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Abstract

We investigate formal solutions of the inhomogeneous heat equation, where the inhomogenuity is
a $k$-summable formal power series in $t$ with coefficients that are holomorphic in a disc.

1 Introduction
Recently a new interest has arisen in power series solutions of partial differential equations, and in
particular the non-Kowal ewskian case of solutions with radius of convergence equal to zero has been
studied: Various authors have been establishing the Gevrey order for such power series solutions, while
some of the most recent work concerns the question of their summability. The case of a Cauchy problem
for the complex heat equation in one spatial variable has been more or less completely analyzed in articles
of Lutz, Miyake, and Schdfke [14], resp. W. Balser [1]. In subsequent articles, other PDE with constant,
and in some cases holomorphic, coefficients have been treated, but up to now the theory is far from
fully developped. Without claim of completeness, we list the following articles containing results in this
direction: M. Hibino [8-12], M. Miyake [16-18], Miyake and Hashimoto [20], Miyake and Yoshino [21-23],
S. $\overline{O}$uchi [24-27], Plis and Ziemian [28], Balser and Miyake [6], Miyake [19], K. Ichinobe [13], Balser and
Rostov [5], W. Balser [3], S. Malek [15], and 0. Costin and S. Tanveer [7].

In this article we shall investigate formal solutions for the inhomogeneous heat equation, finding their
Gevrey order as well as determining their summability properties. This case has been briefly looked
at in [5] and shall be investigated here in more detail. It appears possible that this result might be of
importance in treating other equations with holomorphic coefficients, using a perturbation technique. In
detail we shall use the following notation:. Throughout this paper, let $7$) $=$ $\mathrm{p}_{r}$ denote the open disc of radius $r>0$ about the origin, where

$r=\infty$ may occur, and let $f_{j}(z)$ , for $7\in$ No, denote functions that all are holomorphic in V. In
terms of these functions, we shall be concerned with two formal power series in $t$ given by

$\hat{f}(t, z)=j=0\mathit{5}^{\neg}\lrcorner d^{-}\underline{\mathrm{r}_{\wedge}^{d}}.\prime f_{j}(z)$
, \^u $(t, z)= \sum_{j=0}\div u_{j}(z)$ ,

$u_{j}(z)= \nu\mu\dotplus_{\mu}>0\equiv_{j}\sum_{\nu}$

$f_{\nu}^{(2\mu)}(z)$ , (1.1)

where $f_{\nu}^{(2\mu)}(z)$ denotes the $(2\mu)$-th derivative of $f_{\nu}(z)$ .
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The series \^u $(t, z)$ can be easily seen to be the unique power series solution of the Cauchy problem for an
inhomogeneous heat equation, in one spatial dimension, of the form

$u_{t}=u_{zz}+\partial_{t}7(t, z)$ , $u(0, z)=f_{0}(z)$ .

Note that every inhomogeneous heat equation with an inhomogenuity that is a holomorphic function in a
polydisc about the origin of $\mathbb{C}^{2}$ , or a formal power series in $t$ and $z$ , can be written in this form. In view
of this fact, it appears natural to assume that the power series $\hat{f}(t, z)$ converges - however, even then the
solution \^u $(t, z)$ will, in general, be a formal series in the sense that it fails to converge for every $t\mathrm{g}$ $0$ .
For this reason, it is more suitable here to allow that the series $\hat{f}(t, z)$ is formal as well. In this situation,
the correspondence $\hat{f}$ ( $t$ , z)\mapsto \^u(t, $z$ ) is a bijective mapping of $\mathit{0}_{D},[[t]]$ (denoting the differential algebra
of all formal power series in $t$ with coefficients that are holomorphic in the disc 7)) into itself. The main
problem addressed in this article is to give necessary $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ sufficient conditions on $\hat{f}(t, z)$ so that the
corresponding solution \^u $(t, z)$ is of Gevrey order $s\geq 0,$ or even $k$-summable in a direction $d$ . To see
that such cases indeed exist, note that the general theor$\mathrm{y}$ of formal power series and multisummability,
presented, $\mathrm{e}$ . $\mathrm{g}.$ , in [2], ensures that, in case the formal solution \^u $(t, z)$ is of Gevrey order $s$ , or fc-summable
in a direction $d$ , or multisummable, then the same holds for its partial derivatives and antiderivatives,
and therefore for $\hat{f}(t, z)$ as well. So the main problem is whether, and if so, how we can recognize in
terms of $\hat{f}(t, z)$ , or equivalently in terms of the functions $f_{j}(z)$ , when these situations occur.

