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Normal forms of some vector fields by transformations
with Borel summable functions

Sunao \~OUCHI (Sophia Univ.)
大内 忠 (上智大学)

Abstract

Let $L= \sum_{=1}^{d}X_{i}(z)\partial_{z}\dot{.}$ be a holomorphic vector field degenerating
at $z=0$ such that Jacobi matrix $(^{\partial}i_{z_{\mathrm{j}}}^{X}(0))$ has a zero eigenvalue. We
study finding normal forms of $L$ and try to simplify $L$ by transforma-
tions with functions with asymptotic expansion in strong sense, that
is, called Borel summable functions.
Key words: No rmal forms of vector fields, Borel summable functions,
Asymptotic expansion

0 Introduction

Let $L= \sum_{i=1}^{d}X.\cdot(z)\partial_{z}$ : be a holomorphic vector fields in a neighborhood

of the origin such that $X_{i}(0)=0$ for aU $1\leq i\leq d.$ It is an important and

classical problem to simplify $L$ , that is, to find a normal form of $L$ by suitable
transformations (see [1]). Let $( \frac{\partial X_{i}(z)}{\partial z_{j}})$ b$\mathrm{e}$ Jacobi matrix of the coefficients

and $\{\lambda_{i}\}_{=1}^{d}\dot{.}$ be eigenvalues of $( \frac{\partial X.(0)}{\partial z_{j}})$ . The typical problem is whether we

represent $L$ in the form $\sum_{=1}^{d}\dot{.}\lambda_{i}w_{i}\partial_{w}$

: by finding an invertible transformation
$w_{i}=\phi_{i}(z)$ with $\phi_{:}(0)=0$ , $i=1,$ 2, $\cdot\cdot \mathrm{t}$ , $d$ . In general it is not true. If we
assume that the eigenvalues $\{\lambda_{i}\}_{i=1}^{d}$ are distinct and non resonance condition,

that is, for $k=1,$ $\cdot$ . $\mathrm{r}$ , $d$

$\sum_{\dot{|}=1}^{d}m_{i}\lambda:-\lambda_{k}\neq 0$ for $|777$ $|\geq 2,$ (0.1)

then we can find a formal transformation $w_{i}=\phi\dot{.}(z)\in \mathbb{C}[[z]](1\leq i\leq d)$

such that $L$ is formally transformed to $\sum_{i=1}^{d}\lambda\dot{.}w_{i}\partial_{w_{\mathrm{i}}}$ . It was studied whether
the formal transformation converges. If we assume the Poincare’s condition,

that is, the convex hull of $\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}\}$ in the complex plane does not

contain the origin, then the above transformation converges, hence, there
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exists a holomorphic coordinates system $w$ $=$ $(w_{1}, w_{2}, \cdots,w_{d})$ such that $L$

is of the form $\sum_{i=1}^{d}\lambda_{i}w_{i}\partial_{w_{i}}$ . The convergence are also valid under SiegePs

condition [8] or Bruno’s one [4], which are arithmetic. In this paper we study

$L$ such that $( \frac{\partial X_{i}(0)}{\partial z_{j}})$ ha one zero eigenvalue. The purpose of this paper is

to try to transform $L$ to a normal form, by using not only transformations

with holomorphic functions in a full neighborhood of the origin but also ones

with holomorphic functions in a sectorial region with asymptotic expansions.

The main results are Theorems 2.1 and 2.2.

1 Function Spaces

Let $x=$ $(x_{1}, x_{2}, \cdot\cdot\{,x_{\mathrm{n}})\in \mathbb{C}^{n}$ and $at=(\alpha_{1}, \cdot\cdot 1,\alpha_{n})\in \mathrm{N}^{n}$. A series $\tilde{f}(x)=$

$\sum_{\alpha\in \mathrm{N}^{n}}f_{\alpha}x^{\alpha}$ , $f_{\alpha}\in \mathbb{C}$ , is called formal series in $x$ and the set of all such formal

series is denoted by $\mathbb{C}[[x]]$ . The totality of all convergent series in $x$ , that is,

all holomorphic functions in a neighborhood of $x=0$ is denoted by $\mathbb{C}\{x\}$ .

