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Abstract

The space M4 (C) is the space of all affine conjugacy classes of quartic polynomials.
We define a projection ¥4 from this space to C° via the elementary symmetric functions
of the multipliers of the fixed points. In [2], we show the projection is not surjective. The
image of M4(C) under ¥4 is denoted by X(4). The complement C* \ £(4) is called the
exceptional set. By analyzing the dynamics on the section {(4,02,04)}, we verify that
quartic polynomial degenerates into “twins” of quadratic polynomials on the exceptional
set.

1 Introduction

Let Poly,(C) be the space of all quartic polynomials, and M(C) be the space of all affine
conjugacy classes of quartic polynomials. We define a projection ¥4 from M4(C) to €3 via
the elementary symmetric functions of the multipliers of the fixed points. In [2], we show
the projection is not surjective. The image of M4(C) under ¥4 is denoted by ¥(4). The
complement C° \ ©(4) is denoted by £(4), and called the exceptional set. For the cubic (resp.
quadratic) polynomials, the exceptional set is empty.

As a Corollary of Theorem 1 in [3] we have:  If n given values my, mg, - -, my, satisfy
Sy T:IH, =0 and if Z?:l T—_}n—l # 0 for any choice of {ij}le,l i1 <ig< - <ig S,
then there ezists a polynomial ofJ degree ezactly n having the fized points of the multipliers
my, Mo, -, Mpy.

We define an algebraic variety, G(c) defined in Section 2, that indicates essential property
of the projection ¥4, and as Theorem 1 we have a defining equation of the exceptional set
and of the branch locus.

According to Theorem 1, we will need to consider the following:

e Why the exceptional set is non empty?
e Find a relation between dynamics of conjugacy classes in 1Iflfl(s), s € C3.

In this paper, we examine dynamical behavior on the parameter space £(4)UE(4) (disjoint -
union), and we have the following conjectures by constructing of two suitable polynomial-like
maps.
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Conjecture On the exceptional set, a quartic polynomial degenerates into “twins” of
quadratic polynomials conjugate to 22 + ¢ for some c.

Conjecture None of quartic polynomial p has two disjoint quadratic-like restrictions of p
such that both quadratic-like map are hybrid equivalent to a common quadratic polynomial
2> +¢, c€ M\ {}}, where M is Mandelbrot set.

These conjectures give the reason why the exceptional set is not empty. The following
theorem gives a support for these conjectures.

Theorem There is a component D C ¥(4) such that two polynomial-like maps (U, V,p) ~np
2%+ c and (U,V,p) ~pp 22 + € are constructed for any (p) € D, and the imaginary part of ¢
converges to zero as (p) — £(4).

Acknowledgment The author would like to express her gratitude to Professor Kiyoko
NISHIZAWA for many valuable discussions and advice.

2 Definitions

2.1 Definitions and Notations
Let Poly,(C) be the space of all polynomials of the form

p: C—>C
p(z) = a4z4 + a323 + a2z3 +a1z+ap (ag #0).

Two maps p1,p2 € Poly,(C) are holomorphically conjugate, denoted by p; ~ po, if and
only if there exists g € (C) with go p; o g7! = py, where A(C) is the group of all affine
transformations.

The space, Poly,(C)/~, of holomorphic conjugacy classes (p) of quartic polynomials is
denoted by M4(C).

For each p(z) € Poly,(C), let 21, -+, 24, 25 = 0o be the fixed points of p, and
K1, -+, U4, ds =0 the multipliers of z; (i.e. y; = p/'(z)).
Let 04,09, +,05 be the elementary symmetric functions of these multipliers

o1 = p1 + po + p3 + pa,

O2 = M2 + paps + pijpg + pops + pofte + U3pg,
O3 = fiflopt3 -+ (b1 fofs T p1fi3fes + Hof3lis,

04 = 1243144,

o5 = 0.
These multipliers are invariant under the action of (conjugation) %(C).
The holomorphic index of a rational function f at a fixed point ¢ € C is defined to be the

complex number
1 dz
of,¢) = i f m,
where we integrate in a small loop in the positive direction around (.
The following results are well known as “Fatou’s index theorem”:
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e If a multiplier  # 1, then (f,() = 1—;;

e For any polynomial p which is not the identity map,

EL(J%C) =0, (1)

¢eC

where this summation is over all fixed points of p.

