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1. The main aim of this report is to study decay estimates for global solutions of
the system of linear crystal elasticity in three space dimensions for cubic crystals in
the nearly isotropic case. In order to state the problem, we recall that the system
of linear elasticity is of form

$\frac{\partial^{2}u_{i}}{\partial t^{2}}=.\sum_{\wedge---}^{3}$. $c_{ijpq^{\frac{\partial^{2}u_{p}}{\partial x_{j}\partial x_{q}}}}$, $i=1,$ 2, 3 (1)

For crystals, the $c_{ejpq}$ will be real constants (called “stiffness” constants) and depend
on the crystal under consideration. At a first glance the system thus apparently
depends on the 81 $(=3^{4})$ constants $c_{ijpq}$ , but since the $c_{ijpq}$ have to satisfy the
conditions

$c_{ijpq}=c_{jipq}=c_{ijqp}=c_{pqij}$ , $\forall i$ , $\forall j$ , $\forall p$ , $\forall q$ ,

the number of “essential” constants is at most 21. Additional restrictions will come
from the fact that the system has to be hyperbolic (the condition is that the form

$\sigma=(\sigma_{ij})arrow$
$\sum 3$

$c_{ijpq}\sigma_{ij}\sigma_{pq}$ ,
$i,$: ,$p,q=1$

must be positive definite on symmetric tensors, i.e., when $\sigma_{ij}=\sigma_{j:}$ , $li$ , $\forall j$ ) and
the number of essential constants will decrease further when the crystal under
consideration has additional symmetries. Thus, when the crystal is cubic, as we
will suppose in this report, then the number of essential constants is 3. (Cf. [13].)

With the system (1) we now associate the initial conditions:

$u_{i}(0, x)=f_{i}(x)$ , $\frac{\partial u_{i}(0,x)}{\partial t}=g_{i}(x)$ , $x\in R^{3}$ , $i=1,$ 2, 3. (2)
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Here we shall assume that the functions $fiy$ $g_{i}$ , $i=1,2,3$ , are $C^{\infty}-$ functions on $R^{3}$

and have compact support. Since this problem is hyperbolic (and with constant
coefficients) it clearly admits global solutions on $R^{4}$ . It is moreover standard to
observe that the functions $xarrow u_{i}(t, x)$ are compactly supported in $x$ for any fixed
$t$ , so it will in particular make sense to consider partial Fourier transforms in $x$ ,
with $t$ a parameter. We also recall that the characteristic variety of the system in
(1) is by definition $\{(\tau, \xi);\tau\in R, \xi\in R^{3}, P(\tau,\xi)=\det A(\tau, \xi)=0\}$, where $A$ is
the matrix

$A( \tau, \xi)=(\tau^{2}-\sum p,qc_{1p1q}\xi_{p}\xi_{q}-\sum_{p,q}-\sum_{p,q}c_{3p1q}c_{2p1q}\xi_{p}\xi_{q}\xi_{p}\xi_{q}\tau^{2}-\sum_{-}p,qc_{2p2q}\xi_{p}\xi_{q}-\sum_{p,q}\mathrm{c}_{3p2q}\xi_{p}\xi_{q}\sum_{p,q}c_{1p2q}\xi_{p}\xi_{q}$ $\tau^{2}-\sum p,qc_{3p3q}\xi_{p}\xi_{q}--\sum c_{1p3q}\xi_{p}\xi_{q}\sum_{p,q}^{p,q}c_{2p3q}\xi_{p}\xi_{q})$

(“$\det A$” is the determinant of $A$ and thus $P$ is the characteristic polynomial of the
system.) The polynomial $P$ is immediately seen to be homogeneous and of degree
six. “Hyperbolicity” then implies that for every $\xi$ $\in R^{3}$ the equation $P(\tau, \xi)$ $=0$

has 6 real roots $\mathrm{r}$ if multiplicities are counted. We also note right away that while in
the general theory of partial differential equations tradition has it to work directly
with the characteristic surface, in elasticity theory it seems more natural to work
in terms of the s0-called “slowness surface , which, by definition, is the surface
$\mathit{5}=\{\xi\in R^{3}; P(1, \xi)=0\}$ . It is useful to write the slowness surface in what is
called “Kelvin’s” form. We do so for the particular case of cubic crystals, when
Kelvin’s form is (cf [4]):

$\frac{b\xi_{1}^{2}}{1-c|\xi|^{2}+(b-a)\xi_{1}^{2}}+\frac{b\xi_{2}^{2}}{1-c|\xi|^{2}+(b-a)\xi_{2}^{2}}+\frac{b\xi_{3}^{2}}{1-c|\xi|^{2}+(b-a)\xi_{3}^{2}}=1,$ (3)

which we shall also write as $G(\xi)=0,$ where

$G( \xi)=\sum_{i=1}^{3}b\xi_{i}^{2}(1-c|\xi|^{2}+(b-a)\xi_{i+1}^{2})(1-c|\xi|^{2}+(b-a)\xi_{i+2}^{2})-\prod_{j=1}^{3}(1-c|\xi|^{2}+(b-a)\xi_{j}^{2})$.

