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ON THE HOLOMORPHIC SOLUTION OF
NONLINEAR FIRST ORDER EQUATIONS

WITH SEVERAL SPACE VARIABLES

JOSE ERNIE C. LOPE

ABSTRACT. We will establish the existence and uniqueness of the holo
morphic solution of the nonlinear first order partial differential equation

$t \frac{\partial u}{\partial t}=F$ ($t,$ $x_{1}$ , $\ldots$ , $x_{n},u$ , $\frac{\partial u}{\partial x_{1}}$ , . . ., $\frac{\partial u}{\partial x_{n}}$ ).
Chen and Tahara $[4, 5]$ asserted this fact in the case when the space
variable $x$ is one dimensional. Chen and Luo [2], and Shirai [12] offered
nontrivial generalizations to several space variables. This paper offers
yet another nontrivial generalization using adifferent tool to prove the
convergence of the formal solution.

1. INTRODUCTION AND MAIN RESULT
Consider the nonlinear nonlinear singular partial differential equation

(E) $t \frac{\partial u}{\partial t}=F(t,$
$x_{1}$ , $\ldots$ , $x_{n}$ , $u$ , $\frac{\partial u}{\partial x_{1}}$ , . . . ’

$\frac{\partial u}{\partial x_{n}})$

with independent variables $(t, x)=(t,x_{1}, \ldots, x_{n})\in \mathbb{C}_{t}\mathrm{x}\mathbb{C}_{x}^{n}$ . The function
$F(t,x, u,v)$ is assumed to be holomoprhic in aneighborhood of the origin
$(0, 0, 0, 0)\in \mathbb{C}_{\mathrm{t}}\mathrm{x}\mathbb{C}_{x}^{n}\mathrm{x}\mathbb{C}_{u}\mathrm{x}\mathbb{C}_{v}^{n}$ and satisfies

$F(0,x, 0,0)\equiv 0$ near $x=0$.
Hence, near the origin, we have the expansion

$F(t,x, u,v)=a(x)t+b(x)u+ \sum_{j=0}^{n}c_{j}(x)v_{j}+\sum a_{p,q,\mu}(x)t^{p}u^{q}v_{1}^{\mu_{1}}\cdots v_{n}^{\mu_{n}}p+q+|\mu|\geq 2^{\cdot}$

We may then focus our attention on the coefficients $c_{j}(x)$ and consider
several cases. If each $c_{j}(x)$ vanishes identically near the origin, then (E) is
called anonlinear Fuchs type equation (since its linear part is aPDE of Fuchs
type) or aBriot-Bouquet type equation (since it is one possible generalization
into PDEs of the ODE studied by Briot and Bouquet). This case was studied
quite thoroughly by Gerard and Tahara (see for example [6, 7, 8]) in the early
$1990\mathrm{s}$ . However if for some $1\leq j\leq n$ we have anonzero $cj(0)$ , then we
can solve the equation (E) for $\partial u/\partial x_{j}$ and invoke the Cauchy-Kowalevsky
Theorem to assert the existence of aunique holomorphic solution $u(t,x)$
satisfying $u(0, x)\equiv 0$ and $u(t, 0)\equiv 0$ . Hence this second possibility is not
so interesting.

Supported by aresearch grant ffom the Creative and Research Scholarship Program of
the University of the Philippines

数理解析研究所講究録 1412巻 2005年 160-167



161

It now remains to consider the third case, namely, when each $cj(0)$ is
equal to zero but $c_{j}(x)$ is not identically equal to zero. In this case, Chen and
Tahara $[4, 5]$ called equation (E) a nonlinear equation of totally characteristic
type. They established the unique existence of the solution for the case
of a one-dimensional space variable $x$ and an indicial operator of regular
singularity, and under a non-resonance condition. Here is their result.
Theorem 1.1 (Chen-Tahara). Suppose the space variable $x$ is of one di-
mension and $c(x):=c_{1}(x)=x\gamma(x)$ with $\gamma(0)\neq 0$ . If there exists a $\sigma>0$

such that for all $(k, l)\in \mathrm{N}^{*}\mathrm{x}\mathrm{N}$, we have
$|k-b(0)-l\gamma(0)|\geq\sigma(k+l+1)$ ,

then (E) has a unique holomorphic solution $u(t, x)$ satisfying $u(0, x)\equiv 0$ .
It must be noted that there is a big gap between the case when $c(x)=$

$x\gamma(x)$ and when $c(x)=x^{p}\gamma(x)$ , where $p\geq 2$ . In the latter case, the indicial
operator has irregular singularity and the formal series solution is in general
not convergent. (The interested reader is referred to the paper of Chen, Luo
and Tahara [3].)

