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Abstract

The main purpose of this lecture is to present some interesting recent develop-
ments concerning coefficient and distortion inequalities, neighborhood prop-
erties, and majorization problems associated with certain families of analytic
and multivalent functions. Some of the various analytic function classes, which
are considered in this lecture, are defined by means of the familiar Ruscheweyh
derivative and a certain nonhomogeneous Cauchy-Euler differential equation.
Several analytic function classes of complexr order are also investigated.
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1. Introduction, Definitions and Preliminaries

Let 7 (n,p) denote the class of functions f (z) normalized by

f(z)=2F - i a z* (a 2 0; p,neN:={1,2,3,...}), (1.1)

=n+p

which are analytic in the open unit disk
U={z:2€C and |z} <1}.

Following the earlier investigations by Goodman [13] and Ruscheweyh [25] (see also
Silverman [27] and Altintag et ol ([6], [7], and [9])), we define the (n,d)-neighborhood
of a function f (z) € T (n,p) by

Nns (f39) = {QGT("7P)=9(Z)=Z”- Y b 2* and ) klak-bkl§5}, (L2)

k=n+p k=n+p

so that, obviously,

No.s(h;g) = {g €T (n,p):g(z) =2 - Z by z¥ and Z kb £ 6}, (1.3)

k=n+p k=n+p
where
h(z)=2* (p €N). (1.4)

First of all, we denote by S} (p, @) and C, (p, @) the classes of p-valently starlike functions
of order a in U (0 £ & < p) and p-valently convex functions of order o in U (0 £ o < p),
respectively. Thus, by definition, we have

St (p,a) = {f € T (n,p) :m(z;'(z)) >a (z€U;0<a <p)} (1.5)
and
Ca(p,a):= {f €T (n,p) :9%(1-&-%%)—) >a (2€e0; O§a<p)}. (1.6)

An interesting unification of the function classes S}, (p, a) and €, (p, @) is provided by the
class T, (p, @, A) of functions f € T (n,p), which also satisfy the following inequality:

2f (2) + A F (2)
m‘(xzf' BETEDY; <z)) >« (1)

(zeU; 08 a<p; 6SASYL).
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The class T, (p, @, A) was investigated by Altintag et ol [4] and (subsequently) by Irmak et
al. [15]. In particular, the class T, (1,a, A} was considered earlier by Altintas [3]. Clearly,
we have

T.(p,2,0) =S, (p,a) and Ta(p,a,1) =Colp,a) (1.8)
in terms of the simpler classes S}, (p, @) and C,, (p, @) defined by (1.5) and (1.6), respectively
(see also Duren [12}, Goodman [14], and Srivastava and Owa ([28] and [29])).

Based substantially upon a sequel to the aforementioned recent works by Altintag et al [9],
we begin our investigation here by presenting several coefficient inequalities and distortion
bounds, and associated inclusion relations for the (n,d)-neighborhood of functions in the
subclass K, (p, &, X, pt) of the class T (n, p), which consists of functions f € 7 (n, p) satisfying
the following nonhomogeneous Cauchy-Euler differential equation:

AT ) bt D= prat D) (9
(w=f(2) €T (n,p); g€ Tulp,a,A); p>~p (1 €R)).
We shall also investigate, in our presentation here, several other univalent and multivalent
analytic function classes [defined by means of (for example) the familiar Ruscheweyh deriv-
ative] as well as the majorization problems associated with some of these analytic function
classes.

2. Coefficient Inequalities, Distortion Bounds, and Neighborhood Properties
for the Classes T.(p,a, A) and K,(p, a, A, u)

Lemma 1 and Lemma 2 below are remarkably instrumental in establishing the main dis-
tortion bounds for functions in the class K, (p, @, A, g}, given by Theorem 1.