2 Definitions and technical results
In the definitions and results of this section, we shall consider an arbitrary formal power series in $O_{D}[[t]]$ ,
written in the form

$\hat{x}(t, z)$ $= \sum_{0}^{\infty}\frac{t^{J}}{j!}r_{j}(z)$ , $f_{j}(z)\in 0_{D}$ .

Due to the form chosen here, we set $s_{+}=s+1$ and say that such a series is of Gevrey order $s\geq 0$

provided that we can find constants $0$ $\in(0, r]$ and $C$, $K>0$ such that

$|x_{j}$ $(z)|\leq CK^{j}\Gamma(1+s_{+}j)$ $\forall$ $j\geq 0$ , $|z|<\rho$ . (2.1)

Note that this definition, when the functions $x_{j}(z)$ all are constants, coincides with the standard definition
of the Gevrey order of power series. Expanding $x_{j}(z)= \sum_{0}^{\infty}z^{n}x_{jn}/n!$ for $|z|<\rho$ , we define

$y(t, z)= \sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}x_{\mathrm{j}}(z)$ , $y_{n}(t)$ $= \sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j)}x_{jn}$
$i$ $n\geq 0$ . (2.2)

In these terms, we can rephrase the definition of Gevrey order as follows:

Lemma 1 For power series $\hat{x}(t, z)$ , $y(t, z)$ , and $y_{n}(t)$ as above, the following statements are equivalent:

(a) $\hat{x}(t, z)$ is of Gevrey order $s\geq 0.$

(b) There cist $\rho$ , $C$, $K>0,$ with $\rho\leq r,$ so that

$|xjn$ $|\leq CK^{j-n}\rho n!\Gamma(1+s_{+}j)$ $\forall j,n\geq 0$ . (2.3)

(c) There exist $\rho$ , $C$, $K>0,$ so that all $y_{n}(t)$ converge for $|t|<\rho$, and

$|$ $ln(t))|\leq CK^{n}n!$ $i$ $n\geq 0$ , $t\in D_{\rho}$ . (2.4)

(d) There exist $\rho_{1}$ , $\beta\underline{\mathrm{o}}>0,$ with $\rho_{2}\leq r,$ so that $y(t, z)$ converges for $|t|<\rho_{1}$ and $|z|<\rho_{2}$ .

Proof: Suppose (a). Using Cauchy’s formula, we conclude from (2.1) that (2.3) holds, which shows (b).
Thus we have $|y_{n}(t)| \leq C\rho^{-n}n!\sum_{0}^{\infty}(K|t|)$j, ffom which (c) follows, for suitable $C$, $K$, $\rho>0$ different
ffom those in (2.1). Since $y(t, z)= \sum_{n}y_{n}(t)/n!$ , we conclude from (b) that $| \mathrm{u}(t, z)|\leq C\sum_{n}(K|z|)^{n}$ ,
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which implies (d). Finally, if (d) holds, then $y$ (t, $z$ ) is bounded for $|t|\leq r_{1}$ $<\rho_{1}$ and
$|z|\leq r_{2}<\rho 2\mathrm{a}\mathrm{n}\mathrm{d}\square$

this, together with Cauchy’s formula, implies (a).

For $\mathrm{y}(t, z)$ as above, and for $k>0$ and $d\in \mathbb{R}$ , we say that this series is $k$ -summable in the direction
$d$ , if the following two conditions are satisfied:. There exist $\rho\in(0, r]$ , and $R$ $>0$ that may depend upon $\rho$ , such that for $s_{+}=1+1/k$ the power

series $y(t, z)$ , defined in (2.2), converges absolutely for $|z|<\rho$ and $|t|<R.$ In other words, this says
that $\hat{x}(t, z)$ is of Gevrey order $s=1/k$ .. There exists a $\delta>0$ so that for every $z\in D_{\rho}$ the function $y(t, z)$ can be continued with respect
to $t$ into the sector $\mathrm{S}\mathrm{d},\mathrm{s}=\{t : 2|d-\arg t|<\delta\}$ . Moreover, for every $\delta_{1}<\delta$ there exist constants
$C$, $K>0$ so that

$|^{\sup_{z|<\rho}|y(t,z)|}\leq C\exp[K|t|^{k}]$
$l$ $t\in S_{d,\delta_{1}}$ . (2.5)

It shall be convenient to say that this means that $y(t, z)$ is of exponential growth at most of order $k$

in the sector A5 $=S_{d,\delta}$ , by which we mean to say implicitly that the growth estimate (2.5) is uniform
in $z$ , for $z$ on a sufficiently small disc.

