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1Nonlinear ordinary differential equations
At first, as anews in nonlinear ordinary differential equations, we referred
to the recent paper [15]. In general, for nonlinear ordinary differential
equations with variable coefficients, we can give analytical and general
solutions for very restricted equations only. In [15], we found alarge class
of nonlinear ordinary differential equations with variable coefficients of
the first order for which we can give analytical and general solutions by
simple transforms. Furthermore, we can determine such class of differen-
tial equations. For further generalizations and for the case of the second
order ordinary differential equations, see $[17,16]$ .
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We shall state typical examples from [17]:

$T_{y}(x, y)y’=-T_{x}(x, y)$ (1.1)

$\Leftrightarrow$

$T(x, y)=C$. (1.2)

This will mean that our theory is a generalization of exact differential
equations.

$T_{y}(x, y)y’=F(x)-T_{x}(x, y)$ (1.3)

$\Leftrightarrow$

$T(x, y)= \int F(x)dx+C$ . (1.4)

$T_{y}(x, y)y’=F(x)T(x, y)-T_{x}(x, y)$ (1.5)

$\Leftrightarrow$

$T(x, y)=C_{J} \exp\{\int F(x)dx\}$ (1.6)

$T_{y}(x, y)y’=F(x)T(x, y)^{2}-T_{x}(x, y)$ (1.7)

$\Leftrightarrow$

$T(x, y)= \frac{-1}{\int F(x)dx+C}$ . (1.8)

$T_{y}(x, y)y’=F(x)e^{\alpha T(x,y)}-T_{x}(x, y)$ , $\alpha_{\overline{7}}\leq 0$ (1.9)

$\Leftrightarrow$

$T(x, y)=- \frac{1}{\alpha}\ln\{-\alpha\int F(x)dx+C\}$ (1.10)

$T_{y}(x, y)y’=F(x)[a^{2}-T(x, y)^{2}]-T_{x}(x, y)$ , $a>0$ (1.11)

$\Leftrightarrow$

$\frac{1}{2a}\log|\frac{a+T(x,y)}{a-T(x,y)}|=\int F(x)dx+C$ . (1.12)
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$T_{y}(x, y)y’=F(x)[T(x, y)^{2}-a^{2}]-T_{x}(x, y)$ , $a>0$ (1.13)

$\Leftrightarrow$

$\frac{1}{2a}\log|\frac{a-T(x,y)}{a+T(x,y)}|=\int F(x)dx+C$ . (1.14)

$T_{y}(x, y)y’=F(x)[T(x, y)^{2}+a^{2}]-T_{x}(x, y)$ , $a>0$ (1.15)
$\Leftrightarrow$

$T(x, y)=a \tan(a\int F(x)dx+C)$ (1.16)

$T_{y}(x, y)y’=F(x)\sin T(x, y)-T_{x}(x, y)$ (1.17)
$\Leftrightarrow$

$\tan\frac{1}{2}T(x, y)=C\exp\{\int F(x)dx\}$ (1.18)

$T_{y}(x, y)y’=F(x)\cos T(x, y)-T_{x}(x, y)$ (1.19)

$\Leftrightarrow$

$\tan(\frac{1}{2}T(x, y)+\frac{\pi}{4})=C\exp\{\int.F(x)dx\}$ (1.20)

$T_{y}(x, y)y’=F(x)\tan T(x, y)-T_{x}(x, y)$ (1.21)
$\Leftrightarrow$

$\sin T(x, y)=C\exp\{\int F(x)dx\}$ (1.22)

Of course, we can easily solve these nonlinear differential equations, how-
ever, for the general form $y’=f(x, y)$ we can determine such class of dif-
ferential equations and we can look for the Tada transform $z=T(x, y)$
in order to derive such normal form. So, following our general theory, we
can give the following examples:

$y’= \frac{x^{3}y-y+x^{2}y^{2}}{x+2y}$ $(z=xy+y^{2})$ (1.23)
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$\Leftrightarrow$

$xy+y^{2}=C \exp\{\frac{1}{3}x^{3}\}$ (1.24)

$y’= \frac{x^{2}y^{2}-y^{2}+xy}{2xy+1}$ $(z=xy^{2}+y)$ (1.25)

$\Leftrightarrow$

$xy^{2}+y=C \exp\{\frac{1}{2}x^{2}\}$ (1.26)

$y’= \frac{x(xy^{2}+xy)^{2}-(y^{2}+y)}{2xy+x}$ $(z=xy^{2}+xy)$ (1.27)

$\Leftrightarrow$

$xy^{2}+xy= \frac{1}{C-\frac{1}{2}x^{2}}$ . (1.28)

$y’= \frac{x^{4}y^{4}+x^{2}+x^{2}y^{4}+1-y^{2}}{2xy}$ $(z=xy^{2})$ (1.29)

$\Leftrightarrow$

$xy^{2}= \tan(\frac{1}{3}x^{3}+x+C)$ (1.30)

$y’= \frac{x^{2}(e^{x}y^{2}+y+3)-e^{x}y^{2}}{2e^{x}y+1}$ $(z=e^{x}y^{2}+y)$ (1.31)

