $B$ must be empty, and hence we have

$D(x, 0)$ $=$

$c^{A\subseteq\{1,..d\}} \subseteq \mathrm{t}d+\mathrm{i},.,N\sum_{\prime}..’$

$\sum_{z\in S_{A,9,C},\}}\frac{g_{N}(z)}{\Lambda_{N}(z)}(P_{N}(x, z)-1)^{2}$

$=$ $\sum_{s=1,3}^{dN},\ldots$$\sum_{u=0}^{-d}$ $(\begin{array}{l}ds\end{array})(\begin{array}{l}N-du\end{array})$ $\frac{2^{2-s}2^{-N+s+u}}{2(s+u)}(1-\frac{1}{2})^{u}$

$=$ $\frac{1}{2^{N-2}}\sum_{\mathrm{s}=1,3}^{d},\ldots$ $\sum_{u=0}^{N-d}\frac{1}{2(s+u)}$ $(\begin{array}{l}ds\end{array})(\begin{array}{l}N-du\end{array})$ .
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