Observe that the series representing $y$ (t, $z$ ) is not the formal Borel transform of $\hat{x}(t, z)$ . Therefore, the
definition given above is that of a certain type of moment summability which, however, was proven in [2]
to be equivalent to the standard definition of $k$ -sumrnability and is more suitable to series of the form
that is investigated here. The sum $x(t, z)$ of the series $\hat{x}(t, z)$ is not given by the Laplace transform of
order $k$ of $y(t, z)-$ instead, one has to use another integral transformation that has been introduced by $J$.
Ecalle under the name of acceleration operator and whose definition can also be found in [2, Sectionll.l].
Nonetheless, it can be shown that this sum is holomorphic in $G_{d}\cross D_{\rho}$ , with a sectorial region $G_{d}$ of
opening larger than $\pi/k$ and bisecting direction $\arg t=d.$ For the case when all the functions $x_{j}(z)$ are
constants, the above definition of $k$-summability is equivalent to J.-P. Ramis’ [29] original one.

The functions $y$ (t, $z$ ) and $y_{n}(t)$ defined in (2.2) shall here be referred to as associated to the formal
series $\mathrm{y}(\mathrm{t}, z)$ . Moreover, it shall also be convenient to introduce the formal power series

$:_{n}(t)$ $=\partial_{z}^{n}\hat{x}0$ , $z)$ $|_{z=0}= \sum_{j=0}^{\infty}x_{\mathrm{j}n}\frac{t^{j}}{j!}$
$\forall n\geq 0$ . (2.6)

As an alternative interpretation of summability of series in two variables in terms of series in one variable,

we now state a result that has been proven in [4] and is quite analogous to the lemma shown above:

Lemma 2 For power series $\hat{x}(t, z),\hat{x}_{n}(t)$ , $\mathrm{y}(\mathrm{t}, z)_{f}$ and $y_{n}(t)$ as above, the following statements are equiv-
alent:

(a) The formal series $\hat{x}(t, z)$ is $k$ -sumrnable in the direction $d$ .

(b) The formal series $\hat{x}_{n}(t)$ all are $k$ -surnmable in the direction $d$ . Moreover, there eists a sectorial
region $G$ that is independent of $n$ and has opening larger than $\pi/k$ and bisecting direction $d$ , in
which all sums $x_{n}(t)$ of the series $\hat{x}_{n}(t)$ are holomorphic, for $n\geq 0.$ Finally, for every closed
subsector $\overline{S}$ in $G$ there exist constants $C$, $K>0,$ independent of $n$ , so that

$|x^{()}$’ $(t)|\leq CK^{n+l}n!\Gamma(1+s_{+}\ell)$ $i$ $n$ , $\ell\geq 0$ , $t\in\overline{S}$ . (2.7)

(c) The series $y_{n}(t)$ all converge for $|t|<r_{1}$ , with some $r_{1}>0$ that is independent of $n$ . Moreover,

there exists a $\delta>0$ so that all functions $y_{n}(t)$ can be holomorphically continued into the sector $s_{d,\delta}$ .
Finally, for every $\delta_{1}<\delta$ there exist constants $C$, $K>0,$ independent of $n$ , so that

$|y_{n}(t)$ $|\leq C^{n}n!\exp[K|1k]$ 1 $t\in says$
$1$

, $\forall n\geq 0$ .

Remark 1: Roughly speaking, this lemma says that the summability of a series with coefficients that
are holomorphic functions of a variable $z$ is equivalent to uniform summability of countably many series
with constant coefficients. While it is, in general, simpler to deal with series, or functions, in one instead
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of two variables, this advantage is counterbalanced by the fact that instead of one series we are left with
infinitely many to verify their summability. However, as shall become clear in Section 4, at least for
the case of the heat equation, for formal solutions of PDE these series are strongly interrelated, so that
indeed it suffices to summability of finitely many of them. $\square$

3 Gevrey order
Given a series $X(t, z)$ as above, we have considered functions $x_{j}(z)$ , resp. constants $x_{jn}$ that, up to
factorials, are the coefficients of this series, and defined other series $\hat{x}\mathrm{x}\mathrm{n}(t)$ , resp. functions $y(t, z)$ and
$y_{n}(t)$ . For the series \^u $(t, z)$ and $\hat{f}(t, z)$ in the introduction we shall define $uj(z)$ , $f_{j}(z)$ , Xjn, $fjn$ and
$\hat{u}_{n}(t)$ , $\mathrm{r}_{n}(t$ accordingly, and shall use letters $v$ and $g$ , instead of $y$ , to denote the corresponding functions.
In these terms we shall now characterize the cases when \^u $(t, z)$ is of Gevrey order $s$ .