Let $U$ be an open set in Cn. $O(U)$ is the set of all holomorphic functions on
$U$. The set of all formal series $\tilde{f}$(x, $t$) $= \sum_{m=0}^{\infty}f_{m}(x)t^{m}$ , $\mathrm{r}_{m}(x)\in O(U)$ , with

coefficients in $O(U)$ is denoted by $O(U)[[\mathrm{t}]]$ .

Definition 1.1. We say that $\tilde{f}$(x, $t$) $= \sum_{m=0}^{\infty}f_{m}(x)t^{m}\in O(U)[[t]]$ has Gevrey

order $s$ in $t$ , if there are $A$ and $B$ such that

$\sup_{x\in U}|f_{m}(x)|\leq AB^{m}\Gamma(sm+1)$ . (1.1)

The set of all such formal series is denoted by $O(U)[[t]]_{s}$ .

Let us introduce spaces of holomorphic functions on sectorial regions with

asymptotic expansion. Set $S(\theta, \delta, r)=\{t\in \mathbb{C};0< |1<r, |\arg t-\theta|<\delta\}$ .

The set of all polydisks centered at $x=0$ is denoted by $\mathrm{U}_{0}$ .

Definition 1.2. Let $\gamma>0$ and $U\in \mathrm{U}_{0}$ . Let $f$ (x, $\mathrm{t}$ ) $\in O(U\mathrm{x}S(\theta,\delta,r))$ with

asymptotic $\mathfrak{M}ansion$ $f(x, t) \sim\sum_{m=0}^{\infty}f_{m}(x)t^{m}$ in the following sense. There
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exist constants $A$ and $B$ such that for any $N\in \mathrm{N}$

$\sup_{x\in U}|f(x, t)$ $- \sum_{m=0}^{N-1}\mathrm{f}_{m}(x\mathrm{E}^{m}|\leq AB^{N}\Gamma(\frac{N}{\gamma}+1)|t|^{N}$ (1.2)

holds for $t\in S(\theta, \delta, r)$ . The set of all sitch holomorphic functions is denoted
by $\mathrm{i}^{\{\gamma\}}(U\cross S(\theta, \delta, \mathrm{r}))$ .

Set

$\mathbb{C}\{x\}[[t]]_{s}$ $:= \bigcup_{U\in*}O(U)[[t]]_{s}$ , (1.3)

$O(U)\{t\}_{\gamma,\theta}$ $:= \bigcup_{\delta>\pi/2\gamma}\bigcup_{r>0}af^{\{\gamma\}}(U\mathrm{x}S(\theta, \delta, r))$ , (1.4)

$\mathbb{C}\{x\}\{t\}_{\gamma,\theta}$ $:= \bigcup_{U\epsilon \mathrm{u}_{0}}O(U)\{\mathrm{t}\}_{\gamma,\theta}$. (1.5)

We can define a homomorphism $\mathfrak{J}$ : $\mathbb{C}\{x\}\{t\}_{\gamma,\theta}\Rightarrow \mathbb{C}\{x\}[[t]]_{1/\gamma}$ , for $f(x,t)\in$

$\mathbb{C}\{x\}\{t\}_{\gamma,\theta}$

$\mathfrak{J}f$ $= \sum_{m=0}^{\infty}f_{m}(x)t^{m}\mathrm{E}$ $\mathbb{C}\{x\}[[t]]_{1/\gamma}$ . (1.6)

Since $\delta>\frac{\pi}{2\gamma}$ , $\mathrm{J}$ is not surjective but injective (see [2]). Therefore, we can
identify $\tilde{f}(x,t)=$ (J$f$) $(x, t)\in \mathfrak{J}(\mathbb{C}\{x\}\{t\}_{\gamma,\theta})\subset \mathbb{C}\{x\}[[t]]_{1f\gamma}$ with $f(x,t)\in$

$\mathbb{C}\{x\}\{t\}_{\gamma,\theta}$ .

