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1. Introduction

In order to know when a feasible solution of a programming problem could be an
optimal. Many authors effort to find the sufficient optimality conditions. It is often to
establish the converse of the necessary optimality condition by some extra
assumptions. After the sufficient optimality conditions (usually various type) are
established, one could employ the sufficient optimality theorems to constitute the
dual models relative to primal problem, and then prove the weak, strong, and strict
converse duality theorem between the primal and the dual problems.

At times, these duality forms are difficult to understand the motivation for writing
the dual exactly in the model given by more general dual constitution, but only for
the requirement in mathematical analysis. Reason follows from these various type
duality, a question is rised that whether we can constitute a mixed type dual to
integrate these duality (cf. [1-2])

in this paper we will constitute a mixed type dual for a minimax fractional
programming of set functions (see [6-11], [15] and [18-20] etc.)

At first we consider the following fractional programming problem with set
functions:

(FP) min max F;(Q)/G;(QQ)
Q I<ip
s.t. Qe S and H(Q)<0, je M={1,2,3...,m}

where S is a convex subfamily of measurable subsets in an atomless finite measure
space (X,I,u); Fi, -G;, 1 <i < pand H; 1 <j < m are convex set functions defined
on S. Without loss of generality, we may assume thatall G; > 0 and all F; > O on S'in
(FP). Then the mixed type dual model can be contructed as the following form:

(MD) max (TF(U) + 25, HU))/YyTG(U)
s.t. UesS,
0 € YTG(D)[BWTFY(U) + 6(z"H)(U)]
- 0T )YTFU) + 2}, H(U)] + Ns(U),
zL, HU) > 0, a=12,...k

yel= {aeRT | a = (aj...am), Zai= 1}

i=1
where
Moo M a=0,12..,kwithM, N Mp =QDifa = fand Uiy My = M;
[ H(U) = T, 5H(U) and 6GEH(U) = ¥, z0H;(U)

(cf. Morean Rockafeliar Theorem ( Lai and Lin [8]));
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Ns(U) = {fe LT, u) | xa = 2v, f>< 0, VQ € S5
(a normal cone at U with respect to S)

FU) = (Fy(U)s ., F(U))T, GO = (Gi(U),....Gp(UDT,
HU) = (Hi(U), ..., Ha(U))T.

This mixed type dual (MD) includes the Wolfe type dual and Mond-Weir type
dual as the special cases. Actually,
(1) As My=M, Mo =D, a=1,....k then (MD) is reduced to the Wolfe type
dual:
(WD) max (yTF(U) +zTHU))/y'G(U)

s.t. 0 € yTGBOTFNU) +8E"H)(U)]
- TG FU) + 23, H(U)] + Ns(U),

)>els{aeRﬁ|Zai=l}, z€ RmM.
=1

(2) As My =@, Mi=M, My =0, a= 2,...,k, then (MD) is reduced to the
Mond-Weir type dual:

(MWD) max yTF(U)/y?G(U)
s.t. 0 e yTGU)[BGTF(U) + 0(z"H)(U)]
— 00 TGY(U)y'F(U) + Ns(U),

ZTHU) 20, ye L

The formation of (MD) is motivated from the incomplete Lagrangian dual as in
next Section 2. The main task on the mixed type dual problem (MD) is to eastablish
the weak, strong, and strict converse duality theorems in Section 5. In sections 3
and 4, we will mention brevity for the basic behavior of set functions and generalized
convex set functions in the frame work for our requirement.

2. Incomplete Lagrangian Dual

In usual constrained programming problem, it may be sonsidered as follows:
(P) min fx), f: R" >R
s.t. x e Rrandh(x) <0, h:R* > R™
It is well known that the Lagrangian dual is given as

(LD) max [fu) + ATh(u)]
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s.it. flw)+ATh'(u) =0, ATh(u) =0.

provided that objective and constrained functions in (P) are differentiable.
One sees that all constraints of (P) is contained in the objective of (LD). Now if
we consider part of the constrains of (P) in the objective of (LD) and the remained
constraints still left in the constraints, it then forms a new Lagrangian dual, namely
an incomplete Lagrangian dual problem which we state as the following problem:

(ILD) max [Ru) + ATh,(u))
s.t. hg(w) <0, K=M\J, M=JUK
ATh(u) = 0, Ay = A € R?
where M is regarded as the m member of the constraints (see Bector et al. [2]).