Lemma 1 (Altintag et al. [4, p. 10, Theorem 1]). Let the function f € T (n,p) be defined
by (1.1). Then the function f(z) is in the class T, (p,a, A) if and only if

Y. k—a)Pk-D+lap-a)A(p-1)+1] (2.1)

k=n+p
0La<p; 0SALL n,peN).
The result is sharp with the extremal function given by

. G-DE-DF .,
flz) = (n+p—a)A(n+p=1)+1]

(n,p€N). (2.2)

Lemma 2. (Altintag et al. [9]). Let the function f(z) given by (1.1) be in the class
T. (p,a,A). Then
D
k=n+p

(p-c)Ap-1)+]] 2.3)
(n+p—a)A(n+p—-1)+1] o

VAN
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and

SR e LELIEHES 2.4

R CE TR YR R

Theorem 1. If f € T (n,p) is in the class K, (p, o, A, ), then

p, =) -D+UHp+tp)p+pr+l) o, _
[f ()] £ 2 +(n+p—-a).[)\(n+p-—1)+11(n+p+u)l l (zel) (29

and

p_ =P -1)+1e+p)@+p+)) e,
IF )t 2 |4 (ner—a)[A('rHrp-1)+1](n+zo+u)H (zel).  (26)

Proof. Suppose that f € T (n,p) is given by (1.1). Also let the function g € 7, (p, o, A)
occurring in the nonhomogeneous Cauchy-Euler differential equation (1.9), be given as in
the definitions (1.2) and (1.3) with, of course,

b 20 (k=n+pn+p+ln+p+2,...). (2.7)
Then we readily find from (1.9) that
p+mptptl),

ap = Frp)ktatl) (k=n+pn+p+l,n+p+2,...), (2.8)
so that
TR~ S S (P+w)ptp+l),
f(z)==z k;p g 2¥ = kzzn; (RIS by (2.9)
and
2 n+p p+p)(p+p+1)
£l 414 kz;(k+”(k+u+nbk Gev. (@

Next, since g € T (p,@,)), the first assertion (2.3) of Lemma 2 yields the coefficient
inequality:
p-—a)Alp—1 +1]
n+p—a)A(n+p—-1)+1]
which, in conjunction with (2.10), yields

2 2IP (p a)[)‘(p +1](p+,u (p+ﬂ'+1) n+p
@I+ 2=l Y rIe e it

S 1
.k;;p(k'*'/t‘)(k-i-ﬂ-i-l) (2€0). (2.12)

be S (k=n+pn+p+1ln+p+3,...), (211)
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Finally, in view of the telescopic sum:

- 1 1 1
- = 1
Z (k+ p)( k+p+l) Z (k+,u k+u+1) n+p+p (2.13)

k=n-+p k=n+p

(HER\ {—n—-p,—n—p— 1:'—""?—2,"'),
the first assertion (2.5) of Theorem 1 follows at once from (2.12).
The second assertion (2.6) of Theorem 1 can be proven by similarly applying (2.9), (2.11),
and (2.13).
By setting A = 0 and A = 1 in Theorem 1, and using the relationships in (1.8), we arrive
at Corollary 1 and Corollary 2, respectively.

Corollary 1. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differ-
ential equation (1.9) with g € S;; (p,a), then

p_p=)ptu)(prptl) mi ,
|2} CEYY P [2[" S 1f (2)]

gpw+fﬁ;j?52ﬁ¥i;i:;M4Mp (€ ). (2.14)

Corollary 2. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differ-
ential equation (1.9) with g € C, (p,a), then

o P=0)ptp)prutd) | ni .
| (n+p)(n+p- Ol)(n+p+p)|| S1f ()1

p, Pl a)(p+p)lp+u+l) o s -
Sl (n+p)(n+p—a)(n+p+ul| (z€0). (2.19)

Now we turn to the determination of the inclusion relations for the classes 7, (p, @, A) and
K. (p,a, A, p) involving the (n,§)-neighborhoods defined by (1.2) and (1.3). We first state
Theorem 2. If f € T (n,p) is in the class T, (p, o, A), then
T (D0, A) C Nas (Bs f), (2.16)
where h (2) is given by (1.4) and

_+p)p-aPp-1)+1]
T (n4+p-a)A(n+p-1)+1] (2.17)

Proof. The assertion (2.16) would follow easily from the definition of N, (h; f), which is
given by (1.3) with g(2) replaced by f(z), and the second assertion (2.4) of Lemma 2.
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Theorem 3. If f € T (n,p) is in the class K, (p, @, A, p), then
K:n (p,a,A,ﬂ) CNn,s(g;f), (2'18)
where g(z) is given by (1.9) and

5. tD)p-a)Pp=D+1n+p+p)@+ut2) (2.19)
' (n+p—a)A(n+p-1)+1n+p+s) '

