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CONVERGENCE OF DYNAMICAL SYSTEMS

WITH CONVEX LYAPUNOV FUNCTIONS

SIMEON REICH AND ALEXANDER J.ZASLAVSK1

ABSTRACT. This is asurvey of recent results regarding the convergence of several classes of dynamical systems

with convex Lyapunov functions in general Banach spaces. For each class we define an appropriate complete

metric space of dynamical systems and show that most of them (in the sense of Baire category) are convergent.

In some cases the set of divergent systems is not only of the first category, but also $\sigma- \mathrm{p}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{s}$ .

INTRODUCTION

The study of minimization methods for convex functions is acentral topic in optimization theory

In this survey, we are given a continuous convex function $f$ defined on a bounded, closed and convex

subset $K$ of aBanach space $X$ , and a minimization algorithm is a self-mapping $A$ : $Karrow K$ such that

$f(Ax)\leq f(x)$ for all $x$ $\in K$ . We show that for most of these algorithms $A$ , the sequences $\{f(A^{n}x)\}_{n=1}^{\infty}$

tend to the inflmum of $f$ for all initial values $x\in I\zeta$ . When we say that most of the elements of a comple.$\mathrm{t}\mathrm{e}$

metric space $X$ enjoy acertain property, we mean that the set of points which have this property contains

a $G_{\delta}$ everywhere dense subset of $X$ . In other words, this property holds generically. Such an approach,

when a certain property is investigated for the whole space $X$ and not just for asingle point in $X$ , has

already been successfully applied in many areas of Analysis [1-6, 8, 11, 15, 16]. We now recall the concept

of porosity [6, 13, 16] which will enable us to obtain even more refined results.

Let $(Y, d)$ be acomplete metric space. We denote by $B_{d}(y, r)$ the closed ball of center $y\in Y$ and

radius $r$ $>0$ . We s$\mathrm{a}\mathrm{y}$ that a subset $E$ $\subset Y$ is porous in $(Y, d)$ if there exist $\alpha\in(0, 1)$ and $r_{0}$ $>0$ such

that for each $r$ $\in(0, r_{0}]$ and each $y\in Y$ , there exists $z$ $\in Y$ for which

$B_{d}(z, \alpha r)\subset B_{d}(y, r)\backslash E$

Asubset of the space $Y$ is called $\sigma$-porous in ($Y$, $d\rangle$ if it is a countable union of porous subsets in $(Y, d)$ .

Since porous sets are nowhere dense, all $\sigma$-porous sets are of the first category. If $Y$ is a finite-

dimensional Euclidean space, then a-porous sets are of Lebesgue measure 0. In fact, the class of cr-porous

sets in such a space i $\mathrm{s}$ much smaller than the class of sets which have measure 0and are of the first

category.
To point out the difference between porous and nowhere dense sets, note that if $E\subset Y$ is nowhere

dense, $y\in Y$ and $r$ $>0$ , then there are a point $z\in Y$ and a number $s>0$ such that $B_{d}(z, s)$ $\subset B_{d}(y)$ $r)\backslash E$ .

If, however, $E$ is also porous, then for small enough $r$ we can choose $s=\alpha r$ , where $\alpha\in$
$(0, 1)$ is aconstant

which depends only on $E$ .
Our paper is organized as follows. In Section 1we review the minimization methods studied in [7,

12, 13], where the convex function $f$ is assumed to be uniformly continuous. In the second section $f$ is

assumed to be merely continuous [14], The third section is devoted to some examples.

1. UNIFORMLY C0NT1.NUOUS LYAPUNOV FUNCT10NS

Assume that $(X, ||\cdot||)$ is aBanach space with norm $||\cdot||$
)

$K\subset X$ is anonempty, bounded, closed and

convex subset of $X$ , and $f$ : $Karrow R^{1}$ is aconvex uniformly continuous function. Set

$\inf(f)=\inf\{f(x) : x \in K\}$ .