Chen and Luo later gave the following nontrivial extension of the above
theorem to the case when the space variable $x$ is multi-dimensional.
Theorem 1.2 (Chen-Luo). Suppose that for each $j_{f}cj(x)=xj\gamma j(x)$ with
$\gamma j(0)\neq 0$ . If there exists a $\sigma>0$ such that for all $(k, \mu)\in \mathrm{N}^{*}\mathrm{x}\mathrm{N}^{n}$ , we have

$|k-b(0)- \sum_{j=0}^{n}\mu_{j}\gamma_{j}(0)|\geq\sigma(k+|\mu|+1)$ ,

then (E) has a unique holomorphic solution $u(t, x)$ satisf $ing$ $u(0,x)\equiv 0$ .
Shirai further extended this result to several time-space variables. Applied

to the equation being considered, but keeping time one-dimensional, his
result gives the following.

Theorem 1.3 (Shirai). Suppose that $c_{j}(0)=0$ for each $j$ , and let 71, $\ldots$ , $\gamma_{n}$

be the eigenvalues of the mat$\dot{m}[(\partial c_{j}/\partial x_{i})(0)]$ . If there $e\dot{m}$& a $\sigma>0$ such
that for all $(k, \mu)\in \mathrm{N}^{*}\mathrm{x}\mathrm{N}^{n}$ , we have

$|k-b(0)- \sum_{j=0}^{n}\mu_{j}\gamma_{j}(0)|\geq\sigma(k+|\mu|+1)$ ,

then (E) has a unique holomorphic solution $u(t,x)$ satisfying $u(0,x)\equiv 0$ .
Note that in the generalizations of Chen-Luo and Shirai, the Poincar\’e

condition forces all $\gamma_{j}(0)’ \mathrm{s}$ to be nonzero.
This paper presents another nontrivial extension of Theorem 1.1 to the

case of several space variables. We will employ another method of proof and
thus come up with an alternative proof of Theorem 1.1. The following is
our main result.

Theorem 1.4. Suppose that for each $j$ , $c_{j}(x)=x_{1}\gamma_{j}(x)$ with $\gamma_{1}(0)\neq 0$ . If
there exists a $\sigma>0$ such that for all $(k,\mu)\in \mathrm{N}^{*}\mathrm{x}\mathrm{N}^{n}$ , we have

$|k$ $-b(0)-\mu_{1}\gamma_{1}(0)|\geq\sigma(k+\mu_{1}+1)$ ,
then (E) has a unique holomorphic solution $u(t,x)$ satisfying $u(0,x)\equiv 0$ .
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Note that the current setup allows the possibility for some $\gamma j(0)’ \mathrm{s}$ to be
zero; in fact, the $c_{j}(x)’ \mathrm{s}$ may be, with the exception of course of $c_{1}(x)$ ,
identically zero.

2. Proof OF MAIN Result

We will make use of a family of majorant functions to establish the con-
vergence of the formal power series solution of (E). This family is a modified
version of the one used by Lax [10].

For each nonnegative integer $i$ , we define the function

$\varphi_{i}(z)=\frac{1}{4S}\sum_{k=0}^{\infty}\frac{z^{k}}{(k+1)^{2+i}}$ .

Here, the constant $S$ is equal to $\pi^{2}/6(=1+1/4+1/9+\cdots)$ , and was in-
troduced by Tahara to greatly facilitate computations. (Kobayashi [9] also
used this type of majorant function but he did not make use of the constant
$S$ . The interested reader can compare how computations are greatly simpli-
fied by the mere addition of this constant in the definition of the majorant
function.) It is easy to check that the series converges and thus defines a
holomorphic function in the domain $\{z \in \mathbb{C};|z|<1\}$ .

These majorant functions $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta$ interesting majorant relations1 that are
rather easy to verify. We state them without proof.