Proof. Suppose that f € K,(p, A, g). Then, upon substituting from (2.8) into the
coefficient inequality:

S klbe—al £ ) kbt 3 kar (@205 b 20), (2.20)
k=n+p k=n+p k=n+p
we obtain
(p+p)(p+p+1)
k|be — ax] < kb kb 2.21
k—;p e = el £ lc_.zn;-p k+k; (k+p) (k+p+1) ‘ 2.21)

Next, since g € T, (p, @, A), the second assertion (2.4) of Lemma 2 yields
kh, < 2t P) P-o)Ap—1)+1]
=(n+p-a)A(n+p-1)+1]

Finally, by making use of (2.4) as well as (2.22) on the right-hand side of (2.21), we find
that

3 (n+p)(p—0)Alp=1) +1] = (pmetet])
k__;pklbk-akl = (n+p—a)A(n+p—1)+1] (1+k§_p(k+#)(k+#+1)) , (2.23)

(k=n+pn+p+ln+p+2,..). (222)

which, by virtue of the telescopic sum (2.13), immediately yields

(n+p)p—a)A(p=-1)+1] (n++p)+p+2)\ _
> kh-nls G () = e

k=n+p

Thus, by the definition (1.2) with g(z) interchanged by f(z), f € Nns(g; f). This evidently
completes the proof of Theorem 2.

3. Further Neighborhood Properties Involving Analytic Functions with
Negative and Missing Coefficients

We denote by T (n) := T (n,1) the class of functions f of the form [cf. Equation (L.1)]:

B)=z— Y, ez (4 20neN), (3.1)

k=n+1
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which are analytic in the open unit disk U. And, just as in Definitions (1.2) and (1.3), we
define the (n,d)-neighborhood of a function f € T(n) by

Nos(f) = {QET(H)19(2)=Z~ f: be z* and i klak—bk|§5}. (3.2)

k=n+1 k=n+1

In particular, for the identity function
e(z) = z, (3.3)

we immediately have

Ny, (e) = {g €ET(n):g(z)=2— i b 2% and i": k b} < 5} : (3.4)

k=n+1 k=n+1

The above concept of (n,d)-neighborhoods was extented and applied recently to families
of analytically multivalent functions by Altintag et al. [9] and to families of meromorphically
multivalent functions by Liu and Srivastava ([16] and [17]). In this section, we investigate the
{n, §)-neighborhoods of several subclasses of the class T (n) of normalized analytic functions
in U with negative and missing coefficients, which are introduced below by making use of
the familiar Ruscheweyh derivative (see, for details, Murugusundaramoorthy and Srivastava
[20]; see also Ahuja and Nunokawa [2], Ruscheweyh [24], and others).

First of all, we say that a function f € T(n) is starlike of complez order v (y € C\ {0}),
that is, f € S;(7), if it also satisfies the following inequality:

1 (zf(2) ) 3
9‘&1+-—(-————-—1 >0 (zeU;vyeC\{0}). 3.5)
Furthermore, a function f € T(n) is said to be conver of compler order v (y € C\ {0}),
that is, f € C,.(), if it also satisfies the following inequality:
1zf" (z))
9"‘((1-5-—-——— >0 (zeU;yeC\{0}). (3.6)

The classes S;(y) and C,(7) stem essentially from the classes of starlike and convex func-
tions of complex order, which were considered earlier by Nasr and Aouf [21] and Wiatrowski
[30], respectively (see also Altintas et al. ([8] and [10])).

Next, for the functions f; (j = 1,2) given by

i) =z+4) aw; ¢ (i=12), (3.7)
k=2
let f, * fo denote the Hadamard product {or convolution) of f; and f,, defined by

(Frrf2)(2) =24 ar1 ok 2F =t (fax fi) (2). (3.8)

k=2
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Thus the Ruscheweyh derivative operator D* : T — T is defined for T := 7 (1) by
z

DM (2) := (—1__-;)—>«-+-_1 * f(2) A>-1; feT) (3.9)
or, equivalently, by
D"f(z)::z—Z(AZiII)akz" (A>—1; feT) (3.10)
k=2

for a function f € T of the form (3.1). Here, and in what follows, we make use of the
following standard notation:

(’;) L rlem D) '];!(” —k+D) e keN) (3.11)

for a binomial coefficient. In particular, we have

22! f(2))™

Finally, in terms of the Ruscheweyh derivative operator D* (X > —1) defined by (3.9)
or (3.10) above, let S,(v, ), 3) denote the subclass of T(n) consisting of functions f which

satisfy the following inequality:
1 {z(D*f (z))' 1
v\ D*f(z2)

(zeU;vyeC\{0: A>-1;0<B<1).