Theorem 1 For $\hat{f}(t, z)$ and \^u $(t, z)$ as above, the following two cases occur:

(a) For $s\geq 1,$ the series \^u $(t, z)$ is of Gevrey order $s$ if and only if, the series $\hat{f}(t, z)$ has Gevrey order
$s$ as well.

(b) For $0\leq s<1,$ the series \^u $(t, z)$ is of Gevrey order $s$ if and only if, the series $\hat{f}(t, z)$ has Gevrey
order $s$ and, in addition, the series $v_{0}(t)$ and $v_{1}(t)$ have positive radius of convergence.

Proof: If \^u $(t, z)$ is of Gevrey order $s\geq 0,$ then the same holds for partial derivatives and antiderivatives,
and therefore for $\hat{f}(t, z)$ as well. Moreover, convergence of all $v_{n}(t)$ follows from Lemma 1, so one direction
of both (a) and (b) holds true. To show the converse, assume that $\hat{f}(t, z)$ is of Gevrey order $s$ , hence (2.3)
holds with $f_{jn}$ in place of $x_{jn}$ . Setting $u_{-1,n}=0$ for every $n\geq 0,$ we conclude ffom (1.1) that

$u_{jn}$ $=$ $EI$ $f_{\nu,n+2\mu}=f_{jn}+u_{j-1,n+2}$ $\forall j$ , $n\geq 0$ . (3.1)
$\nu\nu\mu\dotplus_{\mu}>0\equiv_{j}$

Estimating as usual, we then obtain for every $j$ , $n\geq 0$

$|u_{j}n| \leq C\sum_{\equiv\nu+\mu j}\nu,\mu>0K^{\nu-n-2\mu}\rho(n+2\mu)!\Gamma(1+s_{+}\nu)\leq CK^{j-n}\rho$ $\nu+\mu=j\sum_{\nu,\mu\geq 0},$

$K^{-\mu-2\mu}\rho\Gamma(1+n+2\mu+s_{+}\nu)$ .

In case (a), $\mathrm{i}$ . $\mathrm{e}$ . $s_{+}\geq 2,$ we have $\Gamma(1+n+2\mu+s_{+}\nu)\leq\Gamma(1+n+s_{+}j)$ , which essentially is of the same
“magnitude” as $n!\Gamma(1+s_{+}j)$ , as far as the question of Gevrey order of $\hat{x}(t, z)$ is concerned. Hence the
converse conclusion of (a) is correct. For $s_{+}<2,$ however, we have to proceed differently: We conclude
from (3. 1) that

$u_{j,2n}=$ $n_{j+n,0}- \sum_{\mu=0}^{n-1}f_{j+n-\mu,2\mu}$ , $u_{j,2n+1}=$ $u_{\mathrm{j}+n,1}$ $-$ $\sum_{\mu=0}^{n-1}f_{j+n-\mu,2\mu+1}$ $\forall j$ , $n2$ Cl (3.2)

By assumption we have in case (b) that $v_{0}(t)$ has positive radius of convergence, so that for sufficiently
large $C$, $K>0$

$|u_{j,0}|\leq CK^{j}\Gamma(1+s_{+}j)$ $\forall j\geq 0$ .
Using this and the same estimate for $f_{jn}$ as above, we obtain ffom (3.2) that

$|uj,2n| \leq CK^{j+n}[\Gamma^{\mathfrak{l}}(1+s_{+}(j+n))+\sum_{\mu=0}^{n-1}K^{-\mu}\rho^{-2}$” $(2\mu)!\Gamma(1+s_{+}(j+n-\mu))]$ $\forall j$ , $n\geq 0$ .

Since $s_{+}<2,$ we have $(2\mu)!\Gamma(1+s_{+}(j+n-\mu))<\Gamma(1+2n+s_{+}j)$, and from the same arguments as
above we then obtain (2.3), with $u_{jn}$ in place of $x_{jn}$ , for all even $n$ . To prove the same for odd $n$ , we can
proceed analogously, using that by assumption $v1(t)$ has positive radius of convergence. $\square$
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Remark 2: Theorem 1 shows that, if the Gevrey order of $\hat{f}(t, z)$ is larger than 1 then both series \^u $(t, z)$

