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A ZETA FUNCTION ASSOCIATED WITH THE
BERGMAN KERNEL

KENGO HIRACHI

On the unit ball $\Omega_{0}=$ $\{z \in \mathbb{C}^{n} : |z|^{2}<1\}$ , let us consider the Hilbert
space $H_{s}(\Omega_{0})$ of $L^{2}$ holomorphic. functions with respect to the measure
$(1 -|z|2)^{-1-s}/\mathrm{I}$ $(-s)|d2|^{2}$ . If $s$ $<0,$ then $\mathrm{L}(\Omega_{0})$ is non-trivial and
admits a reproducing kernel

$K_{s}(z)=\pi^{-n}\Gamma(n-s)$ $(1-|\mathrm{z}|^{2})^{\epsilon-n}$ ,

which we call the weighted Bergman kernel. Prom this formula it is
clear that $K_{\epsilon}$ can be analytically continued to $s\in$ C. Note that $K_{\epsilon}$

has single poles at $s=n$, $n$ $+1,$ $n$ $+2,$ $\circ$ c $r$ but then $(1-|\mathrm{z}|^{2})’-n$ is real
analytic on $\mathbb{C}^{\mathrm{n}_{\mathrm{f}}}$ Thus, as a microfunction, $K_{e}$ is holomorphic in $s\in$ C.

In this talk, I show that this argument can be generalized to strictly
pseudoconvex domains in $\mathbb{C}^{n}$ . Then $K_{f}$ has more poles and some of
the residues give CR invariants of the boundary. We call $K_{s}$ a zeta
function associated with the Bergman kernel (1’11 explain the reason in
the talk). The main tool of the proof is Kashiwara’s microlocal analysis
of the Bergman kernel [2]. The computation of the residues are done by
using the simple holonomic system for the weighted Bergman kernels.
More details can be found in [1].
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