Definition 1.3. Let $\tilde{f}(x, t)\in \mathbb{C}\{x\}[[t]]_{1/\gamma}$ . If there exists $f$(x, $t$) $\in \mathbb{C}\{x\}\{t\}_{\gamma,\theta}$

such that $\tilde{f}=$ Zf, then we say that $\tilde{f}(x,t)$ is $\gamma$-Borel summable in the di-
rection $\theta$ and $f(x, t)$ is $\gamma$-Borel serm of $\tilde{f}(x, t)$ . We also say that $f(x, t)\in$

$\mathbb{C}\{x\}\{t\}_{\gamma,\theta}$ is $\gamma$-Borel summable in the direction $\theta$ .

As for functions with asymptotic expansion, in particular, Borel summable
functions, more generally, multisummable functions we refer to [2].
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2 Vector fields

Let $z=(z_{1}, z_{2}, \cdots, z_{d})\in \mathbb{C}^{d}$ , $\partial_{z_{l}}=\frac{\partial}{\partial z_{i}}$ , $\partial_{z}=(\partial_{z_{1}}, \cdot\cdot 1 ,\partial_{z_{d}})$ and $L$ be a
holomorphic vector field in a neighborhood $W$ of the origin,

$L:=L(z, \partial_{z})=\sum_{i=1}^{d}X_{i}(z)\partial_{z_{i}}$. (2.1)

$L$ is singular at $z=0,$ that is, $X_{i}(0)=0$ for all $1\leq i\leq d.$ Set

$\mathrm{i}\mathrm{C}$ $=$ {$z\in W;X_{i}(z)=0$ for $1\leq i\leq d$}. (2.2)

Then $\Sigma$ contains the origin. We denote the Jacobi matrix of the coefficients
$(X_{1}(z), \mathrm{X}_{2}(z)$ , $\cdots$ , $X_{d}(z))$ by $( \frac{\partial X_{\dot{*}}(z)}{\partial z_{j}})$ . We assume $L$ satisfies the following

C. $\mathrm{I}$ , C.2 and C.3.

C.l $\Sigma=\{0\}$ .

C.2 The Jordan canonical form of $( \frac{\partial X_{9}(0)}{\partial z_{j}})$ is diagonal

$[_{0}^{\lambda_{1}}00.\cdot.\cdot..\cdot...\cdot$

.

$\cdot..\cdot\lambda_{2}000^{\cdot}..\cdot.\cdot$.. $\cdot.\cdot.\lambda_{3}0..\cdot.\cdot.$.. $\cdot 0$..
$\cdot..0^{\cdot}$.. $\lambda_{d-2}00$ $\lambda_{d-1}00$

$0000.\cdot.]000$

.

(2.3)

where $\lambda_{i}\mathrm{z}$ $0$ and distinct.

C.3 The convex hull of $(d-1)$ points $\{\lambda_{1}, \lambda_{2}, \cdot\cdot\iota , \lambda_{d-1}\}$ in the complex

plane does not contain the origin.

It follows from C.I and C.2 that $\mathrm{c}\mathrm{o}\dim\Sigma=d$ and $( \frac{\partial X_{\iota}(0)}{\partial z_{j}})$ has one zero

simple eigenvalue, so its rank is $(d-1)$ . The assumption C.3 is equivalent to

that nonzero $(d-1)$ points $\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d-1}\}$ lie in the one side divided by

a line through the origin. The main theorems are the following.
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Theorem 2.1. Assume $C.\mathit{1}_{f}C.\mathit{2}_{f}C.\mathit{3}$ and

$\sum_{i=1}^{d-1}m_{i}\lambda_{i}-\lambda_{k}\neq 0$ $k=1,2$, $\cdot\cdot$
, ,cl-l (2.4)

hold for all $m=$ $(m_{1},m_{2}, \cdot\cdot\Gamma, \mathrm{r}\mathrm{n}_{d-1})$ $\in \mathrm{N}^{d-1}ll\# th$ $|m|\geq 2.$ Then there exist an
integer $\sigma\geq 2$ and a holomorphic coordinates system $(x(z), t(z))\in \mathbb{C}^{d-1}\mathrm{x}\mathbb{C}$

with $(x(0),\mathrm{t}(0))=(0,0)$ such that the following holds.
There $e$$\dot{m}t\zeta_{1}(x,t)$ , $\cdots$ , $\zeta_{d-1}(x, t)$ , $\eta(x,t)\in \mathbb{C}\{x\}\{t\}_{\sigma-1,\theta}$ for some 0 with