and $\hat{f}(t, z)$ always are of the same Gevrey order. On the other hand, if $\hat{f}(t, z)$ has small Gevrey order or
even converges - and this situation naturally occurs in applications - then the Gevrey order of $\hat{x}(t, z)$ is
at most equal to 1 but will, in general, be larger than that of $\hat{f}(t, z)$ . To see that such cases can occur, let
$f_{j}(z)\equiv 0$ for $j\geq 1$ , $\mathrm{i}$ . $\mathrm{e}.$ , consider a homogeneous Cauchy problem. In this case, $\hat{f}(t, z)$ is independent of
$t$ and therefo$\mathrm{r}\mathrm{e}$ has Gevrey order $s=0.$ One may check that $u_{j}(z)=7_{0}^{(2j)}(z)$ , and $u_{jn}=$ fo,n+2j, for all
$n,j\geq 0.$ Therefore, the Gevrey order of \^u $(t, z)$ is at most equal to 1 and will, in fact, be equal to 1 except
for the following cases: For $0\leq s<1,$ the Gevrey order of \^u $(t, z)$ , according to Theorem 1 is equal to $s$ if,
and only if, $\hat{u}_{0}(t)$ and $\text{\^{u}}_{1}(t)$ both have Gevrey order $s$ , which in turn is equivalent to existence of $C$, $K>0$

for which $|f_{0,2}\mathrm{J}$ $|f_{0,2\mathrm{n}}+1$ $|\leq CK^{n}\Gamma(1+s_{+}n)$ , for every $n\geq 0.$ Such an estimate holds exactly when
$f_{0}(z)=$ $\sum_{n}$ $f_{0n}z^{n}/n!$ is entire and of exponential growth (in every sector) at most of order 2/(1-s). In
particular, we rediscover the classical result that the formal solution of the homogeneous Cauchy problem
for the heat equation converges if, and only if, the initial condition is entire and of exponential growth at
most 2. $\square$

4 Summability properties
In this section we shall investigate the summability properties in the case of a series \^u$(t, z)$ of Gevrey
order $s\leq 1.$ Motivated by Lemma 2, we shall define series $\hat{u}_{n}(t)$ analogously to (2.6), with $Xjn$ replaced
by $u_{jn}$ . We then can reformulate part (a) of Theorem 1 as saying that the Gevrey order of the formal
solution \^u $(t, z)$ equals $s$ if, and only if, the series $\hat{u}_{0}(t)$ , $\hat{u}_{1}(t)$ , and $\hat{f}(t, z)$ all have the same Gevrey order
$s$ . Since $s=0$ is nothing but saying that these series converge, we shall now restrict to $s>0.$ For this
case we can prove a result on $(1/s)$ -summability of \^u $(t, z)$ that is completely analogous to Theorem 1:

Theorem 2 Let $0<s\leq 1,$ and set $k=1/s$ . Then the power series \^u $(t, z)$ is $k$ -summable in a direction
$d$ if, and only if, the series $\hat{u}_{0}(t)$ , $\mathrm{i}_{1}(t)$ , and $\hat{f}(t, z)$ all are $k$ -summable in the direction $d$ .

Proof: If \^u $(t, z)$ is $k$-summable in a direction $d$, general results on $k$-summability imply the same for
partial derivatives and antiderivatives, and hence we can conclude from (1.1) that $\hat{f}(t, z)$ is k-summable
in the direction $d$, too. Moreover, the same holds for $\hat{u}_{0}(t)$ and $\hat{u}_{1}(t)$ , owing to Lemma 2. To prove the
converse, observe that (3.2) implies

$\hat{u}_{2n}(t)$ $= \hat{u}_{0}^{(n)}(t)-\sum_{\mu=0}^{n-1}\hat{f}$2”$\mu$)
$(t)$ , $\hat{u}_{2n+1}(t)=$ \^ur) (t) – $\sum_{\mu=0}^{n-1}\hat{f}$2$\mu+n-\mathrm{r}^{)}(t)$ $l$ $n\geq 0$ . (4.1)

From Lemma 2 we obtain that $k$-summability in the direction $d$ of $\hat{f}(t, z)$ implies the same for all $\hat{f}_{n}(t)$ ,
and since derivatives are also summable in the same sense, we see that (4.1) ensures $k$-summability in the
direction $d$ for every $\text{\^{u}}_{n}(t)$ . Moreover, the sums $f_{n}(t)$ of $\hat{f}_{n}(t)$ all are holomorphic in a sectorial region $G$

with opening larger than $\pi/k$ and bisecting direction $d$, and Lemma 2 says that this $G$ does not depend
upon $n$ . From the general theory of $k$-summability we then conclude that the sums $x_{n}(t)$ of $\hat{x}_{n}(t)$ also
are holomorphic on $G$ , and that (4.1) holds, if we replace all formal series by their sums, for every $t\in G.$