Also let R,(v, A, 3; 1) denote the subclass of A (n) consisting of functions f which satisfy
the following inequality:

Lo-n 2L sy -1)| <o (314

(zeU;veC\{0h A>-10<B8LL; p20).
Various further subclasses of the classes S,(v,A,0) and Rn(7, X, B; p) with v = 1 were
studied in many earlier works (cf, e.g., Duren [12], Goodman [14], and Srivastava and Owa

(128] and [29]); see also the references cited in these earlier works). Clearly, in the case of
(for example) the class Sp(v,A, 3), we have

Sa(71,0,1) C Si(y) and  Sa(y,1,1) CCa(n) (3.15)
(neN;ye C\{0}).

In our investigation of the inclusion relations involving Ny 5(e), we shall require Lemma 3
and Lemma 4 below.

(n € No :=NU{0}). (3.12)

<p (3.13)
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Lemma 3 (Murugusundaramoorthy and Srivastava [20]). Let the function f € A(n) be
defined by (3.1). Then f is in the class S, (v, A, B) if and only if

> (M) etk 1a g s 316)

1
k=n+1

Proof. We first suppose that f € S,(v, A, 3). Then, by appealing to the condition (3.13),
we readily obtain

z(D* f(2))
R (—-—(DD—:\—-:ff—é—)))-— - 1) > -0yl (2€) (3.17)
or, equivalently,
- & (Do vas
)| L=t (z€U), (3.18)

= > =Bl
z— 3 .()~ +k —_l)akzk

k=n+1 k-1

where we have made use of (3.10) and the definition (3.1).

We now choose values of z on the real axis and let z — 1— through real values. Then the
inequality (3.18) immediately yields the desired condition (3.16).

Conversely, by applying the hypothesis (3.16) and letting |z| = 1, we find that

> (A :i; 1) (k —1)a2*

(DM f(2) 1[ _ |t
LI B e W

k=n+1 k-1

o (1- 5 (250 ))
=2 (e
< Bl (3.19)

Hence, by the mazimum modulus theorem; we have

f € Sn(V’/\7IB)a

which evidently completes the proof of Lemma 3.

HA

Similarly, we can prove the following result.
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Lemma 4 (cf. Murugusundaramoorthy and Srivastava [20]). Let the function f € A (n)
be defined by (3.1). Then f is in the class R(v, A, B; 1) if and only of

> (HET w0+t ohl (3.20)

k=n+1

Remark 1. A special case of Lemma 3 when
n=1, =1, and fB=l-a (0Za<l)
was given earlier by Ahuja [1]. Furthermore, if in Lemma 3 with
n=1, y=1, and fB=1-a (0L a<l),

we set A =0 and ) = 1, we shall obtain the familiar earlier results of Silverman [26].
The first inclusion relation involving N, s(e) is given by Theorem 4 below.

Theorem 4. If

§im — XD (<), (321)
@i+ (M)
then
Sn(’\!'a’\’ﬁ) C Nn,&(e)- (322)

Proof. For a function f € S,(7v,,8) of the form (3.1), Lemma 3 immediately yields

Ehl+n (M) 3 < Bl

n k=n+1
so that

Y ws el . (3.23)
= A+n
k=n+1 Bl +n) n
On the other hand, we also find from (3.16) and (3.23) that

(1) 3 s < omira-sad (M) 3 m

k=n+1 k=n+1
Atn Bhi
< Bhl+(0-8hl) -
¢ )wwun)(*: )
CEDPL (o <,

= Bhl+n
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that is,

ikaks (m+ 1B _ s

S e (1)

which, in view of the definition (3.4), proves Theorem 4.

(3.24)

By similarly applying Lemma 4 instead of Lemma 3, we now prove Theorem 5 below.