(4)
Here the $a$ , $b$ , $c$ are real constants which can be calculated in terms of the 3 “es-
sential” stiffness constants of a cubic crystal. (Cf. [4] and [11].) The fact that (4)
is the slowness surface of a cubic crystal gives some restrictions on the $a$ , $b$ , $c$ . We
mention here the following ones calculated in [11]: $c>0,3c-b+a>0$ , $a\neq 0,$

a-l- $c>0.$ As in [4] we shall also assume that $b>0.$ The quantity $d=b-a$
is a measure of the “anisotropy” of the crystal and in a number of arguments we
shall have to assume that $d$ is small. We shall say then that we are in the “nearly
isotropic” case. When $d$ vanishes, the equation $G(\xi)=0$ reduces to

$(1-c|\xi|^{2})^{2}(1-(c+b)|\xi|^{2})=0.$ (5)

The slowness surface is thus the union of two spheres, one of which being double.
This is a manifestation of the fact that in the isotropic case every solution of the



system (1) is a sum of a “transversal wave” and a “longitudinal wave” and that
the components of these waves satisfy the classical scalar wave equation (with wave
speed which depends on the type of the wave). In the case of effectively anisotropic
cubic crystals, the structure of the slowness surface is more complicated and the
surface will always have singular points. We shall review the known results about
the geometry of the slowness surface for cubic crystals later on. Our interest in the
slowness surface comes from the fact that solutions of the system of crystal elasticity
can be expressed in terms of Fourier-integrals living on the slowness surface.

Our main estimate for solutions of the Cauchy problem (1), (2) is

Theorem 1. Assume that (1) is the system of crystal elasticity for some given

cubic crystal Also assume that we are in the nearly isotropic case. Then there is

a constant $c’>0$ and an integer $k$ such that

$|$ ?j
$(t, x)| \leq c’(1+|t|)^{-1/2}\sum\sum[|D_{x}^{\alpha}7_{j}|_{|L^{1}(R^{3})}+3|D:g_{j}|_{|L^{1}(R^{3})}]$ , $\forall(t, x)\in R^{4}$ , (6)

$j=1|a|\leq k$

for any solution of the Cauchy problem (1), (2), for which the $f_{j}$ and $gj$ are $C^{\infty}(R^{3})$

and have compact supports.

(If $\varphi$ : $R^{3}arrow C$ is given, we denote by $|$ ? $|_{1}L^{1}(R^{3})$ its $L^{1}$-nor, i.e., $|\varphi||\mathrm{Z}^{1}$ $(R^{3})=$

$/73|\varphi(\xi)$ $|d\xi.)$

Remark 2. After this authors talk at the conference, I was told by T. Sonobe that

aparently the estimate in theorem 1 can be improved, at least in the case $b=$ 2a.

(Cf. $f\mathit{2}\mathit{0}]$.) However, while it still seemed (at the time when the discussion took

place) difficult to predict what the “optimal” estimate could be, it seems clear that

with respect to the case of the wave equation there will be $a$ “loss” of decay.

2. The first equation for which decay properties as in theorem 1 have been studied
in a systematic way has been the wave equation: cf. e.g. Segal [15], Strauss [22],
von Wahl [24], Klainerman [5], Racke [14], Sideris [16]. In the 3-dimensional case,
the results obtained in these papers give then a decay of type $c|t|^{-1}$ when $tarrow\infty$ ,
whereas a decay of order $ct^{-1/2}$ is typical for the wave equation in two dimensions.
Similar results have been obtained for a number of related hyperbolic equations,
such as the Klein-Gordon equation, or, sometimes, for more general classes of
constant coefficient hyperbolic operators or systems, cf. von Wahl [24], Costa [3],
Sideris [17], Sideris-Tu [18], Sugimoto [23]. All papers mentioned so far have in
common that they refer to the case of operators with characteristics of constant
multiplicity. These results also imply that if the crystal under consideration is



isotropic, then the conclusion in (6) can essentially be improved to $|u(t, x)$ $|\leq c|t|^{-1}$ .
With respect to the isotropic case, in theorem 1 we therefore have a “loss” of decay
of one dimension. It is interesting to note then that the same loss of decay does
also appear for the system of crystal optics (cf. Liess [10]). Actually, there are a
number of analogies which relate crystal elasticity to crystal optics, to the point
that in both cases the loss of decay is related to the fact that the corresponding
slowness surfaces have singular points and imbedded curves along which the total
curvature vanishes. However, the structure of the singular points in the case of
crystal elasticity is more complicated and much less seems to be known on the
geometry of the slowness surface for crystal elasticity when compared with the
situation in crystal optics.