$\{\begin{array}{l}\zeta_{1}(0,0)=\cdots=\zeta_{d-1}(0,0)=0,\eta(x,0)=0(\frac{\partial\zeta_{\dot{l}}}{\partial x_{j}}(0,0))=\delta_{i_{|}j},\frac{\partial\eta}{\partial t}(0,0)\neq 0\end{array}$ (2.5)

and by transformation

$\{$

$\zeta_{\dot{\iota}}=\zeta_{i}(x,\mathrm{t})$ $i=1$ , $\cdot\cdot$ .
’ $d-1,$

$\eta=\eta(x,t)$

(2.6)

$L$ is represented in the form

$\sum_{i=1}^{d-1}\lambda_{\mathrm{i}}(\eta)\zeta_{i}\frac{\partial}{\partial\zeta}\dot{.}+\eta^{\sigma}c(\eta)\frac{\partial}{\partial\eta}$ , (2.7)

where $\{\lambda_{i}(\eta)\}_{i=1}^{d-1}$ and $c(\eta)$ are polynomialS $\eta$ with degree $\leq\sigma-1,$ $\lambda_{i}(0)=\lambda$:
and $c(0)=1.$

If we admit multiplications of nonvanishing functions to vector fields in

the process to find normal forms of vector fields, we have

Theorem 2.2. Suppose that the same assumptions as those in Theorem 2.1
hold. Then there eist an integer $\sigma\geq 2,$ a holomorphic function $h(z)$ in

a neighborhood of the origin with $h(0)\neq 0$ and a holomorphic coordinates
system $(x(z), t(z))\in \mathbb{C}^{d-1}\mathrm{x}\mathbb{C}$ with $(x(0), t(0))=$ $(0, 0)$ such that the following

holds.

Set $L_{h}:=h(z)L$ . There eist $\zeta_{1}(x,t)$ , $\cdot\cdot \mathrm{c}$ , $\zeta_{d-1}(x,t)\in \mathbb{C}\{x\}\{t\}_{\sigma-1,\theta}$ for
same $\theta$ such that

$\zeta_{1}(0,0)=\cdots=\zeta_{d-1}(0,0)=0$ , $( \frac{\partial\zeta_{l}}{\partial x_{j}}(0,0))=\delta:,j$ , (2.8)
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ancl by transformation

$\{$

$\zeta_{i}=\zeta_{i}(x, t)$ $i=1$ , $\cdots$ , $d-1,$

$\eta=t$

(2.9)

$L_{h}$ is represented in the form

$\sum_{i=1}^{d-1}\lambda_{\dot{\iota}}(\eta)\zeta_{\dot{l}}\frac{\partial}{\partial\zeta_{i}}+\eta^{\sigma}\frac{\partial}{\partial\eta}$, (2.10)

where $\{\lambda:(\eta)\}_{i=1}^{d-1}$ are polynomials $\eta$ with degree $\leq\sigma-1$ and $\lambda_{:}(0)=\lambda_{i}$ .

In order to show Theorems 2.1 and 2.2 we have to find coordinates trans-

formations. The transformations are constructed by using solutions of sys-

tems of nonlinear ordinary differential equations and those of singular semi

linear first order partial differential equations. For these equations we need

the existence of holomorphic solutions and that of Borel summable solutions,

for which we refer to [3], [5], [6] and [7]. In particular, the existence of Borel

summable solutions of systems of nonlinear ordinary differential equations is

given in [3] and [7], and that of singular semi linear first order partial differ-

ential equations is given in [6]. The proofs of Theorems 2.1 and 2.2 and the

details are given in [6].