Typese by $A_{\mathcal{M}^{\mathrm{S}- \mathrm{I}}\mathrm{E}^{\mathrm{X}}}$
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Observe that this infimum is finite because $K$ is bounded and $f$ is uniformly continuous. We consider

the topological subspace $K\subset X$ with the relative topology Denote by $\mathfrak{U}$ the set of all self-mappings
$A$ : $Karrow K$ such that

(1.1) $f(Ax)$ $\leq f(x)$ for all x $\in K$ ,

and by $\mathfrak{U}_{c}$ the set of all continuous mappings $A\in \mathfrak{U}$ .
In Example 2 of Section 3 we construct many such mappings.
For the set $\mathfrak{U}$ we define a metric $\rho$ : $\mathfrak{U}\cross \mathfrak{U}arrow R^{1}$ by

(12) $\rho(A, B)=\sup\{||Ax-Bx||$: x$\in I\iota^{\nearrow}\}$ , A, B $\in \mathfrak{U}$ .

Clearly, the metric space $\mathfrak{U}$ is complete and $\mathfrak{U}_{\mathrm{c}}$ is a closed subset of it. Denote by $\mathfrak{M}$ $(\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}1\mathrm{y}_{\mathrm{I}}\wedge\sigma_{\mathrm{D}\mathrm{t}_{e})}$

the set of all sequences $\{A_{t}\}_{t=1}^{\infty}\subset \mathfrak{U}$ (respectively, $\mathfrak{U}_{\mathrm{c}}$ ) A member of $\mathfrak{M}$ will occasionally be denoted by

a boldface A. For the set $\mathfrak{M}$ we consider the uniformity determined by the following base:

$E(N, \epsilon)=\{(\{A_{t}\}_{t=1}^{\infty}, \{B_{1}\}_{t=1}^{\infty})\in \mathfrak{M}\cross \mathfrak{M} : \rho(A_{t}, B_{t})\leq\epsilon, t=1, . N\}$ ,

where $N$ is a natural number and $\epsilon>0$ . Clearly, the uniform space $\mathfrak{M}$ is metrizable (by a metric
$\rho_{w}$ : $\mathfrak{M}$ $\cross \mathfrak{M}$ $arrow R^{1}$ ) and complete.

From the point of view of the theory of dynamical systems each element of $\mathfrak{M}$ describes a nonstationary

dynamical system with a Lyapunov function $f$ . Also, some optimization procedures in Hilbert and Banach
spaces can be represented by elements of $9\mathrm{R}$ (see the first example in Section 3 and [9, 10]).

In [12] we show that for a generic sequence taken from the space $\Re f_{c}$ the value of the Lyapunov function
along all trajectories tends to its infimum. More precisely, we obtain the following two theorems.

Theorem 1.1. There exists a set $\mathcal{F}\subset \mathfrak{M}_{c}$ which is a countable intersection of open everywhere dense

sets in $\mathfrak{M}_{c}$ such that for each $\mathrm{B}=\{B_{t}\}_{t=1}^{\infty}\in \mathcal{F}$ the following assertion holds:
For each $\epsilon$ $>0$ , there exists a neighborhood $U$ of $\mathrm{B}if\downarrow \mathfrak{M}_{c}$ and a natural number $N$ such that for each

$\mathrm{C}=\{C_{t}\}_{t=1}^{\infty}\in U$ and each $x\in K$ ,

$f(C_{N} .C_{1}x) \leq\inf(f)+\epsilon$ .

Theorem 1.2. There exists a set $\mathcal{G}\subset \mathfrak{U}_{c}$ which $\dot{\mathrm{z}}s$ a countable intersection of open everywhere dense

sets $i\mathfrak{s}i\mathfrak{U}_{c}$ such that for each $B\in \mathcal{G}$ the following assertion holds:
For each $\epsilon>0$ , there exists a neighborhood $U$ of $B$ in $\mathfrak{U}_{c}$ and a natural number $N$ such that for each

$C\in U$ and each $x\in K$ ,
$f(C^{N}x) \leq\inf(f)+\epsilon$ .