From (ILD), one can see that the variety of / as well as X in M will formate a various
duality, and it will reduce a mixed type dual involving some know duality forms, like
the Wolfe type and the Mond-Weir type dual that are special scases of the mixed
type dual. we will consider in this paper for more general mixed dual occured in
minimax fractional programming problem with set functions for generalized
convexity (cf. Lai and Liu [11]), and the nondifferentiable set functions will satisfy the
constraints in (MD) by subdifferentiable situations.

3. Convexity and Subdifferentiability for Set Functions

In this section all symbols and definitions concerning set functions can refere to
[6-11], [15-16] and [19-20]. For convenience, we recall some of that for our
requirement. Throughout we consider an atomless finite measure space (X,I",u)
with L!(X,u) separable. That is, u(X) <« and for any 4 e I', u(4) > 0, we always
hvae a nonempty subset Bc A such that u(B)>0; and for any
Qel,uQ) = [, 2.du <o It follows that for any Q T, there corresponds a

characteristic function yo € L* = (L1)* < L!. Furthmore, by the separability of L!,
all discusion in our requirement, we need only use a sequence {Q.} in I'. The
convexity of a subfamily S  T" can be defined as follows :

for any O, A € S and A € [0,1], there are associate sequences {Q.} < O\ A
and {A» } < A\Q such that

® Xaw W Ax, aNd y, w* (1-x,
= Zn,.u/\nu(m/\) w* /’LXQ + (l - A')X/\

Since measure space is not linear and has no topology in general, the convexity,
continuity, and differentiability for set functions on any subfamily S of measurable
subsets in X are need to redefined which are different from usual.
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A set function F:S - R is convex if for any (Q,A,4) € SxSx[0,1], there
associated a sequence V, = Q, U A» U (Q N A) with property ® such that

lim sup F(Un) < AF(Q) + (1 = AF(A).

R—©

« Fis continuous at Q) if there is a sequence {Q,} < I such that

lim F(Qn) = F(QY) whenever X, W* Xg.

n-—+-0

« Fis subdifferentiable at Q, € S, if thereis a f e L}(X, ) such that
F(Q) ~ F(Q0) = {xa - 200 /) vQ e S.

This f € L! is called a subgradient of F at Q.
The set of all subgradients fof F at Qy, denoted by

OF(Q) = {f € LYF(Q) ~F(Qo > (Yo~ Xap Sy  foramy Qe S}

is called the subdifferential of F at ().

It is known that 8F(Q) is a singleton set if and only if F'is differentiable.

Based on the above preparation, we are proceed to next section for optimality
condition in the minimax fractional programming problem (FP) for set functions.(cf.
Lai and Liu [11])

4. Optimality Conditions, Generalized Convexity

Concerning the necessary optimalily conditions, it can be described as follows:

If Q* is an optimal solution of (FP) having constraint gnalification and F;,
-G; (i=12,....p), H (=1.2,...,m), are proper convex set functions, then there
exist y € R and z € R7 such that (Kuhn-Tucker type)conditions hold:

0 € YTG(Q")[0OTF)(Q*) + 0(z" H)(2*)]
-3 TGY(Q") yTF(Q*) + Ns(Q2%), (1)
zTH(Q*) = 0,
where Ns(Q*) is the normal cone in L! at Q*.
Furthermore, if the optimal value of (¥P) gives
A =Tax FAQ*)/G/(Q*) = yTF(Q")yTG(QY) for yel
then (1) becomes
0 € [BOTF(Q*) - 2007 (Q)] + 8ETH)(Q*) + Ns(Q%), (2)
and
YIFEQ*) - A*G(Q)] =0, (3)
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zZTH(Q*) =0 . 4)

In addition if 0 ¢ 6(zTH)(Q*) + Ns(Q*), then the relation (2) ~(4) hold and y € 1.
In this case such a point Q* € Sis called regular. Conversely, one may ask whether
a feasible solution of (FP) satisfying the Kuhn-Tucker type condition (2) with the
relations (3) and (4), would be an optimal for (FP) ? We will see that there some
extra assumptions, like convexity/ generalized convexity are regired.