Proposition 2.1. The following hold for any nonnegative integer $i$ :
(a) $\varphi_{i}(z)\varphi_{i}(z)<<2^{i}\varphi_{i}(z)$ ,
(b) $\varphi_{i+1}(z)<<\varphi_{\dot{\iota}}(z)_{f}$

(c) $z\varphi_{i}(z)\ll 2^{2+i}\varphi_{i}(z)$ ,
(d) $( \frac{1}{2})^{2+i}\varphi_{i}(z)\ll\varphi_{i+1}’(z)<<\varphi_{i}(z)$ .

The following proposition provides a majorant for the product of a hol0-
morphic function and one of the functions in this family. We also omit the
easy proof. (See Lope-Tahara [11].)

Proposition 2.2. Let $0<\epsilon$ $<1$ and let $i$ be a nonnegative integer. Then
there exists a constant $C_{i,\epsilon}>0$ such that

$\frac{1}{1-\epsilon z}\varphi_{l^{1}}(z)\ll C_{i,\epsilon}\varphi_{i}(z)$ .

Let us now prove Theorem 1.4. $\mathrm{R}|$om our assumptions, equation (E) can
we rewritten as

$(\mathrm{E}’)$ $t \frac{\partial u}{\partial t}=a(x)t+b(x)u+\sum_{j=1}^{n}x_{1}\gamma_{j}(x)\frac{\partial u}{\partial x_{j}}$

$+ \sum_{p+q+|\mu|\geq 2}a_{\mathrm{p},q,\mu}(x)t^{p}u^{q}(\frac{\partial u}{\partial x_{1}})^{\mu_{1}}\cdot\cdot|$

$( \frac{\partial u}{\partial x_{n}})^{\mu_{n}}$

1We wiu follow the usual notation to express majorant relations, that is, we will write
$\sum a_{\alpha}x^{\alpha}\ll\sum A_{\alpha}x^{\alpha}$ to mean $|a_{\alpha}|\leq A_{a}$ for all $\alpha\in \mathrm{N}^{n}$ .



163

Since we are interested in solutions that satisfy $u(0, x)\equiv 0$ , we now assume
a formal solution of the form $\sum_{k=1}^{\infty}u_{k}(x)t^{k}$ . Substituting this formal series
into $(\mathrm{E}’)$ and comparing the coefficients of equal powers of $t$ , we see that the
coefficients $u_{k}(x)$ must satisfy

$\gamma_{1}(x)x_{1}\frac{\partial u_{1}}{\partial x_{1}}-[1-b(x)]u_{1}+x_{1}\sum_{j=2}^{n}\gamma_{j}(x)\frac{\partial u_{1}}{\partial x_{j}}=-a(x)$

and for $k\geq 2$ ,

$\gamma_{1}(x)x_{1^{\frac{\partial u_{k}}{\partial x_{1}}-}}[1-b(x)]u_{k}+x_{1}\sum_{j=2}^{n}\gamma j(X)\frac{\partial u_{k}}{\partial x_{j}}=H_{k}(x)$ ,

where $H_{k}(x)$ is a function of the previous coefficients $u1(x)$ , $\ldots$ , $uk-1(x)$ and
of their first derivatives.

The above equations are first order linear Fuchsian partial differential
equations and have formal solutions $u_{k}(x)$ provided

$k-\ (0)-l\gamma_{1}(0)\neq 0$ for all $(k, l)\in \mathrm{N}^{*}\cross$ N.

The Poincar\’e condition assumed in our theorem guarantees that the above
holds. We are therefore left to show that the formal sum $\sum_{k=1}^{\infty}uk(x)t^{k}$ is
indeed convergent. To do so, we will prove the existence of a holomorphic
function that majorizes the formal solution obtained above.

Suppose that the function $F(t,x, u, v)$ is holomorphic in a neighborhood
of {( $t$ , $x,u,v)\in \mathbb{C}_{t}\mathrm{x}\mathbb{C}_{x}^{n}\mathrm{x}\mathbb{C}_{u}\mathrm{x}\mathbb{C}_{v}^{n};|t|\leq r_{0}$ , $|x_{j}|\leq R$ , $|u|\leq\rho$ and $|v|\leq\rho$},
and is bounded there by some constant $M$ . Then in this neighborhood, we
have the following bounds for the coefficients of the partial Taylor expansion
of $F$ :

$|a(x)| \leq\frac{M}{r_{0}}$ , $|b(x)| \leq\frac{M}{\rho}$ , $| \gamma_{j}(x)|\leq\frac{M}{\rho R_{0}}$ and $|a_{p,q,\mu}(x)| \leq\frac{M}{r_{0}^{p}\rho^{q+|\mu|}}$ .