The key auxiliary result which is used in the proofs of these theorems is the following proposition.

Proposition 1.1. There exists a mapping $A_{*}\in \mathfrak{U}_{c}$ with the followfng property:
Given $\epsilon>0$ , there is $\delta(\epsilon)>0$ such that for each $x\in K$ satisfying $f(x) \geq\inf(f)- 4-\epsilon$ , the inequality

$f(A_{*}x)\leq f(x)-\delta(\epsilon)$

is true.

Remark t. 1. If there is $x_{\min}\in K$ for which $f(x_{\min})= \inf(f)$ , then we can set $A_{*}(x)=X \min$ for all
$x\in K$ .

In the sequel we continue to study the metric space $(\mathfrak{U}, \rho)$ and its closed subset $\mathfrak{U}_{\mathrm{c}}$ . For the set $\mathfrak{M}$

we will consider two uniformities and the topologies induced by them The first one has already been

defined. The topology it induces will be called weak and denoted by $\tau_{w}$ . Clearly, $\mathfrak{M}_{c}$ is a closed subset

of $\mathfrak{M}$ with the weak topology.
For the set $\mathfrak{M}$ we also define a metric $\rho_{s}$ : $\mathfrak{M}$ $\cross \mathfrak{M}$ $arrow R^{1}$ by

$\rho_{s}(\{A_{1}\}_{t=1}^{\infty}, \{B_{t}\}_{t=1}^{\infty})=\sup\{\rho(A_{t}, B_{t}). t=1, 2, \ldots\})$ $\{A_{t}\}_{t=1}^{\infty}$ , $\{B_{t}\}_{t=1}^{\infty}\in \mathfrak{M}$ .
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Clearly, the metric space $(\mathfrak{M}_{1}\rho_{s})$ is complete and $\mathfrak{M}_{\mathrm{c}}$ is a closed subset of $(\mathfrak{M}, \rho_{s})$ . In the sequel we will

also study the metric space $(\Re \mathrm{t}_{c}, \rho_{s})$ .
Denote by $\tau_{s}$ the topology induced by the metric $\rho_{s}$ on M. Since $\tau_{\delta}$ is clearly stronger than $\tau_{w}$ , it

will be called strong. We consider the topological subspace $\mathfrak{M}_{c}\subset \mathfrak{M}$ with the relative weak and strong

topologies.
The following notion of normality was introduced in [7].

A mapping $A\in \mathfrak{U}$ is called normal if given $\epsilon>0$ , there is $\delta(\epsilon)>0$ such that for each $x\in K$ satisfying

$f(x) \geq\inf(f)+\epsilon$ , the inequality
$f(Ax)\leq f(x)-\delta(\epsilon)$

is true
A sequence $\{A_{t}\}_{t=1}^{\infty}\in \mathfrak{M}$ is called normal if given $\epsilon$ $>0$ , there is $\delta(\epsilon)>0$ such that for each $x$ $\in K$

satisfying $f(x) \geq\inf(f)+\epsilon$ and each integer $t\geq 1$ , the inequality

$f(A_{t}x)\leq f(x)$ $-\delta(\epsilon)$

holds.
In [7] we show that a generic element taken from the spaces $\mathfrak{U}$ , $\mathfrak{U}_{\mathrm{c}}$ , $\mathfrak{M}$ and $\mathfrak{M}_{c}$ is normal. This

is important because it turns out that the sequence of values of the Lyapunov function $f$ along any

(unrestricted) trajectory of such an element tends to the infimum of $f$ on $K$ .

For $\alpha\in$
$(0, 1)$ , $\mathrm{A}=\{At\}_{\star=1}^{\infty}$. and $\mathrm{B}=\{B_{t}\}^{\infty}t=1\in \mathfrak{M}$ , deffine $\alpha \mathrm{A}+(1-\alpha)\mathrm{B}=\{\alpha A_{1}+(1-\alpha)B_{t}\}_{t=1}^{\infty}\in \mathfrak{M}$

We can easily prove the following fact.