In view of Lemma 2, this leaves to prove an estimate of the form (2.7), for $u$un(t) in place of $x_{n}(t)$ . This,
however, can be done as follows: $k$-summability in the direction $d$ of $\hat{f}(t, z)$ implies that (2.7) holds for
$f_{n}(t)$ : and $k$-summability of $\hat{u}_{0}(t)$ , $\hat{u}_{1}(t)$ implies for their sums

$|u\mathrm{o}^{\ell)}$
$(\mathrm{z})$ , $|u!^{1)}$ $(t)|\leq CK^{l}\Gamma(1+s_{+}\ell)$ $\forall t\in G$ , $\ell\geq 0$ ,

provided that we take $C$, $K$ sufficiently large. Hence (4.1) implies

$|u_{2}^{(1)}$ $(t)| \leq CK^{n+t}[\Gamma(1+s_{+}(n+\ell))+\sum_{\mu=0}^{n-1}K^{\mu}(2\mu)!\Gamma(1+s_{+}(\ell+n-\mu))]$
$i$ $n\geq 0$ , $t\in G$ .

In the s$\mathrm{a}\mathrm{m}\mathrm{e}$ fashion as in the proof of Theorem 1 one can see that this implies $|u\mathrm{z}\mathrm{e})$ $(t)|\leq CK^{n}(2n)!\Gamma(1+$

$s_{+}\ell)$ , for constants $C$, $K$ that are not necessarily the same as above. Analogously one can
$\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\square$

$12n\}1(t)$ , and this completes the proof.
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Remark 3: In applications, the summability properties of the series $\hat{f}(t, z)$ may usually be known - in
fact, in most situations this series shall converge. Hence, to apply Theorem 2 we are left with showing
$k$ summability of $\hat{u}_{0}(\mathrm{b})$ , $\hat{u}_{1}(t)$ . As was already mentioned in Remark 1, the fact that \^u $(t, z)$ is a formal
solution of the heat equation reflects in (4.1), which in turn implies that, instead of infinitely many series
$\hat{u}_{n}(t)$ it suffices to show $k$ summability of $\text{\^{u}}_{0}(t)$ , $\hat{u}_{1}(t)$ only. Nonetheless, we are still left with the task
of computing those two series, and this question is addressed below. To simplify this task, we shall first
rephrase the problem of verification of summability of $\hat{u}_{0}(\mathrm{b})$ , $\hat{u}_{1}(t)$ : $\square$

Theorem 3 For $s>0,$ $k=1/s$ , and $d\in \mathbb{R}$ , the following statements are equivalent:

(a) The power series $\hat{u}_{0}(t)$ and $\hat{u}_{1}(t)$ both are $k$ -surnmable in the direction $d$ .

(b) The power series

$\hat{\psi}(t)=\sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+j/2)}\nu\mu\geq 0\sum_{2\nu\dotplus_{\mu=j}}$

$f_{\nu\mu}= \sum_{\nu,\mu=0}^{\infty}f_{\nu\mu}\frac{t^{2\nu+\mu}}{\Gamma(1+\nu+\mu/2)}$

is $(2k)$ -summable in the directions $d/2$ and $\pi+d/2$ .
(c) The power series

$w(t)= \sum_{j=0}^{\infty}\frac{t^{j}}{\Gamma(1+s_{+}j/2)}2y\nu\mu\geq 0\sum_{\dotplus_{\mu=j}}$

$f_{\nu\mu}= \sum_{\nu,\mu=0}^{\infty}f_{\nu\mu}\frac{t^{2\nu+\mu}}{\Gamma(1+s_{+}(\nu+\mu/2))}$

has positive radius of convergence. Moreover, for sufficiently small $\delta>0,$ the function $w(t)$ can be
holomorphically continued into the union of the sectors $S_{d/2,\delta}$ and $S_{\pi+d/2,\delta}$ and is of exponential
growth at most of $o$ rder 2 $k$ in both sectors.

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Equivalence of (b) and (c) is clear by definition of $(2k)$-summability. To prove equivalence of
(a) and (b), set

$a_{j}=2 \nu+\mu=\mathrm{j}\sum_{\nu,\mu\geq 0}$

$f_{\nu\mu}$ $\forall j\geq 0$ .