Hence, setting $\psi(x)=(1-(x_{1}+\cdots+x_{n})/R_{0})_{:}^{-1}$ we obviously have

$a(x)<< \frac{M}{r_{0}}\psi(x)$ , $b(x)<< \frac{M}{\rho}\psi(x)$ ,

$\gamma_{j}(x)\ll\frac{M}{\rho R_{0}}\psi(x)$ and $a_{p,q,\mu}(x) \ll\frac{M}{r_{0}^{p}\rho^{q+|\mu|}}\psi(x)$ .

For any function $g(x)$ , let us denote by $\tilde{g}(x)$ the function $g(x)-g(0)$ .
Using this notation, we can now rewrite $(\mathrm{E}’)$ as

$(\mathrm{E}’)$ $t \frac{\partial u}{\partial t}-b(0)u-\gamma_{1}(0)x_{1^{\frac{\partial u}{\partial x_{1}}}}$

$=a(x)t+ \tilde{b}(x)u+\tilde{\gamma}_{1}(x)x_{1}\frac{\partial u}{\partial x_{1}}+\sum_{j=2}^{n}x_{1}\gamma j(X)\frac{\partial u}{\partial x_{j}}$

$+$ $\sum$ $a_{p,q,\mu}(x)t^{p}u^{q}( \frac{\partial u}{\partial x_{1}})^{\mu_{1}}$ , .. $( \frac{\partial u}{\partial x_{n}})^{\mu_{n}}$

$p+q+|\mu|\geq 2$



164

In view of this and of the Poincare’ condition of Theorem 1.4, we see that any
$w(t, x)$ $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\infty \mathrm{i}\mathrm{n}\mathrm{g}$ the following set of relations is a majorant of the formal
solution:

(M) $\{$

$\sigma(t\frac{\partial w}{\partial t}+x_{1}\frac{\partial w}{\partial x_{1}}+w)\gg\frac{Mt}{r_{0}}\psi(x)+\frac{Mw}{\rho}\tilde{\psi}(x)+\frac{M\psi(x)}{\rho R_{0}}(x_{1}\frac{\partial w}{\partial x_{1}})$

$+$ $\sum_{j=2}^{n}\frac{Mx_{1}\psi(x)}{\rho R_{0}}\frac{\partial w}{\partial x_{j}}$

$+ \sum_{\mathrm{p}+q+|\mu|\geq 2}\frac{M\psi(x)}{r_{0}^{p}\rho^{q+|\mu|}}t^{p}w^{q}(\frac{\partial w}{\partial x})^{\mu}$,

$w(0,x)\equiv 0$ .

We claim that for a suitably chosen set of constants $L$ , $c$ , $\eta$ , $r$ and $R$, the
holomorphic function

(2.1) $w(t, x)=Lt \varphi 1(\frac{t}{cr}+\frac{x_{1}}{\eta R}+\frac{x_{2}+\cdots+x_{n}}{R})$

satisfies (M), and hence is one majorant of the formal solution $u(t, x)$ .

The rest of the section is devoted to this task.

Let us consider first the left-hand side of (M). For convenience, we set
$X=t/cr+x_{1}/\eta R+(x2+\cdots+x_{n})/R$. Simple applications of the properties
of the functions $\varphi_{i}(z)$ yield

$t \frac{\partial w}{\partial t}=Lt(t\frac{d\varphi_{1}(X)}{dX}\frac{1}{cr}+\varphi_{1}(X))>>\frac{Lt^{2}}{8cr}\varphi \mathrm{o}(X)+Lt\varphi_{1}(X)$

and

$x_{1} \frac{\partial w}{\partial x_{1}}=Ltx_{1}\frac{d\varphi_{1}(X)}{dX}\frac{1}{\eta R}\gg\frac{Ltx_{1}}{8\eta R}\varphi \mathrm{o}(X)$.
Hence, we have

(2.2) $\sigma(t\frac{\partial w}{\partial t}+x_{1}\frac{\partial w}{\partial x_{1}}+w)>>2\sigma Lt\varphi_{1}(X)+\frac{\sigma Lt^{2}}{8cr}\varphi \mathrm{o}(X)+\frac{\sigma Ltx_{1}}{8\eta R}\varphi \mathrm{o}(X)$.