Theorem 5. If

§:= (n+1)?\|:{-yin (> 1), (3.25)
(un+1) ( n )
then
Ra(y, A B 1) C Ny s(e). (3.26)

Proof. Suppose that a function f € R (v, A, 3; 1) is of the form (3.1). Then we find from
the assertion (3.20) of Lemma 4 that

(Y ey 3 agonl

k=n+1
which yields the following coefficient inequality:

4 < B '
= A+n
k=n+1 (pm + 1) ( n )

Finally, by making use of (3.20) in conjunction with (3.27), we also have

(3 2 rmesabir-n (M7) 2
B+ (- 1) (A';"')(unj)’z‘/\:n),

(3.27)

that is,

which, in light of the definition (3.4), completes the proof of Theorem 5.
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Remark 2. By suitably specializing the various parameters involved in Theorem 4 and
Theorem 5, we can derive the corresponding inclusion relations for many relatively more
familiar function classes (see also Equation (3.15) and Remark 1 above).

Next we determine the neighborhood for each of the function classes

8@ (y,A,8) and R@{y,, B u),

which we define as follows. A function f € T(n) is said to be in the class Sk (v, A, B) if
there exists a function g € S,(7, A, 3) such that

f—(—zl—lt<l—a (2€U;08a<1). (3.28)

g9(2)

Analogously, a function f € 7T(n) is said to be in the class ’R,S,O‘)(% A, 3; p) if there exists a
function g € R,(7, A, 8; 1) such that the inequality (3.28) holds true.

Theorem 6. If g € 8,(7, A, 8) and

A+n
er+ms(*1)
a=1_— 7 ; (3.29)
A+n
man il +n (M) - o1
then
Nn,&(g) - S’(_‘a) ('vawﬂ) (330)
Proof. Suppose that f € N, s(g). We then find from the definition (3.2) that
> kla— bl S6, (3.31)
k=n+1
which readily implies the coefficient inequality:
- é
> ok — bl £ — (ne N). (3.32)
k=n+1
Next, since g € S,(7, A, 3), we have [cf. Equation (3.23)]
Y b g el (3.33)

n

T g (VI
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so that

e}

)

1-= 3 b

; " B (")
Tntl (817 +n) (/\:n) -Bhl
=1-a, (3.34)

provided that « is given precisely by (3.29). Thus, by definition, f € St (7, A, B) for a given
by (3.29). This evidently completes our proof of Theorem 6.

The proof of Theorem 7 below is much akin to that of Theorem 6.

Theorem 7. If g € R,(7v, A, B; 1) and

(un + 1)5(/\ :n)
a=1- f - , (3.35)
m+ 1|+ 0 (V") - oh]
then
Nas(9) € R (v, X, 6; ). (3.36)

Remark 3. Just as we already indicated in (especially) Remark 2, Theorem 6 and
Theorem 7 can readily be specialized to deduce the corresponding neighborhood properties
for many simpler function classes.

4. Majorization Problems Associated with p-Valently Starlike and Convex
Functions of Complex Order

In this last section of our presentation here, we propose to investigate several majorization
problems involving two interesting subclasses of p-valently starlike and p-valently conver
functions of compler order ~ # 0 in the open unit disk U.

Suppose that the functions f (z) and g (z) are analytic in the open unit disk

U:={2:2€C and |z]<1}.

Then, following the pioneering work of MacGregor [18], we say that the function f (z) is
majorized by g (z) in U and write

fz)<g(z) (2€D) (4.1)
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if there exists a function ¢ (z), analytic in U, such that

lp(2)I ST and f(z)=¢(z)g(z) (z€U). (4.2)

The majorization (4.1) is closely related to the concept of guasi-subordination between
analytic functions in U, which was considered recently by (for example) Altintag and Owa [5].
Altintag et al. [8], on the other hand, investigated several majorization problems involving a
number of subclasses of analytic functions in U. In a sequel to the work of Altintag ¢t al. [8],
we investigate the corresponding majorization problems associated with the classes S, 4 (7)
and C,, (y) of p-valently starlike and p-valently convex functions of compler order y # 0 in

U, which are introduced below (see, for details, Altintag and Srivastava {10]).
Let A, denote the class of functions f normalized by [cf. Definitions (1.1) and (3.1)]

f(z)=2"+ i ay 2" (peN:={1,2,3,...}), (4.3}

n=p-+1

which are analytic and p-valent in U. Also let

A function f € A, is said to be in the class S, 4 () of p-valently starlike functions of complez
order v # 0 in U if and only if