For even (odd) $j$ , we conclude that the corresponding sum only contains terms $f_{\nu\mu}$ with even (odd) values
of $\mu$ , and hence we conclude from (3.1) that $a_{2_{J}}=u_{j0}$ , $a_{2j+1}=u_{g1}$ , for $j\geq 0.$ General results that
can be found in [2] then imply the following: The series $\hat{\psi}(t)$ is $(2k)$-summable in the directions $d/2$ and
$\pi+d/2$ if, and only if, its odd and even part both are so summable as well. This, in turn, is equivalent
to $k$ summability in the direction $d$ of the series $\sum_{j}t^{j}a_{2j}/\Gamma(1+7^{\cdot})$ and $\sum_{j}tj$ $a_{2j+1}f\Gamma(3/2+j)$ ,

$\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\square$

then is equivalent to (a).

Remark 4: According to the last result, to verify $k$ summability of \^u $(t, z)$ requires information upon
the function $w(t)$ . As we shall indicate now, this function can, in principle, be computed from the series
$\hat{f}(t, z)$ , or rather from its associated function

$g(t, z)= \sum_{j=0}\frac{t^{j}}{\Gamma(1+s_{+}j)}f_{j}(z)$ ,

which converges on polydisc about the origin of $\mathbb{C}^{2}$ , provided that $\hat{f}(t, z)$ has Gevrey order $s$ . Applying
Ecdle’s deceleration operator with indices $1/s_{+}$ and 1/2 (see [2, Ex. 3, p. 177] for a definition) to the
power series expansion of $g(t, z)$ , we obtain the function

$h(t, z)= \sum_{j=0}\frac{t^{j}}{\Gamma(1+2j)}f_{j}$ (z) $= \sum_{\mathrm{j},n=0}^{\infty}\frac{t^{j}z^{n}}{\Gamma(1+2j)n!}f_{jn}$ ,
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which is equal to $g(t, z)$ for $s=1,$ resp. is an entire function of $t$ for $s<1.$ By termwise integration of
its expansion, one can verify that

$\phi(t):=\sum_{\nu,\mu=0}^{\infty}\frac{t^{2\nu+\mu}}{\Gamma(1+2\nu+\mu)}f_{\nu\mu}=\partial_{t}\int_{0}^{t}h(t-\tau, \tau)d\tau$. (4.2)

For $s_{+}=2$ , $\mathrm{i}$ . $\mathrm{e}.$ , $s=1,$ we have $\phi(t)=w(t)$ , while for the other cases, $w(t)$ is obtained from $\phi(t)$ by an
application of the acceleration operator with the same pair of indices $1/s_{+}$ and 1/2 as above. Observing
these formulae, it is theoretically possible to verify condition (c) in terms of the functions $f_{j}(z)$ . In the
special case of $f_{j}(z)\equiv 0$ for $j\geq 1$ , $\mathrm{i}$ . $\mathrm{e}.$ , of a homogeneous Cauchy problem, we have $g(t, z)=$ $\mathrm{f}\mathrm{o}(z)$ , from
which we conclude that $w(t)–\phi(t)=$ $\mathrm{f}\mathrm{o}(t)$ as well. If, in addition, $s=1,$ then Theorem 3 coincides
with a result proven by Lutz, Miyake, and Schdfke [14]. On the other hand, if $0<s$ $<1,$ then it was
shown in Remark 2 that $\phi(t)$ must be an entire function of exponential growth (in every sector) at most
of order 2/(1-s), and the above theorem is a special case of Theorem 1 in [1], since then $f\wedge(t, z)=$ $\mathrm{f}\mathrm{o}(z)$

(hence summability holds trivially), while $\hat{u}_{0}(t)$ , $\mathrm{i}_{1}(t)$ coincide with the series $1/\mathrm{s}$ . $ej_{1}$ introduced there.
The reader should note that even in this simple situation, verificati of the necessary and sufficient
condition for $k$-summability, in case of $k>1,$ cannot be done in terms of $f_{0}(z)$ itself, but involves its
Laplace transform of order $(1-s)^{-1}$ . $\square$

5 Additional remarks
In the previous section we have restricted ourselves to the situation of $s\leq 1,$ and we wish to emphasize here
that for $s>1$ the proof of Theorem 2 breaks down: While (4.1) still guarantees $(k=1/s)$ summability
of all $\hat{u}_{n}(t)$ provided that the first two are so summable, the estimates derived later in the proof become
too weak to imply $k$ summability of \^u $(t, z)$ . In fact, the example we shall give below shows that for $s>1$

we are naturally led to series $\hat{x}(t, z)$ that are not $k$-summable, for any value of $k>0,$ but multisummable
of type $k=(k_{1}, k_{2})$ , with $k_{1}=1$ and $k_{2}=$ l/s.