Let us now turn to the right-hand side. We will separately majorize each
of the appearing terms. Since $\tilde{\psi}(x)=(x_{1}+\cdots+x_{n})\psi(x)/R0$ , we have

$\frac{M\tilde{\psi}(x)w}{\rho}=\frac{MLt}{\rho}\frac{x_{1}+\cdots+x_{n}}{R_{0}}\psi(x)\varphi_{1}(X)$

$\ll\frac{MRLt}{\rho R_{0}}\frac{x_{1}+\cdots+x_{n}}{R}C_{1}\varphi_{1}(X)$ ,

where the constant $C_{1}$ is the one that results after an application of PropO-
sition 2.2. It actually depends also on $R$ but for simplicity in notation, we
will only indicate its dependence on $i$ . (We $\mathrm{w}\mathrm{i}\mathrm{U}$ also do the same for the
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other constants that result after an application of this proposition.) We then
apply Proposition 2.1 (c) to obtain

(2.3) $\frac{M\overline{\psi}(x)w}{\rho}\ll\frac{8MLRt}{\rho R_{0}}C_{1}\varphi_{1}(X)$ .

As for expressions involving derivatives, we use Proposition 2.1 (d) to get

(2.4) $\frac{M\tilde{\psi}(x)}{\rho R_{0}}(x_{1}\frac{\partial w}{\partial x_{1}})<<\frac{M}{\rho R_{0}}\frac{x_{1}+\cdots+x_{n}}{R_{0}}\psi(x)\frac{Ltx_{1}}{\eta R}\frac{d\varphi_{1}(X)}{dX}$

$\ll\frac{MLtx_{1}}{\rho R_{0}^{2}}\frac{x_{1}+\cdots+x_{n}}{\eta R}C_{0}\varphi \mathrm{o}(X)$

$<< \frac{4MLtx_{1}}{\rho\eta R_{0}^{2}}C_{0}\varphi \mathrm{o}(X)$

and

(2.5) $\sum_{j=2}^{n}\frac{Mx_{1}\psi(x)}{\rho R_{0}}\frac{\partial w}{\partial x_{j}}\ll\sum_{j=2}^{n}\frac{MLtx_{1}}{\rho R_{0}R}\psi(x)\varphi_{0}(X)$

$\ll(n-1)\frac{MLtx_{1}}{\rho R_{0}R}C_{0}\varphi_{0}(X)$ .

Before we majorize the remaining two terms in the right-hand side of (M),
we rewrite them as

$\frac{Mt\psi(x)}{r_{0}}$
$+ \sum_{p+q+|\mu|\geq 2}\frac{M\psi(x)}{r_{0}^{p}\rho^{q+|\mu|}}t^{p}w^{q}(\frac{\partial w}{\partial x})^{\mu}$

$= \sum_{p=1}^{\infty}M\psi(x)(\frac{t}{r_{0}})^{p}$ $+ \sum_{p+q+|\mu|\geq 2}\frac{M\psi(x)}{r_{0}^{p}\rho^{q+|\mu|}}t^{p}w^{q}(\frac{\partial w}{\partial x})^{\mu}$

$q+|\mu|\geq 1$

The first summation on the right is easily seen to satisfy

(2.6) $\sum_{p=1}^{\infty}M\psi(x)(\frac{t}{r_{0}})^{p}\ll\frac{Mt}{r_{0}}\psi(x)\frac{1}{1-t/r_{0}}4S\varphi_{1}(X)$

$<< \frac{4SMt}{r_{0}}\frac{1}{1-t/r_{0}-x/R_{0}}\varphi_{1}(X)$

$\ll C_{1}\varphi_{1}(X)\underline{4SMt}$ .
$r_{0}$

The last step is an application of Proposition 2.2. Note that the constant
$C_{1}$ can be chosen to be the same as in (2.3). As for the second summation
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we have
(2.7)