A polynomial-like map of degree d is a triple (U,V, f) where U and V are topological
disks, with V relatively compact in U, and f : V — U is analytic, proper of degree d.
The filled-in Julia set Ky of a polynomial-like map (U, V, f) is defined by

Ki=[)f™V).

n20

Polynomial-like maps (U, V, f) and ((7', V, f) are hybrid equivalent, f ~pp f, if there exists
a quasi-conformal homeomorphism h from a neighborhood of K to a neighborhood of Ky,

such that ho f = f o h near K s and Oh = 0 almost everywhere on K.

From Straightening Theorem in [1], every polynomial-like map (U,V, f) of degree d is
hybrid equivalent to a polynomial P of degree d. If Ky is connected then P is unique up to
conjugation by an affine map.

2.2 Transformation formula

The following relation is obtained by Fatou’s index theorem.
Lemma 1 (Theorem 1 in [2]) Among o;'s, there is a linear relation
4 - 301+ 209 — 03 =0.

For a monic and centered quartic polynomial z4+co 22 +¢12+¢g, the three values o1, 03, 04
are given by Transformation formula:

o2 = 4¢3 — 16¢ce + 18¢% — 60c; + 48,
o4 = 16coch + (—4c? + 8c1)cd — 128c3c2 + (144coct — 288cpcr + 128cg)cy
—27ct + 108¢3 — 144¢2 + 64c; + 256¢3.

To remove an affine ambiguity from Transformation formula, we consider the following:
1. for a point (p) € My(C), choose a monic and centered representative z* + c22? + c12 + co.

2. getting rid of the affine ambiguity on “Transformation formula”, set ¢ := ¢} (if ¢z = 0,
set ¢ := c}), and

3. rebuild Transformation formula of o1, 09,04, ¢, cg, c; variables.
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4. remove two variables cg, ¢, from the above formula.
After these procedure, we obtain a parametrized algebraic variety.
Definition We define an algebraic variety in C® with a parameter c € C,
Gc): 262144(0; — 4)2c? + 1024(270% + (—14402 — 576)0F + (38402 + 1280)0 + 12803
—25602 — 51204 — 768)c + (907 + 2407 — 3203 — 48)° = 0.
G(c) implies the following: For any point (01, 02,04) € C3, on G(c), the number of parameter

values is equal to the number of conjugacy classes corresponds to the point (01,02,04).
Hence, there is a natural projection

Ty My(C) — @)
W V)]

(p) —  (01,02,04),

where $(4) is the image of M4(C) under ¥,4. The complement C® \ £(4) is denoted by £(4),
and called the exceptional set.

The algebraic variety G(c) perfectly exhibits phenomena induced by ¥4 : M4 (C) — E(4).
Therefore we have the following Theorem.

Theorem 1  For (01,09,04) € C3, number of the elements of set ;' (01,02,04) are
oo, 0, 1or2.

Case 1 #\Iql(al,ag,m;) = oo if and only if (01,092,04) = (4,6,1).

U, 1(4,6,1) = {pa(z) = (22 —a)* + z}a€C (note pg ~ Piwae by z = fwz)
Case 2 #U;(01,02,04) = 0 if and only if the point (01,02, o4) cannot belong to G(c) for
any c.

(s —4)°
4

(01,09,04) = (4., s, ) , s#6. (the exceptional set)

Case 3 #U;'(01,02,04) = 1 if and only if discriminant of the defining equation of G(c)
vanishes or o; = 4 (the branch locus).