Let us mention here also briefly that decay estimates for solutions of the system
of crystal elasticity in a somewhat different setting have been considered before in
a number of papers: cf. e.g. Buchwald [1] (and papers cited therein) and Stodt
[21]. (The results of Stodt are described also in Racke [14].) None of these papers
however addresses the difficulties related to singular points on the slowness surface.

3. The overall strategy to prove a result like theorem 1 is well-understood nowadays
and is in particular similar with the one used in the related case of crystal optics
in [10]. Starting point is that the solutions of the Cauchy problem (1), (2) admit
rather explicit representations in terms of Fourier integrals involving the Fourier
transforms of the Cauchy data $f_{j}$ , $\hat{g}_{j}$ , $j=1,2,3$ , of $f_{j}$ and $g_{j}$ : cf. Duff, [4]. It is
then also no surprize that rather than arriving at an estimate of the form (6), we
shall obtain at first the estimate

$|u(t, x)$ $|\mathrm{S}$ $c’(1+|t|)-1/2 \sum_{k=1}^{3}\{\sup_{\xi\in R^{8}},\sum_{|\sigma|\leq d,|\beta|\leq d’}|\xi\sigma| [|’ \mathrm{j}\hat{f}_{k}(\xi)|+|’\xi\hat{g}_{k}(\beta\xi)|]\}$ , $\forall(t, x)\in R^{4}$ ,

for some constants $c’$ , $d’$ , $d’$ . The fact that this estimate implies the stronger
$\mathrm{e}\mathrm{s}.\mathrm{t}\mathrm{i}-(7)$

mate (6) can be proved as in the corresponding passage on page 65 in [10]. Also cf.
Klainerman [8]. An important point is that due to homogeneities in the represen-
tation formulas, we can reduce the estimates (7) to estimates of Fourier transforms
of densities (with parameters) which live on the slowness surface. It is then pos-
sible to localize these estimates on the slowness surface and the contribution of a
suitably localized portion near some point $P$ on the slowness surface will depend
on the geometric properties of the surface near $P$ .

The main steps in the argument are as follows:

a) at first we have to study curvature properties and the behaviour near singular
points of the slowness surface for cubic crystals, with special emphasis on the nearly
isotropic case;



b) the next step is to study the representation formulas for the solutions of the
Cauchy problem (1), (2) ;

c) finally, one can reduce the estimate (7) to an estimate of some parametric in-
tegrals living on the slowness surface. We should also mention that once this
reduction is done, the continuation of the argument depends on wether we are in
the regular part of the slowness surface or wether we are near a singular point.
Furthermore, the situation will depend on wether the singular point is “conical” or
“uniplanar”. To treat the uniplanar case, one can at a crucial step apply a result on
estimates of Fourier integrals defined on surfaces near uniplanar singularities which
has been discussed in [12]. The case of conical singularities is to some extend par-
allel to the uniplanar case, so in the end one is left with a (rather elementary)
discussion of the contribution of the regular part of the slowness surface.

4. We now review some definitions from classical differential geometry and recall
the main result in [12]. To fix the terminology, we consider at first a surface $W\subset R^{\mathrm{n}}$

defined in some open neighborhood $U$ of some fixed point $\xi^{0}\in W$ . (In our case we
shall have $n=3.$ ) To simplify notations, we shall assume that $\xi^{0}=0.$ We assume
further that $W$ is given by the equation $\varphi(\xi)=0,$ for some $\mathrm{C}^{\infty}$ function ? defined
on $U$ . We shall assume that $\mathrm{S}^{0}$ is a “nod\"e, in the sense that $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\varphi(\xi^{0})=0,$

but $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\varphi(\xi)\neq 0$ for $\xi$ $\neq\xi^{0}$ . We also assume that coordinates 4 can be found
such that $(\partial/\partial\xi_{1})^{2}\varphi(0)\neq 0$ and apply the Malgrange preparation theorem to write