In [11] Lai and Liu defined (3, p,6)-convexity. For convenience, we recall that a
set function F : T - R is (§, p,0)-convex at Q, if

F(Q) — F(Q0) > F(Q,Q0;/) + p 6(Q,Q0) e))

for fe oF(Q)(c L), Qe T and p € R. Here § : T' xI' x L'(X,M) — R is sublinear
with respect to (w. r. t. for short) the 3rd argument and  : T' xI' - R, be such that
6(0Q,0,) =0 only if O =Q, F is called (3,p,0)—quasiconvex ( prestrict
quasiconvex) if (by the inequality (5))

F(Q) - F(Q) £ 0(< 0) = F(Q,Q03/) + p(Q,Q0) <0 (6)
Fis called (3, p,0) —pseudoconvex (-strict pseudoconvex) if

F(Q, Q00 + p(Q.Qp) = 0 = F(Q) - F(Q) = 0(> 0) <)

It is known that there several sufficient optimality conditions for (FP) are
established(cf. [11]) under several generalized convexity. We state these conditions
related to duality theorems in the mixed problem (MD) as following.

For a feasible solution (U,y,z) in (MD), denote a functional on S by

D(e) = yTGDTF() +z2i,H®)] ~y GOTFU) + 2, HU)]. (8)

Then the following dulaity theorems are established.
Theorem 1 (weak duality)

Let Q and (U.,y,z) be the feasibe solutions of (FP) and (MD) respectively.
Further, assume that F(Q, U;-n) > 0 for each n € N5 and suppose that any one of
the following conditions holds:

(@) yTHis (3,p1,0)-convex, =y7G is (3, p2,0)-convex, z§, H is (3, p3q,0)-convex
foreacha = 0,1,2,...,kand

k
YIGU)P, + YTF(U) + 25, H)1pa +y7GU) ) p3a 2 0,
a=0
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(b) D(e) is (3,p,0) —pseudoconvex, zi,H is (3,p,0) —quasiconvex for each
a=1,2...kand p +yIG) Yt pr 20,

(c) Dis (5, p,0) —quasiconvex, z1, H is strictly (8, p,6) —pseudoconvex, for each
¢ =1,2,....k and p; + TG ¥ par 2 0,

(d) D is prestrictly (3,p,0) —quasiconvex, z},H is (3, p,0) —quasiconvex, for
eacha = 1,2,....k and p1 + yIG(U) Xk, p2a > 0,

() D+yTG(U) 2];:1 zl His (§, p,0) —pseudoconvex and p > 0,

H D+yTG(U) Z;l 2z}, His prestrictly (3, p,0) —quasiconvex and p > 0, then

max £AG 2 O7FW) + L HW)/ VGO,

We prove this theorem for brevity under hyperthesis (a) only, and omit the
others.

Proof. On the case of hyperthesis (a).
The objective of problem (#P) is actually

min @(£2)
Q
Fi(Q) _ yTE(Q)

with — ¢(Q) = max Zay = M Te0)

Suppose on the contrary that
o(Q) < OTFU) + 2}, HU)) /YT G(U).
Then

yTF(Q)
yTG(Q)

< OTF) + 2}, H(U)) /YT G(U)
or
YIGUYTF(Q) - yTGQTF(U) + 2}, HU)] < 0.

Since zI, H(U) <0, y'G(U) >0, Ut,M. =M and the constraint inequality in
(MD), one can reduce that

YIGU)YTFQ) + 25, HU)] -y GQDTFU) +z,HU)) < y"G(U)zjH(Q) < 0.

