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GLOBAL L?-BOUNDEDNESS THEOREMS FOR
A CLASS OF FOURIER INTEGRAL OPERATORS
AND THEIR APPLICATION

MITSURU SUGIMOTO

This article is based on the joint work with Michael Ruzhansky (Imperial College)
which will appear in [13], [14], [15] and so on.

Fourier integral operators

We consider the following Fourier integral operator:

(1) Tue)= [ [ na(a,y, uly) dyie

(z € R"), where a(z,y,£) is an amplitude function and ¢(z,y,&) is a real phase
function of the form

Note that, by the equivalence of phase function theorem, Fourier integral operators
with the local graph condition can always be written in this form locally.

Local L? mapping property of (1) has been established by Hérmander [9] and Eskin
[7]. The aim of this article is to present global L2-boundedness properties of operators

(1)

When is T globally L:-bounded?

e (Asada and Fujiwara [1]) Assume that all the derivatives of a(z,y,§) and all
the derivatives of each entry of the matrix

0,0,¢ 6m65¢>
D(¢) = v
@= (s aroc
are bounded. Also assume that |det D(¢)| > C > 0. Then T is L?*(R")-bounded.
This result was used to construct the fundamental solution of Schrédinger equation
in the way of Feynman’s path integral.

(The result of Kumano-go [12] was used to construct the fundamental solution of
hyperbolic equations, and it requires that

J(y,§)=¢(:c,y,§)—(x—y)-£

satisfies

. 1—
8;007(1,)| < Can(1 + €)™
for all @ and 3.)
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However, there one had to make a quite restrictive and not always natural assump-
tion on the boundedness of 9:0;¢, which fails in many important cases.
The case we have in mind is

(2) ‘ ¢($,y,€)=$§—y¢(5),

where (£) is a smooth function of growth order 1. If we take 9(§) = &, then we
have ¢(z,y,£) = z-& —y- &, and the operator T defined by it is a pseudo-differential -
operator.

We cannot use Asada-Fujiwara’s result with our example (2), because the bound-
edness of the entries of 9;0¢¢ fails generally. (We cannot use Kumano-go’s either by
the same reason.)

Why is the phase function (2) important?

Because it is used to represent a canonical transformations. In fact, if we take
a(z,y,&) = 1, we have

(3) Tu(z) = FH{(Fu)(%(€))](z)
hence
T -0(D)=(coy)(D)-T.

Especially, for a positive and homogeneous function p(§) € C*°(R™ \ 0) of degree 1,
we have the relation

(4) T (-4)-T™' =p(D)*
if we take
6 We) =
and assume that the hypersurface

T ={&p(é) =1}

has non-vanishing Gaussian curvature.
The curvature condition on ¥ means that the Gauss map

Vp _
8 — gt

Vol
is a global diffeomorphism and its Jacobian never vanishes. (See Kobayashi and
Nomizu [11].) Hence, we can construct the inverse C*°-map 9~ () of (§) defined
by (5). On account of (3), the inverse 7! can be given by replacing ¢ by ¢~

The L?-property of the Laplacian —A is well known in various situations. Our

objective is to know the L2-property of the operator T, so that we can extract the
L2-property of the operator p(D)? from that of the Laplacian.
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Main result

The following is our main result, which is expected to have many applications. For
m € R, we set

(@)™ = (1+|z2)™”.
Let L2 (R™) be the set of functions f such that the norm

is finite.

Theorem 1. Let ¢(z,y,€) =z - € + p(y,£). Assume that
|det 0,0¢¢(y, €)] = C >0,
and all the derivatives of entries of 8,0¢¢ are bounded. Also assume that
|680(y,€)| < Caly) forall|a} 21,
1628087 a(2,y, €)| < Capy (@)™
for all a, B, and y. Then T is bounded on L2,(R™) for any m € R.

Theorem 1 says that, if amplitude functions a(z, y, £) have some decaying properties
with respect to z, we do not need the boundedness of 9;9¢¢ for the L*-boundedness,
as required in Asada-Fujiwara [1], and we can have weighted estimates, as well.

The same is true when both phase and amplitude functions have some decaying
properties with respect to y.

Theorem 2. Let ¢(z,y,&) =z - & + p(y,§). Assume that

|det 8,8 (y, £)| = C > 0.
Also assume that .
8:000(y,€)| < Caly)* ™™ for all e, 8] 21,

028207 a(x, y, )| < Capy{y) ™
for all a, B, and y. Then T is bounded on L2,(R™) for any m € R.

If the amplitude a(z,y,£) is independent of the variable z or y, the decaying
property can be automatically satisfied. Furthermore, we can reduce the regularity
assumptions for amplitude and phase functions in this case.

Theorem 3. Let ¢(z,y,€) = z- € + p(y,€) and a(z,y,£) = a(z,§). Assume that
ldet 8,3 (y,€)] = C > 0
and each entry h(y, &) of 9,0:¢(y,§) satisfies
O5h(w,6)] < Cor  |0FR(3,6)] < Cs
for |al,|8] < 2n + 1. Also assume
828fa(z,¢) € L°(R; x RY)
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for one of the followings:

(i) o, 8€{0,1}", (i) |al, 18] < [n/2] + 1,
(iii) |of < [n/2] +1,8€{0,1}",  (iv) a€{0,1}", 18] <[n/2] + 1.
Then T is L*(R™)-bounded.

Theorem 3 with ¢(y,£) = —y - £ is a refined version of known results on the
L2-boundedness of pseudo-differential operators with non-regular symbols: (i) with
a,B € {0,1,2,3}" is due to Calderén and Vaillancourt (3], (ii) is due to Cordes [6],
and conditions (iii) with |a| < [n/2]+1, 8 € {0, 1,2}, is due to Coifman and Meyer
[5].