A locally near 0 in the form $\psi(\xi)[\mathrm{C}\mathrm{H} +a(\xi’)\xi_{n}+b(\xi’)]$ , where $\xi’=(\xi_{1}, \ldots, \xi_{n-1})$

and $\psi(\xi)\neq 0$ near 0. For convenience we assume that $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}a(0)=0$ and denote
by $\Delta(\xi’)$ $=a^{2}(\xi’)-4b(\xi’)$ the local discriminant of ?. Finally, we denote by
$J_{k} \varphi=\sum_{|\alpha|=k}[(\partial/\partial\xi)^{\alpha}\varphi(0)]\xi^{a}/\alpha!$ . This is a geometric invariant when $J_{k’}\varphi(0)=0$

for $k’<k.$

Definition 3. (cf. Sommerville [19].) $\xi^{0}$ is said to be a conical singular point of $W$

if $J_{2}(\xi)\varphi\sim|\xi|^{2}$ $near$ $0$ . It is called a unode, or uniplanar singularity, if $J_{k’}\varphi(0)=0$

for $k’\leq 3,$ but $J_{4}\varphi(0)\neq 0.$

We now denote by

$W^{+}=\{\xi;\xi_{n}=(1/2)[-a(\xi’)\pm\sqrt{\Delta(\xi’)}]\}$

the two sheets of $W$ in a neighborhood of 0, and by

$\Gamma’\pm=\{\xi’\in R^{n-1}; [-J_{2}a(\xi’)\pm\sqrt{J_{4}\Delta(\xi’)}]=1\}$ . (8)

The main geometric assumption considered in [12] for unodes is the following:

the $\Gamma’\pm$ are smooth and of nowhere vanishing total curvature. (9)

The following result is proved in [12]:



$\epsilon$

Theorem 4. Let 0 be an unode of $W$ for which (9) holds. If $f$ : $Warrow R$ is
sufficiently regular near zero, it follows that there are constants $\Xi_{f}c$ and $d$ such

that

$|\mathit{1}_{W\xi\in W|\xi|\leq\epsilon,|\alpha|\leq d}^{\exp[-i\langle x,\xi\rangle]f(\xi)dw(\xi)|\leq c(1+|x|)^{(1-n)/2}\sup|\partial_{\xi}^{\alpha}f(\xi)|)}$

provided $f(\xi)=0$ for, $\xi\in W$, $|\xi|\geq\epsilon$ . (10)

(Here we denote by $dw$ the surface element on $W.$ )

We want to apply this result to estimate integrals which live on some portion $W$ of
the slowness surface $S$ of some given cubic crystal. In particular, we shall have $n=3$

and and $S$ (respectively $W$) is two dimensional. We shall denote by $\Gamma^{\prime\pm}$ the curves
associated in (8) with $W$ near some fixed uniplanar singular point of $S$ as above.
In order to describe these curves explicitly, we must of course at first calculate a
decomposition of a local defining equation of $S$ in the form $\psi(\xi)[\xi_{3}^{2}+a(\xi’)\xi_{3}+b(\xi’)]$ ,
assuming that we have labelled coordinates appropriately. It can be shown that
(in suitable coordinates) the curves $\Gamma^{\pm}$ have the form

$\Gamma^{\pm}=\{(\xi_{1},\xi_{2})\in R^{2};\alpha(\xi_{1}^{2}+\xi_{2}^{2})\pm\beta\sqrt{\xi_{1}^{4}+2\gamma\xi_{1}^{2}\xi_{2}^{2}+\xi_{2}^{4}}=1\}$ (11)

for some constants $\alpha$ , $\beta$ , $\gamma$ . We shall assume here that $\beta>0$ , $\gamma+1>0$ , $\alpha-\beta>0,$

$2\alpha^{2}>$ $\mathrm{d}^{2}(\gamma+1)$ . (These conditions have been introduced in [12]; they are precisely
the ones needed if we are to have a $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{d}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\dot{\mathrm{r}}\mathrm{a}\mathrm{t}\mathrm{e}$ uniplanar singularity with two
sheets which touch near the singular point only in the singular point itself.) The
following result is obtained in [12]:

Theorem 5. Assume that $\beta$ $>0\gamma+1>0,$ $\alpha-\beta>0;2\alpha^{2}>\beta^{\mathit{2}}(\gamma+1)$ . Then the
curve $\Gamma^{+}=\{(\xi_{1}, \xi_{2})\in R^{2};\alpha(\xi_{1}^{2}+ 422)+\beta\sqrt{\xi_{1}^{4}+2\gamma\xi_{1}^{2}\xi_{2}^{2}+\xi_{2}^{4}}=1\}$ has no inflection
point Furthermore, $\Gamma^{-}=\{(\xi_{1}, \xi_{2})\in R^{2};\alpha(\xi_{1}^{2}+\xi_{2}^{2})-\beta\sqrt{\xi_{1}^{4}+2\gamma\xi_{1}^{2}\xi_{2}^{2}+\xi_{2}^{4}}=1\}$

will have no inflection point, if and only if $(\alpha-\beta\gamma)(-\alpha\sqrt{2(1+\gamma)}+\beta(3-\gamma))<0.$

We do not recall here the exact regularity conditions required in [12] for the function
$f$ in theorem 4. Actually, these conditions are somewhat more general than of type
“$f\in C^{k}$ for some sufficiently large $k$” , in that what we want is that after passing to
some special kind of polar coordinates $(r, \omega)$ in a neighborhood of the singularity,
the function $f$ be $C^{k}$ in $(r, \omega)$ up to $r=0,$ for some sufficiently large $k$ . (The right
hand side in the inequality in (10) will have then of course to refer to derivatives in
these polar coordinates.) A situation similar to this one will appear also for conical
singularities.

The proof of theorem 1 is based on a preliminary study of some geometric properties
of the slowness surface. A number of these properties can be understood easier if



the defining equation of the surface is put in Kelvin’s form. When $\xi_{1}=\xi_{2}=0,$

equation (3) has the positive solutions $\xi_{3}=1/\sqrt{c}$, $\xi_{3}=1/\sqrt{b+c-d}$ , the first
being double. When $d=0$ we are in the isotropic case, so $\sqrt{c}$ , (being a double
root) must be the velocity of the transversal waves, whereas $\sqrt{b+c}$ will correspond
to the velocity of the longitudinal waves. Here we recall that in the isotropic case
the velocity of the longitudinal waves is known to be strictly bigger than that of the
transversal waves (cf. [9], section 22, where it is stated that $\sqrt{c+b}\geq\sqrt{4/3}\vee 0c$ .
$” d$” measures the degree of anisotropy of the crystal, and we are mainly interested
in the “nearly isotropic” case, i.e., we shall assume whenever needed, that $d$ is
sufficiently small. This shows that we may assume that $b>0,$ although this is not
strictly speaking necessary in arguments which refer directly to surfaces defined as
in (3), and is not assumed in [4].

$5.\mathrm{W}\mathrm{e}$ shall denote th$\mathrm{e}$ slowness surface henceforth by $S$ and shall denote by $S\mathrm{y}1$ ,
$S^{2}$ , $S^{3}$ , the “outer”, “middle” and “inner” sheet of $S$ . More precisely, when we
denote by $\omega$ generic points on the unit sphere, then we will have 3 values $\rho>0$

su$\mathrm{c}\mathrm{h}$ that the point $\mathrm{k}$ belongs to $S$ . We denote these values by $\rho_{1}(\omega)$ , $\mathrm{h}(\omega)$ and
$\rho_{3}(\omega)$ respectively, where the numbering is made in such a way that $0<\rho_{3}(\omega)\leq$

$\rho_{2}(\omega)\mathrm{E}$ P2{ $\mathrm{w})$ . In view of the assumption that $b>0,$ we will have for small $d$

that $\mathrm{p}2(\mathrm{w})<\mathrm{p}2(\mathrm{w})$ for all $\omega$ . It is then immediate to see that $5^{3}$ is smooth and
it is also standard to observe that it must be convex. (Cf. [2], [4], and also [11].)
When $d=0$ , $S^{2}$ coincides with $\mathrm{S}^{1}$ and all three surfaces are spheres. (Also see the
discussion above.) As in the case of crystal optics for biaxial crystals, both surfaces
5 and $5^{2}$ become effectively singular at a finite number of points as soon as $d60$ .
Indeed, it is clear that $S^{1}$ and $S|^{2}$ can be singular only when they touch and it is
classical (cf. e.g., [4], [11]), that this happens precisely on the six points they have
on the coordinate axes and on the eight points on $S^{1}\cap S^{2}$ , where $|41$ $|=|4$: $|=|43|$ .
For later use we mention that

when $\xi\in S^{3}$ , $|\xi_{1}|=|\xi_{2}|$ $=|\xi_{3}|$ , then $|\xi_{1}|=1/\sqrt{3c+b-d}$,

whereas $\xi\in S^{2}$ , $|\xi_{1}|=|\xi_{2}|$ $=|$ !’3 $|$ : gives $|\xi_{1}|=1/\sqrt{3c-d}$ . (12)