$\sum_{p+q+|\mu|\geq 2}\frac{M\psi(x)}{r_{0}^{p}\rho^{q+|\mu|}}t^{p}w^{q}(\frac{\partial w}{\partial x})^{\mu}$

$q+|\mu|\geq 1$

$\ll\sum_{p+q+|\mu|\geq 2}\frac{M\psi(x)}{r_{0}^{p}\rho^{q+|\mu|}}t^{p}(Lt\varphi_{0}(X))^{q}(\frac{Lt\varphi_{0}(X)}{\eta R})^{\mu 1}(\frac{Lt\varphi \mathrm{o}(X)}{R})^{|\mu|-\mu_{1}}$

$q+|\mu|\geq 1$

$\ll$ $M\psi(x)\varphi_{0}(X)$ $\sum$ $( \frac{t}{r_{0}})^{p}(\frac{Lt}{\rho})^{q}(\frac{Lt}{\rho\eta R})^{\mu_{1}}(\frac{Lt}{\rho R})^{|\mu|-\mu_{1}}$

$p+q+|\mu|\geq 2$

$q+|\mu|\geq 1$

$<<$

$Mt^{2} \varphi_{0}(X)(\frac{1}{r_{0}}+\frac{L}{\rho}+\frac{L}{\rho\eta R}+\frac{(n-1)L}{\rho R})^{2}$

$1- \frac{t}{r_{0}}-\frac{Lt}{\rho}-\frac{Lt}{\rho\eta R}-\frac{(n-1)Lt}{\rho R}-\frac{x_{1}+\cdots+x_{n}}{R_{0}}$

$\ll$ $( \frac{1}{r_{0}}+\frac{L}{\rho}+\frac{L}{\rho\eta R}+\frac{(n-1)L}{\rho R})^{2}Mt^{2}C_{0}\varphi \mathrm{o}(X)$ ,

where the last simplification is possible if we assume that

(2.8) $\frac{1}{r_{0}}+\frac{L}{\rho}+\frac{L}{\rho\eta R}+\frac{(n-1)L}{\rho R}<\frac{1}{cr_{0}}$ .

Note further that the constant $C0$ above can be chosen to be the same as
the constant $C_{0}$ that appeared in the earlier computations.

Having majorized or minorized all the terms appearing in (M), let us now
compare the majorant relation obtained in (2.2) to the relations obtained
in equations (2.3)-(2.7). We can then see that in order for the holomorphic
function $w(t,x)$ in (2.1) to satisfy (M), the following inequalities must hold,
in addition to (2.8):

(2.9a) $2 \sigma L\geq\frac{8MLRC_{1}}{\rho R_{0}}+\frac{4SMC_{1}}{r_{0}}$

(2.9b) $\frac{\sigma}{8\eta R}\geq\frac{4MC_{0}}{\rho\eta R_{0}^{2}}+\frac{(n-1)MC_{0}}{\rho R_{0}R}$

(2.9c) $\frac{\sigma L}{8cr}\geq MC_{0}(\frac{1}{r_{0}}+\frac{L}{\rho}+\frac{L}{\rho\eta R}+\frac{(n-1)L}{\rho R})^{2}$

Recall that we are ffee to choose the constants $R$ , $L$ , $\eta$ and $c$ . To satisfy
the above, we first choose and fix an $R< \min(\sigma\rho R_{1}/4MC_{1}, \sigma\rho R_{0}^{2}/32MC_{0})$ ,
after which we choose a large $L$ and a small $\eta$ so that (2.9a) and (2.9b) will
both hold. Finally, we choose a small constant $c$ so that (2.9c) and (2.8) are
satisfied
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To summarize, we have shown that for suitably chosen constants, the
function $w(t, x)=Lt\varphi_{1}(X)$ is indeed a majorant of the formal power series
solution $u(t, x)$ . Since $w(t, x)$ is a holomorphic function in

$\Omega=\{(t, x)\in \mathbb{C}\cross \mathbb{C}^{n};|\frac{t}{cr}+\frac{x_{1}}{\eta R}+\frac{x_{2}+\cdots+x_{n}}{R}|<1\}$ ,

we are assured that $u(t, x)$ converges to a holomorphic function at least in
the domain $\Omega$ .
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