Example: Assume that $9>1$ and $a\in \mathbb{C}\mathrm{Z}$ $\{0\}$ , with $\arg a\not\equiv 0$ modulo $2\pi$ , are given. Let $f_{j}(z)$ $=$

$\Gamma(1+s_{+}j)(a-z)^{-1}$ for every $j\geq 0$ and $z$ ! $a$ . Then

$\hat{f}(t, z)=\frac{1}{a-z}\sum_{j=0}^{\infty}\frac{t^{j}}{j!}\Gamma(1+s_{+}j)$ , $\hat{x}(t, z)$ $= \sum_{\nu,\mu=0}^{\infty}\frac{t^{\nu+\mu}}{(\nu+\mu)!}\frac{(2\mu)!\Gamma(1+s_{+}\nu)}{(a-z)^{2\mu+1}}$

For the function $v(t, z)$ , associated to $\hat{x}(t, z)$ , we find the following integral representation:

$v(t, z)= \frac{1}{a-z}[\frac{1}{1-t}+$ $01k((1-x)^{s_{\dagger}}t(a-z)^{-2}) \frac{dx}{(1-x^{s}+t)(1-x)}]$ ,

with a kernel $k(t)$ that is entire and of exponential growth l/(s – 1) and is given by the power series

$k(t)= \sum_{\mu=1}^{\infty}\frac{(2\mu)!}{\Gamma(s_{+}\mu)}t^{\mu}$ .

Prom this integral representation we conclude that $v(t, z)$ , for fixed $z\neq a,$ is holomorphic for $t$ in a plane
with a cut, along the positive real axis, from 1 to infinity, and is of exponential growth $\kappa$ $=1/(s-1)$
there. Therefore, the acceleration operator with indices 1/2 and $1/\mathit{8}+$ can be applied and transforms
$v(t, z)$ into a function $h(t, z)$ that is asymptotic of Gevrey order $1/\kappa=s-1$ to the series

$\hat{h}(t, z)$ $= \sum_{\nu,\mu=0}^{\infty}\frac{t^{\nu+\mu}}{(2\nu+2\mu)!}\frac{(2\mu)!\Gamma(1+s_{+}\nu)}{(a-z)^{2\mu+1}}$

(for fixed $z\mathrm{z}$ $a$ ) in the sector $S_{\pi,\pi(2+1/\kappa)}$ with bisecting direction $d=\pi$ and opening $\pi(2+1/\kappa)$ . Since
this sector is so large, the asymptotic determins the function $h(t, z)$ uniquely, and using this fact, one
can obtain the following integral representation:

$h(t, z)= \frac{1}{a-z}[h(t)+t\int_{0}^{1}h((1-x)^{s}+t)\frac{x^{\mathit{8}}+-1dx}{(a-z)^{2}-x^{s}+t}]$
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where $h(t)$ is the (unique) function that has the series $\hat{h}(t)$ $= \sum_{g}\Gamma(1+s_{+}j)t^{j}/(2j)!$ as its Gevrey
asymptotic of order $s-1$ in $S_{\pi,\pi(2+1/\kappa)}$ . One can see that $h(t)$ can be obtained from the geometric series
by application of the acceleration operator with indices 1/2 and $1/s_{+}$ , and this implies that $h(t)$ remains
bounded as $tarrow\infty$ in $S_{\pi,\pi(2+1/\kappa)}$ . Due to the above integral representation, we see that the same holds
for $h(t, z)$ , except for singularities at $t=(a-z)^{2}$ . Hence we may apply the acceleration operator with
indices 1 and 1/2 to the function $h$ (t, $z$ ), integrating along any direction that avoids this singularity. The
function so obtained then is asymptotic to $\mathrm{x}(\mathrm{t}, z)$ in a corresponding sector. This, with help of the general
theory of multisummation and in particular [2, Chapter 10], proves that $\hat{x}(t, z)$ is $(1, 1/s)$ suitable in
all admissible multidirections $(d_{1}, d_{2})$ with $d_{0}\not\equiv 0$ and $d_{1}\not\equiv s\arg(a-z)$ modulo 2 $\pi$ . If this series were
$1/s$-summable in all but finitely many directions, then the general theory would imply absence of the
singularities of $h(t, z)$ at the points $t=(a-z)^{2}$ , which clearly is not the case. It is worth emphasizing
that this is so, whereas the series $\hat{f}(t, z)$ is $1/s$-summable in every direction $d\mathrm{i}0$ . $\square$

The above example shows that for $s>1$ it is to be expected that the series $\hat{x}(t, z)$ , under suitable
conditions upon $\hat{f}(t, z)$ , will be $(1, 1/s)$-summable. We shall, however, not discuss this situation in this
article.
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