Definition 6. We call a vector $\xi^{0}$ “singular” if the half-ray through $\xi^{0}$ intersects $S$

$in$ a singular point, and “regular” if this is not the case. ($\xi^{0}$ and-:0 are of course

simultaneously singular or regular.) $Lik$ ewise, we shall speak about a uniplanarly

(respectively conically) singular direction if the intersection of the halfray through

$\mathrm{S}^{0}$ with $S$ is a uniplanar (respectively, conical) singular point on $S$ .
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6. In principle, the behaviour of $S$ near some singular point can be understood from
a study of the discriminant of the defining polynomial. In the present context we are
also interested in detailed information concerning the discriminant since condition
(9) is stated in terms of it. Calculations are particularity simple for the case of
uniplanar singularities and in fact it is not difficult to calculate the discriminant
of the polynomial equation defining $S$ in this case explicitly. To describe how this
is done, we shall work in a neighborhood of the point $\xi^{0}\in S,$ where $\xi_{1}^{0}=\xi_{2}^{0}=0,$

$\xi_{3}^{0}=1/\sqrt{c}$ . We shall denote the variable $\xi_{3}$ by $\sigma$ . As far as the choice of linear
coordinates is concerned, we note that $\xi_{3}=1/\sqrt{c}$ is tangent to $S$ at $\xi^{0}$ , so it is
natural to parametrize $S$ near $\xi^{0}$ by $\xi’=(\xi_{1}, \xi_{2})$ and assume that the three sheets
of $S$ are given in a neighborhood of the (0, 0, 1) axis by the graph of some functions
$\xi_{3}=\rho_{i}(\xi’)$ . There is no singularity in the isotropic case, so we shall assume $a\neq b$

and denote by $\rho_{i}(\xi’)$ , $i=\dot{[perp]}$ , 2, 3, continuous functions so that $\rho_{i}(\xi’)\neq\rho_{j}(\xi’)$ if
$i\neq j$ and $\xi$

$\mathrm{z}$

$\xi^{0}$ is close to $\xi^{0}$ . Moreover, we assume $G(\xi’, \rho_{i}(\xi’))\equiv 0$ and
$\mathrm{p}\mathrm{x}(0)=$ $2_{2}(0)$ $=1/\sqrt{c}$ , $\rho_{3}(0)=1/\sqrt{a+c}$. Also recall that we assumed $a\neq 0,$ so
there will be no triple roots. (See the assumptions on the constants $a$ , $b$ , $c$ made
above.)

We want to obtain information on the local discriminant $\Delta(\xi_{1}, \xi_{2})=(\rho_{1}(\xi’)$ -

$\rho_{2}(\xi’))^{2}$ . Since $\xi^{0}$ is an unode, we will now have $\sum_{|\beta|<3}|\partial_{\xi}^{\beta},’(0)$ $|=0$ and we have
to study $J_{4}\Delta$ . To do this, we shall use the fact that $-G$ is an expression in $\rho^{2}$ . In
fact, when written out explicitly, $G$ is of form

$A_{0\rho}^{6}+A_{1}(\xi’)\rho^{4}+A_{2}(\xi’)\rho^{2}+A_{3}(\xi’)$ , (13)

for some explicitly calculable coefficients $A_{j}$ , which are polynomials of degree $2j$ in
$\xi$ . We set here $\rho^{2}=\sigma$ and denote by $Q(\xi’, \sigma)$ the polynomial $A_{0}\sigma^{3}+A_{1}(\xi’)\sigma^{2}+$

$4_{2}((’)\sigma$ $+A_{3}(\xi’)$ . We denote by $\sigma_{i}(\xi’)$ the functions $\sigma_{l}(\xi’)=\rho:(\xi’)^{2}$ (so that
$Q(\xi’, \sigma_{i}(\xi’))\equiv 0)$ and by $D$ the discriminant of $Q$ in the variable $\sigma$ . It is then
immediate that there is a constant $\tilde{\gamma}\neq$ $0$ so that at $\mathrm{S}^{0}$

$J_{4}\Delta=\tilde{\gamma}J_{4}D$ . (14)

Of course $\tilde{\gamma}=[(\rho_{1}+\rho_{2})(0)(\rho_{1}^{2}-\rho_{3}^{2})(0)(\rho_{2}^{2}-\rho_{3}^{2})(0)]^{2}$. The expression of $D$ can also
be calculated explicitly. In fact, it is standard (cf. e.g. [25]) that, calculated in
terms of the coefficients $A_{i}$ , the discriminant $D$ is

$D=A_{1}^{2}A_{2}^{2}-4A_{0}A_{2}^{3}-4A_{1}^{3}A_{3}-27A_{0}^{2}A_{3}^{2}+18A_{0}A_{1}A_{2}A_{3}$ .