$\Leftrightarrow$

$e^{x}y^{2}+y+3=C \exp\{\frac{1}{3}x^{3}\}$ (1.32)

2 Generalizations of Pythagorean theorem

In a generalization of Pythagorean theorem, we found a very interesting
non-linearity ([8]) and from there we found a concept of isometry between
a Hilbert space and various Hilbert spaces by various bounded linear

operators ([13]). As special cases, we got inverses of a family of matrices
([1]) which give full generalizations of Pythagorean theorem.
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3 Nonlinear mappings of reproducing ker-
nel Hilbert spaces

For general non-linear mappings of a reproducing kernel Hilbert space,
by the restriction and by the products of the reproducing kernel, we
can discuss the non-linear mappings in connection with linear mappings.
Following a series of the papers, we discussed their essential ideas with
very typical examples. See [11,12,9].
Let $E$ be an arbitrary nonvoid abstract set and let $H_{K}(E)$ be a Hilbert $($

possibly finite-dimensiollal) space admitting a reproducing kernel $K(p, q)$

on $E$ . Then, the Hilbert space $H_{K}(E)$ is composed of complex-valued
functions $f(p)$ on $E$ such that

$K(\cdot, q)\in H_{K}(E)$ for any fixed $q\in E$

and, for any member $f$ of $H_{K}(E)$ and for any fixed point $q$ of $E$ ,

$(f(\cdot), K(\cdot, q))_{H_{K}}=f(q)$ .

In general, a reproducing kernel $K(p, q)$ on $E$ is a positive matrix in the
sense that for any points $\{p_{j}\}_{j}$ of $E$ and for any complex numbers $\{C_{j}\}_{j}$

$\sum_{j,j’}C_{j}\overline{C_{j^{l}}}K(p_{j’},p_{j})\geq 0$
.

Conversely, a positive matrix $K(p, q)$ on $E$ determines uniquely a func-
tional Hilbert space ( for brevity a reproducing kernel Hilbert space is
designated by RKHS ) $H_{K}(E)$ . In general, for a Hilbert space $H$ com-
prising functions $f(p)$ on $E$ , there exists a reproducing kernel $K(p, q)$

for $H$ if and only if for any point $q$ of $E$ , the point evaluation $f(p)$ is
a bounded linear functional on $H$ . This nice property will show that
reproducing kernel Hilbert spaces are very good Hilbert spaces.
In connection with the analytic function

$\sum_{n=0}^{\infty}d_{n}z^{n}$ , $d_{n}$ are complex numbers,

we shall consider the RKHS $H_{K}(E)$ as an input function space of the
nonlinear transform

$\varphi$ : $f\in H_{K}(E)arrow$ $\sum_{n=0}^{\infty}d_{n}(p)f(p)^{n}$ ,
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where $\{d_{n}(p)\}$ is a sequence of arbitrar given complex-valued functions
on $E$ .
In this nonlinear transform $\varphi$ , we can see that the images $\varphi(f)$ , $f\in$

$H_{K}(E)$ , belong to a Hilbert space $\mathrm{H}$ which is naturally determined by
the nonlinear transform $\varphi$ and there exists a natural norm inequality
between the two norms $||\varphi(f)||_{\mathrm{H}}$ and $||f||_{H_{K}}$ .
In order to see these facts we need the three basic ideas; that is, sums,
products and restrictions of reproducing kernels.
For two positive matrices $K_{1}(p, q)$ and $K_{2}(p, q)$ on $E$ , the sum $K_{3}(p, q)=$

$K_{1}(p, q)+K_{2}(p, q)$ is, of course, a positive matrix on $E$ . The RKHS
$H_{K_{8}}$ admitting the reproducing kernel $K_{3}(p, q)$ on $E$ is composed of all
functions

$f=f_{1}+f_{2}$ $(f_{j}\in H_{K_{j}})$

and the norm in $HKz$ is given by

$||f||_{H_{K_{3}}}^{2}= \min\{||f_{1}||_{H_{K_{1}}}^{2}+||f_{2}||_{H_{K_{2}}}^{2}\}$,

where the minimum is taken over all the expressions for $f$ .
The product $K_{4}(p_{1},p_{2};q_{1}, q_{2})=K_{1}(p_{1}, q_{1})K_{2}(p_{2}’.q_{2})$ on $(E\cross_{\backslash }E)\cross(E\cross E)$

is, of course, a positive matrix on $E\cross E$ . The RKHS $H_{K_{4}}$ admitting the
reproducing kernel $K_{4}(p_{1},p_{2};q_{1}, q_{2})$ on $E\cross E$ is composed of all functions

$f(_{\backslash }p_{1},p_{2})= \sum_{n=1}^{\infty}f_{1,n}(p_{1})f_{2,n}(p_{2})$ $(f_{j,n}\in H_{K_{j}})$ (3.33)

having finite norms

$||f||_{H_{K_{4}}}^{2}= \sum_{n=1}^{\infty}||f_{1,n}||_{H_{K_{1}}}^{2}||f_{2,n}||_{H_{K_{2}}}^{2}<\infty$. (3.34)