Case 4 #V;'(01,02,04) = 2, for the remains of the above.
Theorem 1 leads immediately to the following two corollaries.
Corollary 1 The exceptional set £(4) is contained in the plane {(4,02,04)} = 2.

Corollary 2 There is not a quartic polynomial having the fixed points of the multipliers
Py fhs 2 — B2 — i, (P’ :/é 1)
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3 Loci Per;(u) on the space {(4, s2, s4)}
In this section, we consider dynamical behavior on the real section R? = {(4,s2,84)}, by
Theorem 1, and show some figures supporting the conjectures.

The locus Per;(u) be the set of all conjugacy classes (p) of maps p having a fixed point of
multiplier .

Proposition 1  For each u € C, Per;(u) is a straight line with the following defining
equation:
Peri(u): o4 — (20 — p?)og + p* — 4u® + 8 = 0.

Proof. The multipliers at the fixed points are the roots of the equation,
pt — o+ oou’ — o3p + 04 = 0.
From the linear relation of Lemma 1, we have the defining equation of Per; (u). |

We remark that the cases of the multipliers of a quartic polynomial on the real plane
{(4,02,04)} are *four real values’, two real and a pair of complex conjugates’, or ’two pair of
complex conjugates’.

3.1 Peri(u) (1 €R)

At first we consider x € R In this case we can illustrate the figure of Per;(u). (See Figure
1.) The following results are easily verified.

Proposition 2  For (p) € {(4,02,04)} N E(4), the corresponding multipliers of p are u,2 -
A2 = A

The left figure shows Per;(u) (—10 < p < 1):
—20 < 89,84 < 20,

Gray lines mean Per;(u) (lp| > 1) and
black lines mean Per;(u) (|p| < 1).

Corollary 3
e Ifp has a attracting fixed point then p has a repelling fixed point with positive multiplier.

e If p has a repelling fixed point with negative multiplier then p has a repelling fixed point
with positive multiplier.

Namely, each line of Figure 1 is overlapped by a line Per; (1) for some g > 1, and p cannot
have three attracting fixed points.
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3.2 Per;(u) and Per; (@)

Next, we consider the multipliers of a quartic polynomial are ’two real and a pair of complex
conjugates’. In this case, the multipliers are 1 £ iB, A, and 2 — X from Proposition 2. Then
we have the following from Proposition 1.

Proposition 3  For each 8 € R, Per; (1 +if3) is a straight line with the following defining
equation:
Per;(1+iB8): os=(1+ o2 — (1 + 825+ B%).

Proof. Removing A from two equations o2 =5+ %2+ M2 — ) and 04 = (1 + B2 = N),
we have the above defining equation of Per; (1 i8). |

Note that these loci are corresponds to repelling fixed points.

Now, we consider the last case: multipliers of a quartic polynomial are 'two pair of complex
conjugates’. In this case, the multipliers are a + ib and 2 — a +1b from Proposition 2. Because
defining equation of Per;(u) can express a line on the real plane no longer, we need a new
device Per; (t) for illustrating figures of Per; (u). (See Figure 2)

The locus f’:a;l(t) be the set of all conjugacy classes (p) of maps p having a fixed point of
multiplier p with t = pj.

The left figure shows Per;(1 £ 43) and Per, (2).
—20 < 59,84 < 20,

Dark gray lines mean Per; (1 +48),

gray curves mean Per; (), t > 1 and

black curves mean Pery (t), t < 1.