Here all the coefficients depend explicitly on $\xi_{1}^{2}$ , $\xi_{2}^{2}$ and not directly on $\xi_{1}$ , $\xi_{2}$ . We
conclude that $J_{4}\Delta$ is a polynomial in $\xi_{1}^{2}$ , $\xi_{2}^{2}$ . Of course we can calculate $J_{4}D$ ex-
plicitly. What we get is if we set $d=b-a:$

$J_{4}D=c^{2}d^{2}[4b^{4}-12b^{3}d+13b^{2}d^{2}-6bd^{3}+d^{4}](\xi_{1}^{4}+\xi_{2}^{4})-$

$c^{2}d^{2}[4b^{4}\dagger 16b^{3}d-22b^{2}d^{2}\dagger 12bd^{3}- \mathrm{x}^{4}]4\mathrm{r}4_{2}^{2}$ .



9

(All these calculations were valid also for $b=a.$ Note incidentally that for this
case $J_{4}D$ vanishes identically, as it should, since $\rho_{1}\equiv\rho_{2}$ then.) It is perhaps also
worth noting that the main term for $darrow 0$ is $4b^{4}c^{2}d^{2}(\xi_{1}^{4}+\xi_{2}^{4}-\xi_{1}^{2}\xi_{2}^{2})$ , which has
order of magnitude $b^{4}c^{2}d^{2}(|\xi_{1}|^{4}+|\xi_{2}|^{4})$ .

When we want to apply theorem 4, we need in addition to information on $\mathrm{J}4\mathrm{A}$

also related information on “
$J_{2}a"$ . (For notations cf. (9).) Actually, what we want

is to understand the structure of the quantities $J_{2}a\pm\sqrt{J_{4}\Delta}$ , in terms of which
condition (9) is formulated. In particular, we need to show that the curves $\Gamma^{\prime\pm}$

introduced in (8) for our $S$ are quartics of the particular form described in (11),
and to understand how one can calculate the coefficients of these quartics in terms
of the constants $a$ , $b$ , $c$ (notations are as in (3)) of the cubic crystal at hand. With
calculations similar to the ones which led to an understanding of $\mathcal{J}_{4}\Delta$ one can in
fact show that $J_{2}a\pm\sqrt{J_{4}\Delta}$ has the form

$J_{2}a\pm\sqrt{J_{4}\Delta}=-c(\xi_{1}^{2}+\xi_{2}^{2})+dQ_{1}(\xi_{1},\xi_{2},d)\pm|d|\sqrt{Q_{2}(\xi_{1},\xi_{2},d)}\}$ , (15)

where $Q_{1}$ is a polynomial of order two, and $Q_{2}$ a polynomial of order four in $(\xi_{1}, \xi_{2})$ ,
with coefficients which are analytic in $d$ . The fact that condition (9) must hold for
small $d$ is then immediate.

While these very explicit calculations are interesting in a neighborhood of the axes,
we are also interested in estimates of this discriminant when $darrow 0$ also away from
the axes. We mention the following result:

Proposition 7. Let $T$ be some open cone in $R^{3}$ which contains the six coordinate

axes. Denote by $\Omega$ the set

$\Omega=\{\xi\in R^{3};\xi \mathrm{X}^{\tau}\}$ . (16)

and by $\tau_{1}(\xi)\leq\tau_{2}(\xi)\leq\tau_{3}(\xi)$ , the positive roots of the equation

$\sum_{j}\frac{b\xi_{i}^{2}}{\tau^{2}-c|\xi|^{2}+d\xi_{i}^{2}}=1.$ (17)

We can find $c’$ , which does not depend on d, once b, c, T have been fixed, so that

$\min(|\tau_{1}(\xi)-\tau_{2}(\xi)|, |\tau_{2}(\xi)$ $-\tau_{3}(\xi)|)$
$\geq c’d\sum_{i,j}|\xi’-47|/|\xi|^{2}\forall\xi\in\Omega$

. (18)

(The most interesting part of the statement is about the behavior when d $arrow 0$ and
near the rays $|\xi_{1}$ $|=|\xi_{2}|=|43|$ .)