3 A simple example

We give a simple example and show the process to transform it to a normal

form. Let $(x,t)\in \mathbb{C}^{2}$ and

$L:=L$(x, $t,\partial_{x},$ $\partial_{t}$ ) $=(\lambda x+x^{2}+xt+t^{2})\partial_{x}+t^{\gamma+1}\partial t$ , (3.1)

where $\lambda>0$ and $\gamma$ is a positive integer. We have $\sigma=\gamma+1.$ Let $\theta$ be a real

constant such that $0<|/7|<\pi/\gamma$ .
(1) First consider

$t^{\gamma+1}\varphi’(t)=\lambda\varphi(t)+\varphi(t)^{2}+t\varphi(t)+t^{2}$ . (3.2)
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Then there exists $\varphi(t)\in \mathbb{C}\{t\}_{\gamma,\theta}$ with /’(Q $\sim\sum_{n=2}^{\infty}c_{n}t^{n}$ , $c_{2}=-1/\lambda$ . By

transformation $w=x-\varphi(t)$ , $t$ $=t,$

$L:=L$(w, $t,$ $\partial_{w},$ $\partial_{t}$ ) $=((\lambda+t+2\varphi(t))w+w^{2})\partial_{w}+t^{\gamma+1}\partial_{t}$ .

Set $\lambda(t)=$ A $+t+2 \sum_{n=0}^{\gamma}c_{n}t^{n}$ and $\mathrm{A}(\mathrm{t})=$ A $+t+2\varphi(t)-$ A(t). Then $\lambda(t)$ is a

polynomial with degree $\leq\gamma$ and $A(t)\in \mathbb{C}\{\mathrm{t}\}_{\gamma,\theta}$ with $A( \mathrm{t})\sim 2\sum_{n=\gamma+1}^{\infty}$ $c_{n}t^{n}=$

$O(t^{\gamma+1})$ and

$L(w,t,\partial_{w},\partial_{t})=((\lambda(t)+A(t))w+w^{2})\partial_{w}+t^{\gamma+1}\partial_{i}$ . (3.3)

(2) Next consider

$L(w,t, \partial_{w},\partial_{t})\phi(w,t)=\lambda(t)\phi(w,t)$, (3.4)

which is a singular first order partial differential equation with coefficients in

$O\{w\}\{\mathrm{t}\}_{\gamma,\theta}$ . Consider an auxilliay equation to solve (3.4)

$t^{\gamma+1}\psi_{*}’(t)+A(\mathrm{t})\psi_{*}(t)+A(t)=0.$

Since $A$ (t) $=O(t^{\gamma+1})$ . there exists a solution $\psi_{*}(t)\in \mathbb{C}\{t\}_{\gamma,\theta}$ with $\psi_{*}(0)=0.$

Set $6(w, t)=(1+\psi_{*}(t))w+\psi(w,t)$ . Then (3.4) becomes

$L$ (w, $t,\partial_{w},\partial_{t}$ )$\psi(w,t)=\lambda(t)\psi(w,t)-(1+\psi_{*}(t))w^{2}$ . (3.5)

It is not difficult to find a formal solution $\tilde{\psi}(w,t)=\sum_{n=0}^{\infty}\psi_{n}(w)t^{n}\in O(U)[[t]]_{1\oint\gamma}$

for a neighborhood $U$ of $w=0$ with $\psi_{n}(w)=O(|w|^{2})$ for all $n$ . We can

show that $j$) $(\tau n, t)$ is $\gamma$-Borel summable in the direction 0, that is, there ex-

ists $\mathrm{X}(\mathrm{t})$ . $t$) $\in \mathbb{C}\{w\}\{\mathrm{t}\}_{\gamma,\theta}$ with /) $(w,t)\sim\tilde{\psi}(w,t)$ . Hence $\mathrm{X}(\mathrm{t}).t)=(1+$

$\psi_{*}(t))w+\psi(w,t)\in \mathbb{C}\{w\}\{t\}_{\gamma,\theta}$ is a solution of (3.4). By transformation
$\zeta(x, t)=\phi(x-\varphi(t),t)$ , $\eta(x, t)=t,$ the vector field $L$ is transformed to
$\lambda(\eta)\zeta\frac{\partial}{\partial\zeta}+\eta^{\gamma+1}\frac{\partial}{\partial\eta}$ , which is anormal form of $L$ .
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