1 (20 (2 |
ﬂ%(l%—:y—(W—p-Fq)) >0 (4.5)

(€U; peN; g€Ngs y€C\ {0}; 2y-p+4glsp-19),
where, as usual, (9 (z) denotes the derivative of f(z) with respect to z of order ¢ € Nq.
Furthermore, a function f € A, is said to be in the class C, ; (v) of p-valently conves functions
of complez order v # 0 in U if and only if

1 [ zf@*? (2)
m(l-{'-;(m—l?‘!“q >0 (4.6)
(€U; peN; geNg; v€C\ {0}; [2y-p+alSp-9)-
Clearly, we have the following relationships:

Sio(7)=8(y) and Cio(y)=C(y) (veC\ {0}), (4.7)

where S (v) and C () arc the aforcmentioned classes of starlike and convex functions of
complez order v # 0 in U, which were considered earlier by Nasr and Aouf [21] and Wia-
trowski [30], respectively, and (more recently) by Altintas et al. [8] (see also Aouf et al. [11]).
Moreover, it is easily seen that

Sio(l-a)=8(l-a)=8(a) ((OLa<l) (4.8)

and
Cl,g(l—-a)=C(1-—a)=IC(a) (0§O!<1), (49)
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where §* (o) and K (a) denote, respectively, the familiar classes of (normalized) starlike
and convex functions of order o in U, which were introduced by Robertson [23] (see also

Srivastava and Owa [29]).

We first consider the majorization problems for the class S, , (7), given by

Theorem 8. Let the function f (2) be in the class A, and suppose that g € Spo (V). If

f@ (2) is majorized by g9 (z) in U for ¢ € Ny, then
|f D () €169 ()] (2l S ),
where

k—vVKE—4(p—q) |2y —p+y4]
212y —p+qf

=1 (p,q;7) =

(k:=2+p—g+2vy-p+gli peN; ¢geNy;; yeC\ {0}).

Proof. Since g € 5, 4 (), we find from (4.5) that, if

2glatY) (5
h(z):=1+l(—g—t—(—-)———p+q) (yeC\ {0}),

Y\ 99 ()
then
R{h(2)} >0 (z€U)
and . .
h(z)=1——%-% (we ),

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

where ) denotes the well-known class of bounded analytic functions in U, which satisfy the

conditions (cf., e.g., Goodman [14, p. 58]):
w(0)=0 and |w(z)| 7| (z€e).
Making use of (4.12) and (4.14), we readily obtain
290 (2) p-g+(2v-p+qu(z)

9@ (z) l-w(z) ’
which, in view of (4.15), immediately yields the following inequality:
1+1z]) 1=
tg(Q) (Z)l é ( I |)1 ‘ }Q(Q+1) (Z)i (z c U) .

P—a-12y-p+aql-lz
Next, since f@ (2) is majorized by ¢\ (2) in U, from (4.2) we have
() =p(2) g™ () + ¢ (2) g9 () (2 €U).

Thus, observing that ¢ € (2 satisfies the inequality (cf. Nehari [22, p. 168)):

s TEEL e,

(4.17)

(4.18)

(4.19)
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and applying (4.17) and (4.19) in (4.18), we get

L l-le@f (1 + |z[) |2]
e+ (2)] £ z)| + :
AR (i‘p( N+== [z} p-g—[2v—p+4l |7
g (2)]  (z€U), (4.20)
which, upon setting
lzl=r and |p()l=p (05pS1), (4.21)
leads us to the following inequality:
O (p)
(a+1) ()] < (¢+1) (5 zel), 4.99
e s T m e ran 0 O GED, @
where the function O (p) defined by
Op)=—ri+(1=r)(p—g=—[2v—p+alr)p+r (0spsl) (4.23)
takes on its mazimum value at p = 1 with
r=ri(p,¢;7)

given by (4.11). Furthermore, if

020 srlp, 67,
where r; (p, ¢;) is given by (4.11), then the function A (p) defined by
Ap)=-op+(1-0)(p~qg—|2v-p+glo)p+a (4.24)
is seen to be an increasing function on the interval 0 £ p £ 1, so that
Ap)SA(L)=(1-0)(p—qg—I2v—p+4q|o)
0LpSL 080 S (pgY):
Hence, by setting p = 1 in (4.22), we conclude that the assertion (4.10) of Theorem 8 holds

true for |z| < r; (p,¢;7), where ry (p,¢;7) is given by (4.11). This evidently completes the
proof of Theorem 8.