Proposition 1.2. $lei$ $\alpha\in$
$(0, 1)$ , $\mathrm{A}$ , $\mathrm{B}\in \mathfrak{M}$ and let A be normal. Then $\alpha \mathrm{A}+(1-\alpha)\mathrm{B}$ is also normal.

We now state the main results of [7].

Theorem 1.3. Let $\mathrm{A}=\{A_{t}\}_{t=1}^{\infty}\in \mathfrak{M}$ be normaI and let $\epsilon>0$ $The\gamma 1$ there exists $\mathit{0}$ neighborhood $U$ of
A in $\mathfrak{M}$ with the strong topoiogy and a notural number $N$ such that for each $\mathrm{c}$ $=\{C_{t}\}_{t=1}^{\infty}\in U$ , each

$x\in K$ , and each $r$ $\{$ 1, 2, . $.\}arrow\{1,2, \ldots\}$ ,

$f(C_{r(N)} \ldots C_{r(1)}x)\leq\inf(f)+\epsilon$ .

Theorem 1.4. Let $\mathrm{A}=\{A_{t}\}^{\infty}t=1\in \mathfrak{M}$ be normal and let $\epsilon>0$ . Then there exzsts a neighborh$oodU$ of
A $rn\mathfrak{M}$ with the weak topology and a natural number $N$ such that for each $\mathrm{C}=\{C_{t}\}_{t=1}^{\infty}\in U$ and each

$x\in K$ ,
$f(C_{N}. .C_{1}x) \leq\inf(f)+\epsilon$ .

Theorem 1.5. There exists a set $\mathcal{F}\subset \mathfrak{M}$ which is a countable intersection of open everywhere dense

subsets of $\mathfrak{M}$ with the strong topology $a;td$ a set $\mathcal{F}_{c}\subset \mathcal{F}$ $\cap \mathfrak{M}_{c}$ which is a $cour\iota$ table intersection of $o\rho en$

everywhere dense subsets of $\mathfrak{M}_{c}$ with the strong topology such that each $\mathrm{A}\in \mathcal{F}$ is normal

Theorem 1.6. There exists a set $\mathcal{F}$ $\subset \mathfrak{U}$ which $fs$ a countable intersection of open everywhere dense

subsets of $\mathfrak{U}$ and a set $\mathcal{F}_{\mathrm{c}}\subset \mathcal{F}\cap \mathfrak{U}_{\mathrm{c}}$ which is a $cou\mathfrak{s}?table$ intersection of open everywhere dense subsets of
$\mathfrak{U}_{c}$ such that each $\mathrm{A}\in \mathcal{F}$ is nomal

In [13] we prove two theorems. The first one extends Theorem 1.3 to perturbed trajectories of a normal

sequence. The study of such trajectories is obviously of considerable practical significance [9, 10]

Theorem 1.7. Let $\{At\}^{\infty}t=1\in \mathfrak{M}$ be $\mathrm{r}\iota \mathrm{o}rmal$ and let $\epsilon$ be positive. Then theoe exist a natural number $n_{0}$

and a number $\gamma>0$ such that for each integer $n\geq n_{0}$ , each mapping $r$ : $\{$ 1, . .
$)$ $n\}arrow\{1,2, \}$ , and

each sequence $\{x:\}_{i=0}^{n}\subset K$ which satisfies
$||x_{j+1}-A_{r(,+1)}x_{\mathrm{i}}||\leq\gamma$ , $i=0$ , . . , $\mathrm{n}$ $-1$ ,

the inequality $f(x_{i}) \leq\inf(f)+\epsilon$ holds for $i=n_{0}$ , $\ldots$ , $n$ .