7. We can use these results to study the behaviour of the surfaces $S^{i}$ for d $arrow 0$ from
a quantitative point of view. The following results are in fact easy to establish for
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small $d$ : if we are in a neighborhood of the uniplanar singularity $\xi^{0}=(0,0,1/\sqrt{c})$ ,
then $\rho_{1}(\xi’)-\rho_{2}(\xi’)\sim d|\xi’|^{2}$ for $\xi’arrow 0$ (notations are here as in subsection 6 above),
if $\omega^{0}$ , is a conically singular direction, then $\rho_{1}(\omega)-\rho_{2}(\omega)\sim d|\omega-\omega^{0}|$ and if $\omega^{0}$

is a regular direction then $\rho_{1}(\omega)-\rho_{2}(\omega)\sim d$ in a neighborhood of $\omega^{0}$ (we have
returned to the notations in subsection 5 above).

8. The curvature properties of the wave surface of the system of crystal optics (at
smooth points of the surface) are well-established: cf. e.g., [2]. We have not found
information of similar quality for the case of the system of elasticity for crystals
in the literature. Cf. anyway [13] for some numerical evidence. In this paper we
are interested mainly in the case of cubic crystals in the nearly isotropic case. The
principal results which we have obtained are the following:

a) when $d\neq 0,$ is small, the total curvature will always vanish on entire curves in
the smooth part of $S^{1}\cup S^{2}$ . It does not vanish however in the nearly isotropic case
o$\mathrm{n}$

$S^{3}$ ,

b) the mean curvature will vanish nowhere in the smooth part of $S$ , at least if we
are close to the isotropic case,

The statement in a) is not effectively needed in the proof of theorem 1, but it shows
why we need $\mathrm{b}$ ), and it also shows that it is not possible to obtain decay estimates
for the solutions of the system of crystal-elasticity by applying the method of
stationary phase in a mechanical way. On the other hand, assuming that we are in
the nearly isotropic case and using $\mathrm{b}$ ), we can still obtain decay results using the
stationary phase method in part of the variables, if we treat part of the variables
as additional parameters.

8. The proof of a) will be based on the following statement which is perhaps of
independent interest:

c) in the nearly isotropic case, the total curvature is negative on $S^{1}$ near conical
points and positive near uniplanar points.

That c) is true is a consequence of a simple remark on surfaces which have defining
equations of the form considered in the following proposition.

Propoiition 8. Let $Q_{1}=Q_{1}(x, y, d)_{f}Q_{2}=Q_{2}(x, y, d)$ be positive definite quadratic

forms in the variables $(x, y)$ with coefficients which depend in a $C^{\infty}$ way on $d$ for
small $d$ and assume that there are constants $c_{1}>0,$ $c_{2}>0$ such that

$Q_{1}(x, /,d)\geq c_{1}(x^{2}+y^{2})$ , $Q_{2}(x,y,d)\geq c_{2}(x^{2}+y^{2})$ .

Also assume that fI, $f_{2}$ are $C^{\infty}$ -functions of (x, y,$d)_{f}|\mathrm{c}\mathrm{X}|<1,$ such that $|f_{i}(x,$y,$d)|\leq$

$c_{3}(|x|^{3}+|y|^{3})$ , $|Vf_{i}(x,$y,$d)|\leq c_{3}(|x|^{2}+|y|^{2})$ , $|Hf_{i}(x,$y,$d)|\leq c_{3}(|x|+|y|)$ , and denote



by S the surface
$\tilde{S}=$ $\{(x, \mathrm{j},z);z=-Q_{1}(x,y,d)+ \mathrm{A}(x,$j,$d)+|d|\sqrt Q_{2}(x, \mathit{1},d)+f_{2}(x,y!,d)\}$

(Thus $\overline{S}$ depends on $d.$) Then there is C4, which depends only on $c_{1}$ , $c_{2}$ , $c_{3}$ , $d$ , such

that the total curvature $K(P)$ at any point $P\in\tilde{S}$ is strictly negative when $|P|<c_{4}$ .

Remark 9. It is quite trivial to show that on $S^{2}$ there are points of positive total

curvature when we make the additional assumption that $d>0.$ In fact, it is

obvious that then the distance from the origin will increase near conical points to

values bigger than $1/\sqrt{c-d}/3$ (which is the distance from the conically singular

points to the origin). Since the distance from the uniplanarly singular points to the

origin is $1/\sqrt{c}$, we conclude that the points $\tilde{P}\in S^{2}$ farthest aettay from the origin

must lie in the smooth part of $5\mathrm{y}2$ . At such a point $\tilde{P}$ the total curvature must be

positive.
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