It foliows that
D(Q)) < 0 = D(U)
As the Kuhn-Tucker type condtion held in (MD), one can find that there exist

fe 8GTF)U), he € 85 H)(U),a = 1,2,...,k, g € d(-yTG(U)) and n € Ns(U) such
that
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k
YIGUYf+ Y ha) + YTF(U) + 25, HU)) g +1 = 0.
a=0
By the sublinearity of § on the 3rd argument, we have
k
FQ UG+ I ha) + DTF(U) + 23 HU)] g +1) = 0
a=0

or

k
FQ UG+ Y ha) + TR + 25, HU)] g) = F(Q,Us—n) 2 0.

a=0
From hyperthesis (a), the (3, p;,0)-convexity for j=1,2,3, it follows that
0 > D(Q) = OTG(U)p1 + YTFU) + 2}, (D)) p2 +yTG(U)§k:=OP3a) 6(Q, U).
This contradicts the fact "
Y'G(U)p1 + DTF(U) + 20 (W)]p2 + ¥7G(U) Z:Psa 20

since 6(Q,U) > 0. A

Note that if My = M, M, = & Va, then (b)=(e), (c)=(d)=(f) in Theorem 1. and
sO (MD)=(WD).

Corollary 1.1 (wolfe type weak duality) [11,theorem 4.1]

Let Q and (U,y,z) be the feasible solutions of (FP) and (WD) respectively.
Suppose that any one of (a), (b) and (c) holds. Then

e(Q) = OTFU) + 2TH(U)/y'G(U). L

Note that if My = ¢, M, = M; = M, then (MD)=(MWD) . Denote by
D(s) = yTG(U)TF(s) = yTG(«)F(U).

Corollary 1.2 (Mond-Weir type weak duality)[11. Theorem 5.1]

Let O and (U,y,z) be feasible solutions of (FP) and (MWD) respectively.
Suppose that if any one of the condtions (a) ~(f) holds, then

e(Q) 2 yTF(U)/y'G(U) n

For convenience, we choose the functional
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F(Q,Q0:/) = (xa —xa,./) for Q. Qo € S and fe L.

Taking p > 0, then (F, p,0) —convexity is called (§*,p,0) —convexity (c.f. [9]). It is
known that if a real valued function F is (§*, p,6) —convex at Q,, then F'is convex at
Q. (cf. Lai and Liu [9, Theorem 3.2]). According to the above preparation, we have
the following strong duality between (FP) and (MD).

Theorem 2 (Strong duality)

Let Fi, -Gi, i=12,....,p and H;, j=12,...,m are (F*,p,0) —convex on S.
Suppose that Q* e S is regular (FP)-optimal solution, then there exist y* € I and
z* € R7 such that (Q*,y*,z*) is (MD)-feasible. Furthermore if the conditions of
Theorem 1 are fulfilled for (MD)-feasible, then (Q*,y*,z*) is (MD)-optimal, and
min(FP) =max(MD).

Remark 1
The Wolfe type strong duality [11, Theorem 4.2], and Mond-Weir type strong
duality [11, Theorem 5.2] are special cases of Theorem 2.

Theorem 3 (Strict converse duality)

Let Q! and (Q*,y*,z*) be optimal solutions of (P) and (MD), respectively.
Suppose that the assumptions of Theorem 2 are fulfilled and J(Q!,Q*;-k) > 0 for
each # e Ng(Q*). Let y* insteal of y in D(e). Further if any one of the following
conditions holds :

(a) D is strictly (5, p,0) —pseudoconvex. 21, His (F, p2..0) —quasiconvex for each

g e {1,2... .k, and p, +yTGQHTL pr = 0.

(b) D + y*TG(Q*) ZZ=1 23] H s strictly (3, p,6) —-pseudoconvex, and p > 0.
Then Q! = Q*, and min(FP) =max(MD).

Remark 2
The Wolfe type strict converse duality [11, Theorem 4.3] and the Mond-Weir type
strict converse duality [11, Theorem 5.3] are special cases of Theorem 3.
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