That is, the RKHS $H_{K_{4}}$ is the tensor product $H_{K_{1}}\otimes H_{K_{2}}$ . In particular,
note that for $f_{1}\in H_{K_{1}}$ , $f_{2}\in H_{K_{2}}$ , the product $f_{1}(p_{1})f_{2}(p_{2})\in H_{K_{1}}\otimes H_{K_{2}}$

and the product is a function on $E\cross E$ . It is not a function on $E$ but
on $E\cross E$ . It is not a single but two variable function. In order to catch
nonlinear transforms, we need the idea of the restriction of reproducing
kernels.
The restriction $K_{5}(p, q)=K_{4}(p,p;q, q)$ to the diagonal set $E$ of $E\cross$

$E$ is a positive matrix and the RKHS $H_{K_{6}}$ admitting the reproducing
kernel $K_{5}(p, q)$ on $E$ is composed of all functions $f(p)\equiv f(p,p)$ in (3.33)

satisfying (3.34). The norm in $H_{K_{5}}$ is given by
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$||f||_{H_{K_{5}}}^{2}= \min\sum_{n=1}^{\infty}||f_{1,n}||_{H_{K_{1}}}^{2}||f_{2,n}||_{H_{K_{2}}}^{2}$ ,

where the minimum is taken over all the expressions satisfying for $f(p)=$

$f(p,p)$ on $E$ .
In particular, note that for $f_{1}\in H_{K_{1}}$ , in the typical nonlinear transform

$f_{1}arrow f_{1}^{2}$ ,

$f_{1}^{2}$ belongs to the reproducing kernel Hilbert space $H_{K_{1}^{2}}$ admitting the
reproducing kernel $K_{1}(p, q)^{2}$ and we have the norm inequality

$||f_{1}^{2}||_{H_{K_{1}^{2}}}^{2}\leq(||f_{1}||_{H_{K_{1}}}^{2})^{2}$ .

This is a key idea to understand nonlinear transforms, because we were
able to identify the images $f_{1}^{2}$ ; that is, we were able to find a space
containing the images. Further, the space is a natural one in the sense
that the reproducing kernel Hilbert space $H_{K_{1}^{2}}$ is spanned by the typical
nonlinear images $K_{1}(p, q)^{2}$ of the typical members $K_{1}(p, q)$ of $H_{K_{1}}$ for
$q\in E$ . Furthermore, note that in the above inequality, equality holds for
the functions $K_{1}(p, q)$ for any point $q$ of $E$ .
For $n$-times sum and $n$-times product, the circumstances are similar.
Hence, we have, in particular, for any $f_{j}\in H_{K_{j}}(j=1,2, \ldots, N)$

$|| \sum_{j=1}^{N}f_{j}||_{H_{(\Sigma_{j=1}^{N}K_{J})}}^{2}\leq\sum_{j=1}^{N}||f_{j}||_{H_{K_{j}}}^{2}$

and
$||f^{n}||_{H_{K}n}^{2}\leq||f||_{H_{K}}^{2n}$ .

One typical example is given as follows:
For any absolutely continuous function $f$ on $[0, 1]$ satisfying

$0< \int_{0}^{1}f’(x)^{2}dx<1$

and $f(0)=0$ ,

$I_{0}^{1}( \frac{f(x)}{1-f(x)})^{\prime 2}(1-x)^{2}dx\leq\frac{\int_{0}^{1}f’(x)^{2}dx}{1-\int_{0}^{1}f(x)^{2}dx},\cdot$

It will be very pleasant to note that for functions $\min(x, y)(0<y<1)$ ,
equality holds
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4 Representations of inverses of an arbi-
trary mapping

Of course, to represent the inverse of a nonlinear mapping in terms of the

nonlinear mapping will be essentially involved and difficult, however, we
discussed the general representation of inverse of an arbitrary mapping,
by using the theory of reproducing kernels. Such challenge seems to be
absured, however, surprisingly enough, in the procedure, we were able to

obtain new, definite and concrete results. See [10].
One typical example is: For any positive real number $n$

$x^{1/n}= \frac{2}{\pi}\int_{0}^{\infty}\int_{0}^{\infty}\frac{\cos(\xi^{n}t)\sin xt}{t}dtd\xi$ .

5 Applications to the Tikhonov regulariza-
tion

At the last part of the lecture, based on the recent research topics in
[2-7, 14], we reported the applications of the general theory of repr0-

ducing kernels to the theory of Tikhonov regularization which has basic
applications to various operator equations for numerical analysis and to

many inverse problems. In particular, for the extremal functions in the
Tikhonov regularization, we can obtain good and concrete representa-
tions by using the theory of reproducing kernels. We also gave numerical
experiments for some concrete problems.
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(The author Takeo Tada of [15,16,17] has been concentrated only in such research
topics over 30 years without other works and interest. I think he was able to obtain
definite results that should be studied by almost all students in mathematical sciences
and in the first course studying ordinary differential equations. If so, he will feel
happily his long endurance and dream were fruitful. I am, indeed, studying a lot of
things for human beings from my pure and lovely colleague.