In view of the first relationship in (4.7), a special case of Theorem 8 when p =1and ¢ =0
yields

Corollary 3 (Altintas et al. [8, p. 211, Theorem 1]). Let the function f(z) be in the
class A and suppose that g € S (). If f(2) is magorized by g (2) in U, then

IF @ISl @ (2l £ By, (4.25)

where

_3+t27—1|-\/9f+2127—1i+l27ﬁ1t2

Ry=Ri(y) = T (4.26)
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Several further consequences of Corollary 3, involving such familiar classes as (see, for
details, Duren [12] and Goodman [14])

§*:=8(0) and K:=K(0) (4.27)

were given earlier by MacGregor [18, p. 96, Theorems 1B and 1C] (see also Altintag et al.
[8, p. 213, Corollaries 1 and 2}).

The proof of our next result (Theorem 9 below), dealing with the majorization problems
for the class C, 4 (7), is based essentially upon the following result.

Lemma 5 (cf. Altintag and Srivastava {10, p. 180, Lemma]). If f € C,,(7) (y € C \ {0}),
then f € S,q(37), that s,

Gul) €8 (37)  rec\ o, (129

Proof. Since (cf., e.g., MacGregor [19, p. 71])

feK=>fes (~) (4.29)

DN}

or, equivalently, since
zf" (z)) (zf' (z)) 1
Ril+—=)1>0="R > = z € U), 4.30
(+55 fo )72 GEY (430
for f (z) = f9 (2) (¢ € Ny) with f € A,, we have
2flt? (2)
Tt~ -1=0) >0
zf(Q+1) (z)
()
which readily yields the following assertion:
zf(Q+2) (z)
flatd) (2)
Zf(@'*’” (z)
=G P T )
Now, by making use of (4.32) appropriately, it is easily seen that

‘ﬁ(1+
=>9‘i<1+ —(p—q)) >% (z€U), (4.31)

1 —w(z)

I+ 1+ w(z)

-p+g+1l=

(weq). (4.32)

L/, 290\ 3+ (=2u(y
1+70+"F@@ p*)” i+ w ()]
2 [ 2fe+) (2) _rth-2uE
=12 (o) =TT wen, 6w
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and the desired inclusion property (4.28) follows immediately from (4.33) in view of the
characterizations (4.5) and (4.6) for the function classes S, (7) and C,, (), respectively.

Theorem 9. Let the function f(z) be in the class A, and suppose that g € Cpq (7).
@ (2) is majorized by ¢'¥ (2) in U for q € Ny, then
lf(trH) | < ’g(q+1) (z)l (|2l g ra) (4.34)

where

p—2-4p-gly—p+d (4.35)
2y ~p+4d
(p:=24p—q+|y—p+ql; PEN; geNg; veC\ {0}).

ro =12 (p,q;7y) ==

Proof. In view of the inclusion property (4.28) asserted by Lemma 5, Theorem 9 can be
deduced as a simple consequence of Theorem 8 with vy —— 27

By setting p =1 and ¢ = 0, Theorem 9 yields

Corollary 4 (Altintas et al. [8, p. 214, Theorem 2]). Let the function f(2) be in the
class A and suppose that g € C(v). If f(z) is majorized by g (z) in U, then

SIS @l (12 € R, (436)
where
3 -1 —=4/9+2}y—-1 -1
Bom Ry o Y \/2 I:_IJ 1P .

Finally, in its limit case when 4 — 1, if we make use of the relationship [cf. Equations
(4.9) and (4.27)}:
Corollary 4 further yields

Corollary 5 (cf. MacGregor [18, p. 96, Theorem 1CJ). Let the function f(z) be in the
class A and suppose that g € K. If f(z) is majorized by g(z) in U, then

sy (Ms3): (439

In view of the well-known inclusion property (4.29), Corollary 5 can also be deduced from
Corollary 3 by letting v —> 1 (see also Altintas et al. [8, p. 213, Corollary 2)).
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