The second result of [13] improves upon Theorems 1.5 and 1.6. For each of the spaces $\mathfrak{M}$ , $\mathfrak{M}_{c}$ , $\mathfrak{U}$ and

$\mathfrak{U}_{\mathrm{c}}$ , these theorems establish the existence of an everywhere dense $G_{\delta}$ subset such that each one of its

elements is normal. $\ln[13]$ we show that if the function $f$ is Lipschitzian, then for each of the above

spaces, the complement of the subset of all normal elements is not only of the first category) but also a

$\sigma$-porous set
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Theorem 1.8. Let $\mathcal{F}$ be the set of all normal sequences in the space $\mathfrak{M}$ and let

F $=$ {A $\in \mathfrak{U}:\{A_{t}\}_{t=1}^{\infty}\in \mathcal{F}$ where $A_{t}=A$ , t $=1,$ 2, \ldots }.

Assume that the function $ft\mathrm{S}$ Lipschitzian. Then the complement of the set $\mathcal{F}$ is a $\sigma$-porous subset of
( $\mathfrak{M}$ , ps) and the complement of the set $\mathcal{F}\cap \mathfrak{M}_{c}$ is a $a$ -porous subset of $(\mathfrak{M}_{c}, \rho_{s})$ . Mooeovef, the complement

of the set $F$ is a $\sigma$-porous subset of $(\mathfrak{U}, \rho)$ and the complement of the set $F\cap \mathfrak{U}_{\mathrm{c}}$ is $a$ a-porous subset of
$(\mathfrak{U}_{\mathrm{c}}, \rho)$ .

2 CONTINUOUS LYAPUNOV FUNCTIONS

In this section we continue to use the notation introduced in the previous sections, but the convex
function $f$ : $Karrow R^{1}$ is assumed to be merely continuous and bounded from below.

We also consider the space $K\cross \mathfrak{U}_{\mathrm{c}}$ equipped with the product topology and the space $K\mathrm{x}$ $\mathfrak{M}_{c}$ which

is equipped with a pair of topologies. One of them (which is called the weak topology) is the product of

the topology of $K$ and the weak topology of $\mathfrak{M}_{c}$ , and the second one (which is called the strong topology)

is the product of the topology of $K$ and the strong topology of $\mathfrak{M}_{c}$ .
$\ln[14]$ , assuming that $f$ is merely continuous, we are stil able to obtain two results in the direction of

the previous sections. To achieve this, we change our point of view and consider a new framework. The

main feature of this new framework is that the initial point of a trajectory of our dynamical system may

also vary
We now state the two main results of [14].

Theorem 2.1. There exists a set $\mathcal{F}\subset K\cross \mathfrak{M}_{c}$ which $\dot{\mathrm{z}}s$ a countable intersection of open (in the weak

topology) everywhere dense (in the strong topology) subsets of $K\cross \mathfrak{M}_{c}$ such that for each $(x, \{At\}_{t=1}^{\infty})\in \mathcal{F}$ ,

the following property holds:
For each $\epsilon>0$ , there exists a neighborhood $\mathcal{U}$ of $(x, \{A_{t}\}_{t=1}^{\infty})$ in $K\cross \mathfrak{M}_{c}$ with the weak topology and $a$

natural number $N$ such that for each $(y, \{Bt\}_{t=1}^{\infty})\in \mathcal{U}$ ,

$f(B_{N}. . B_{1}y) \leq\inf(f)+\epsilon$ .

Theorem 2.2. There exists a set $\mathcal{F}\subset K\cross \mathfrak{U}_{c}$ which is a countable intersection of open everywhere

dense subsets of $K\mathrm{x}$ $\mathfrak{U}_{c}$ such that for each $(x, A)\in \mathcal{F}$ , the following property holds:
For each $\epsilon>0$ , there exists a neighborhood $\mathcal{U}$ of $(x, A)$ in $K\cross \mathfrak{U}_{c}$ and a natural number $N$ such that

for each (y) $B)\in \mathcal{U}$ ,
$f \langle B^{N}y)\leq\inf(f)+\epsilon$

3. EXAMPLES

Let $(X, ||\cdot||)$ be a Banach space. In this section we present examples of continuous mappings $A$ : $Karrow K$

satisfying $f(Ax)\leq f(x)$ for all $x\in K$ , where $IC$ is a bounded, closed and convex subset of $X$ and
$f$ : $Karrow R^{1}$ is a convex function [12]

Example 1. Let $f$ : $Xarrow R^{1}$ be a convex, uniformly continuous function satisfying

$f(x)arrow\infty$ as $||x||arrow\infty$ .