Theorem 4. Let ¢(z,y,&) =z - & + o(y,€) and a(z,y,§) = a(y,€). Assume that
85000(y,€)| < Cagy
for |al,|8| < 2n+ 1. Also assume that
|det 8,0¢(y, €)| > C > 0
and each entry h(y, &) of 8,0:0(y, &) satisfies
Bgh(y, )| < Cay  [00R(3,6)| < Cs
for |al,|8] < 2n+ 1. Then the operator T is L*(R™)-bounded.

An example of how to use our results
Kato and Yajima [10] showed that the classical Schrédinger equation
{ (0, + Az)u(t,z) =0,
u(0,z) = g(z)
has the global smoothing estimate
(6) “<z)—1(D)l/zuHLz(Rthg) < Cligllzamg)»

where n > 3.

From this fact, we can extract a similar estimate for generalized Schrédinger equa-
tions
@ { @2 —stoPie ) =0

e Assumption. p(¢) € C>*(R" \ 0) is homogeneous of order 1, p(§) > 0, and the
hypersurface ¥ = {&; p(§) = 1} has non-vanishing Gaussian curvature.
Remember that we have the relation
T~ p(D)* = (-4)-T™
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by (4). Operating T~* from the left hand side of equation (7), we have, by this
relation,

| { (16, — AT uft,z) =0,
T (0,z) = T g(x).

Hence, from (6) and Theorem 1, we obtain the following conclusion:

Theorem 5. Suppose n > 3. Under the assumption above, the solution u(t, z) to
generalized Schridinger equation (7) has the same global smoothing estimate (6) as
the classical one has.

Remark 1. Walther [16] consider the case of radially symmetric p(£)?. Theorem 5
says that we can treat more general case.

Smoothing effect with a structure

By using the idea above, we can have more refined global smoothing estimates. In
order to state them, we introduce some notations:

e Classical orbit determined by p(D)?*:
{ i(t) = Vep' (€(),  £(t) =0
z(0) =0, &(0)=k.
e The set of the path of all classical orbits:
T, ={(z(t),&(t)); sol. of (8),t >0,k € R™\ 0}
={(tVp(§),€);€ € R*\ 0,¢ > 0}

(8)

e Notation:
0'(.’13,£) ~ <$>a|€|b
—
o(z,€) € C™ (]R;‘ X (IR? \ 0)),
o(Az, &) = No(z,€); (A > 1, [z] > 1),
o(z, X) = Xoo(z,€); (A>0).

Theorem 6. Suppose n > 2. Assume
o€ =00nT,, ofz,€) ~ (@)
Then the solution u to equation (7) satisfies

HO’(X, D)“"Lﬂ(mtxkg) < C”g“Lz(R;‘)
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Remark 2. Without the structure condition o(z,£) = 0 on I',, we have the esitmate
in Theorem 6 for the followings:

- o(z, &) = (z)°€Y? (s >1/2) (Ben-Artzi and Klainerman [2])
- o(z,€) = |z|*7'¢]* (0<a<1/2) (Kato and Yajima [10])

We have a similar result for inhomogeneous equations

{@@—mpmu@@=f@@

©) u(0,z) = 0.

Theorem 7. Suppose n > 2. Assume

o(z,€) >0, o(z,€)=00nly
o(z,€) ~ (z)2[¢].

Then the solution u to (9) satisfies the estimate

llo(X, Dz)u”Lﬂ(Rth;‘)
<C|@)**s

L2(RyxRE)

Combining Theorems 6 and 7, we have an estimate for the equation

{@&—MDﬂu@@:f@@

(10) u(0,2) = 9(a).

Corollary 8. Suppose n > 2 and s,5 > 0. Assume

o(z,6) >0, oz, =00nT,
o(z,€) ~ [€].

Then the solution u to (10) satisfies the estimate

(212X, Do)

H!(HE)
< C||ta) (D22

0||()¥*#

L3(Rz) Hy(H3)
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Derivative Nonlinear Schrodinger Equation

Finally, we refer to further applications. We consider the following nonlinear
Schrodinger equation: '

| (i0; + Ag) u(t, z) =|Vu(t, z)|¥
(1) { u(0,z) = g(z), teR, z€R"™

What is the condition of the initial data g(z) for equation (11) to have time global
solution? There are some answers:

e N > 3 (Chihara [4]). Smooth, rapidly decay, and sufficiently small.
e N > 2 (Hayashi, Miso and Naumkin [8]). g € H!™2+5, rapidly decay, and
sufficiently small.’

Question: Can we weaken the smoothness assumption for g(z)?
Answer: Yes if the non-linear term has a “structure’!

Instead of (11), we consider

(12) (i6; — p(D)?) u(t, z) =|o(X, D)ulN
u(0,z) = g(z), t€R, zeR",
where
o(r,£) 20, o(z,€)=0 on T,
(1) {emame

e Examples of nonlinear terms which satisfy (13) in the case p(D)? = =y

2
o(z,€) = %Ae |é]7" for large |z]

Theorem 9. Supposen > 2, s > (n+3)/2, and N > 3. Assume that (z)(Ds)’g € L2
and its L2-norm is sufficiently small. Then equation (12) has a time global solution. .
(In the case N = 2, we need more structure.)

Key point to the proof of Theorem 9. Use Corollary 8 with f = |o(X, Dm)u|N.
The space H; (H}) is an algebra if s > 1/2 and § > n/2. Then we have

|@*410(x, Doyl

S“<x>1/(2N)+1/NO_(X, D.)u lN

H}(H3) Hi(H3)

N
< 1/2
<[|¢=)*o(, Deyu et

if N> 3.
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