Figure 2:
Proposition 4  In the case that the multipliers are a+ib and 2 — a+1b, we have a defining
equation of Per; (t).
Peri(t): o2 — 2082 + 2t)og + t* — 4t% + (02 — 16)t* = 0,
where t = a? + b2

Proof. In this case the multipliers are a & 1b and 2 — a £ 4b. By setting t = a? + b? for two
equations o = —2a7 + 4a + 4 + 2b% and 04 = (a® + H*)((2 - a)? + b?), we have

op = —4a® +4a+4+2t, og=t{t—-4a+4) (2)

Removing a from the above two equations, we have a defining equation of ﬁ;l(t). |
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Remark If0 <t <1, I?e;l(t) corresponds to polynomials having two attracting fixed
points of multiplier a + ib and a — ib. As a,b € R, the discriminant 4 + 4(4 4+ 2t — o) of (2)

_ 2
must be positive. Therefore, on a region {(4, 02,04) |02 < —3(0% — 605 —19), 04 < (—2%1—},
corresponding polynomial p have two attracting fixed points of multipliers a =+ ib.

4 The exceptional set

The lines {Per; (1)} have a close relation with the exceptional set. As an example, we give
the following results directly obtained by the results in the section 3.1 and 3.2.

e On the plane {(4, s2,s4)} = R?, the envelopes of the lines {Perl(,u)}ueR and of
{Per;(1 £if)}gcg coincides with the exceptional set. (See Figure 1, 2 and 3.)

e On the region {(4, 09,04) |04 < 12%2)'{} that bounded by the exceptional set, corre-
sponding quartic polynomial has the fixed points of the multiplier with two pair of
complex conjugates.

The left figure shows the real section of the exceptional set

£(4): (4, s, (3“44)2), (s # 6).

Figure 3:

Conjecture On the exceptional set, a quartic polynomial degenerates into “twins” of
quadratic polynomials conjugate to z2 + ¢ for some c.

Theorem 2 There is a component D C £(4) such that two polynomial-like maps
(U,V,p) ~pp 22 +cand (U,V,p) ~py 2%+ are constructed for any (p) € D, and the imaginary
part of ¢ converges to zero as (p) — £(4).

Proof. On a region {(4,02,04) |02 < —%(af — 604 —19), 04 < @_:%)3}, any corresponding
polynomial p(z) has two attracting fixed points of multiplier y, i. Dynamics of p(z) are
symmetry for the real axis. (See Figure 4.) Therefore we can choose suitable topological
disk U, U bounded by equipotential curves such that (U, V,p) and (U,V,p) (UNU = @) are
quadratic-like maps hybrid equivalent to z2 4+ ¢ and 22 + € respectively. (See Figure 6 and 7.)
|
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Figure 4: (4,-1.7696160,8.8480801), Julia Figure 5: Julia set of p(z) = 2% + 3.81992% +
set of p(z) = z* + 3.81992% + 2 + 3.775218, z+3.775218,-0.2 < Rz < 0.28,1.137 < §z <
-2< Rz, Tz <2 1.617

Figure 6: Julia set of quadratic-like map  Figure 7: Julia set of p.(2) = 2° + (=0.726 +
-0.2 < Rz < 0.28, 1.137 < $z < 1.617 0.1831), —2 < Rz, Sz < 2.

5 On the point (4,6,1) € £(4)

One parameter family {p,(z) = (2 — a)® + a}aeC (note pg ~ P+we by z = Fwz) corresponds
to the point (4,6,1). (See Figure 8 and 9.) There is a map p in this family such that p has
two disjoint quadratic-like restriction hybrid equivalent to common quadratic map Z? + %.
(See Figure 8.)

Conjecture None of quartic polynomial p have two disjoint quadratic-like restrictions of p
such that both quadratic-like map are hybrid equivalent to a common quadratic polynomial
22 + ¢, c € M\ {3}, where M is Mandelbrot set.

This conjecture gives a reason why the exceptional set is not empty.
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Figure 8: Julia set of p(z) = 2z — 222+ 2+1,  Figure 9: Juliaset of p(z) = z* - 2% +2+0.25,
—2< Rz, 2 <2 (4,6,1) € £(4) -2 < %z, 82 <2 (4,6,1) € Z(4)
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