Evidently, the function $f$ is bounded from below. For each real number $c$ , let $K_{c}=\{x\in X : f(x)\leq c\}$ .

Fix a real number $c$ such that $K_{\mathrm{c}}\neq\emptyset$ Clearly, the set $K_{c}$ is bounded, closed and convex. We suppose

that the function $f$ is strictly convex on $h_{c}’$ , namely

$f(\alpha x +(1-\alpha)y)<\alpha f(x)+(1-\alpha)f(y)$

for all $x$ , $y\in K_{c}$ , $x\neq y$ , and all $\alpha\in(0,1)$ .
Let $V$ : $K_{c}arrow X$ be any continuous mapping. For each $x\in K_{\mathrm{c}}$ , there is a unique solution of the

following minimization problem:

$f(z) arrow\min$ , $z\in\{x+\alpha V(x) : \alpha\in[0,1]\}$ .
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This solution will be denoted by $Ax$ . Since $f(Ax)\leq f(x)$ for all $x\in K_{\mathrm{c}}$ , we conclude that $A(K_{c})\subset K_{c}$

It is shown in [12] that the mapping $A:K_{\mathrm{c}}arrow K_{c}$ is continuous.
Example 2. Let $K$ be a bounded, closed and convex subset of $X$ , and let $f$ . $K-*R^{1}$ be a convex

continuous function which is bounded from below For each $x0$ , $x_{1}\in K$ satisfying $f(x0)>f(x_{1})$ , we will

construct a continuous mapping $A$ : $Karrow K$ such that $f(Ax)$ $\leq f(x)$ for all $x\in K$ and $Ax–x_{1}$ for all $x$

in a neighborhood of $x_{0}$ .
Indeed, let $x_{0}$ , $x_{1}\in K$ with $f(x_{0})>f(x_{1})$ . There are numbers $r_{0}$ and $\epsilon_{0}$ such that

$\mathrm{f}(\mathrm{x})-\epsilon_{0}>\mathrm{f}(\mathrm{x})$ for all $x\in K$ satisfying $||x-x0||\leq r_{0}$ .

Now we define an open covering $\{Vx : x \in K\}$ of $K$ Let $x\in K$ If $||x-x_{0}||<r_{0}$ , we set

$V_{x}=\{y\in K : ||y-x0||<r_{0}\}$ and $a_{x}=x_{1}$ .

If $||x-x_{0}||\geq r_{0}$ , then there is $r_{x}\in(0,4^{-1}r\mathrm{o})$ and $a_{x}\in K$ such that

$f(a_{x})\leq f(y)$ for all $y\in\{z\in K : ||z-x||\leq r_{x}\}$ .

In this case, we set
$V_{x}=\{y\in K : ||y-x||<\mathrm{r}_{x}\}$ .

Clearly, $\cup\{V_{x} : x \in K\}=K$ . There is a continuous partition of unity $\{\phi_{x}\}_{x\in K}$ on $K\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{d}_{1}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ to
$\{V_{x}\}_{x\in K}$ (namely, $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\phi_{x}\subset V_{x}$ for all $x\in K$). For $y\in K$ we define

$Ay= \sum\phi_{x}(y)a_{x}$ .
$x\in K$

Evidently, the mapping $A$ is well defined, $A$ : $Karrow X$ , and it is continuous. Since $\sum_{x\in K}\phi_{x}(y)=1$ for

all $y\in K$ and $K$ is convex, we see that $A(K)\subset K$ .
It is shown in [12] that $f(Ay)\underline{<}f(y)$ for all $y\in K$ and that $Ay–x_{1}$ if $||y-x_{0}||\leq 4^{-1_{f}}0$ .
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