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1Introduction
We revisit the parabolic problem for the Allen-Cahn equation

$(P^{5})$ $\{$

$u_{t}= \triangle u+\frac{1}{\mathrm{c}^{2}\ulcorner}(f(u)-\epsilon ig(x, t))$ in Sl $\cross(0, +\infty)$

$\frac{\partial u}{\partial\nu}=0$ on $\partial\Omega\cross(0, +\infty)$

$u(x, 0)=u_{0}(x)$ in $\Omega$ ,

where $\epsilon$ is asmall parameter and $f$ abistable nonlinearity More precisely
wc assume that $f$ is smooth and has exactly three zeros $\alpha_{-}<a<\alpha_{+}$ such
that

$f’(\alpha_{\pm})<0$ , $f’(a)>0$ , (1.1)

and that
$\int_{\alpha-}^{\alpha_{+}}f(u)du$ $=0$ . (1.2)

数理解析研究所講究録 1416巻 2005年 148-160



149

A typical example is the cubic nonlinearity $f(u)=u(1-u^{2})$ . We suppose that
the perturbation term $g(x, t)$ is a smooth function, defined on $\overline{\Omega}\cross[0, +\infty)$

satisfying
$\frac{\partial g}{\partial\nu}=0$ on $\partial\Omega$ , (1.3)

and we consider rather general initial data $u_{0}\in C^{2}(\overline{\Omega})$ . The constant $C_{0}$ will
stand for the following quantity:

$C_{0}:=||u_{0}||C^{0}(\iota-+\iota)||\nabla u_{0}||_{C^{0}(\mathrm{f}l)}+||\triangle u_{0}||_{C^{0}(1^{-}l)}$ . (1.4)

Furthermore we define the “initial interface” $\Gamma_{0}$ by

$\Gamma_{0}:=\{x\in\Omega, u_{0}(x)=a\}$ ,

and suppose that $\Gamma_{0}$ is a smooth hypersurface without boundary such that,
$n$ being the Euclidian unit normal vector exterior to $\Gamma_{0}$ ,

$\Gamma_{0}\subset\subset\Omega$ and $\nabla u_{0}(x)\cdot \mathrm{n}(\mathrm{x})\neq 0$ if $i\Gamma$ $\in\Gamma_{0}$ , (1.5)

$u_{0}>a$ in $\Omega_{0}^{+}$ , $u_{0}<a$ in $\Omega_{0}^{-}$ , (1.6)

where $\Omega_{0}$ denotes the region enclosed by $\Gamma_{0}$ and $\Omega_{0}^{+}$ the region enclosed
between $\partial\Omega$ and Fo. It is standard that Problem $(P^{5})$ has a unique smooth
solution $u^{\in}$ . As $\epsilon$ $arrow 0$ , studies of de Mottoni and Schatzman [10] arld [11] and
X. Chen [5] and [6] show the following: in the very early stage, the diffusion
term is negligible compared with the reaction term $\epsilon^{-2}(f\cdot(u) - \mathrm{g}(\mathrm{x}, t))$ so
that, rescaling time by $\tau=t/\epsilon^{2}$ leads to the ordinary differential equation
$u_{\tau}=f(u)$ . Hence, $f$ being bistable, an interface is formed between the
regions $\{u\approx\alpha_{-}\}$ and $\{u\approx\alpha_{+}\}$ . Once such an interface is developed, the
diffusion term becomes large near the interface, and comes to balance with
the reaction term so that the interface starts to propagate, in a mucll slower
time scale. To study such interfacial behavior, it is useful to consider the
singular limit of $(P^{\epsilon})\mathrm{a}\mathrm{s}\in$ $arrow 0$ . Then the limit solution $\tilde{u}(x, t)$ will bc a
step function taking the value $\alpha_{+}$ on one side of the interface, and $\alpha_{-}$ on the
other side. This sharp interface, which we will denote by $\Gamma_{t}$ , obeys a certain
law of motion. It is well known that $\Gamma_{t}$ evolves by the mean curvature flow:

$(P^{0})$ $\{$

$V_{n}=-(N-1)\kappa+c_{0}(\alpha_{+}-\alpha_{-})g(x, t)$ on $\Gamma_{t}$

$\Gamma_{t}|_{t=0}=\Gamma_{0}$ ,

where $V_{n}$ is the normal velocity on Ft, $\kappa$ the mean curvature at each point
of $\Gamma_{t}\dot,$

$c_{0}=[ \sqrt{2}\int_{\alpha-}^{\alpha_{+}}(\mathrm{M}^{\gamma},(s)-W(\alpha_{-}))^{1/2}ds]^{-1}$ (1.7)
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$W(s)=- \int_{a}^{s}f(r)dr$ .

It is standard that Problem $(P^{0})$ possesses locally in time a unique smootll
solution $\Gamma=\bigcup_{0\leq t\leq T}(\Gamma_{t}\cross\{t\})$ .

Next we set $Q_{7’}:=\Omega\cross(0, T)$ and for each $t\in(0, T)$ , we define $\Omega_{t}^{-}$ as
the region enclosed by the hypersurface $\Gamma_{t}\mathrm{a}\mathrm{r}\iota \mathrm{d}$ $\Omega_{t}^{+}$ as the region enclosed
between $\partial\Omega$ and $\Gamma_{t}$ . Then we define a function $\tilde{u}(x, t)$ by

$\tilde{u}(x, t)=\{$

$\alpha_{+}$ in $\Omega_{t}^{+}$

$\alpha_{-}$ in $\Omega_{t}^{-}$

for $t\in(0, T)$ . (1.8)

As $\epsilon$ $arrow 0$ , the solution $u^{\epsilon}$ of Problem $(P^{\epsilon})$ converges to that of Problem
$(P^{0})$ . Tlle aim of the present note is to present an optimal estimate on tlle
width of the transition layer, namely to sllow that it is of order $\epsilon:$ . To that
$\mathrm{p}\iota \mathrm{l}\mathrm{f}\mathrm{f})()\mathrm{s}\mathrm{e}$ we use 1lew pairs of upper and lower $\mathrm{s}\mathrm{o}\mathrm{l}\iota \mathrm{l}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{S}$both for the generation
and tlle propagation of interface stages.

Wc will state our main results in the next section. For tlle complete proofs
we refer to [1] where we study the more general case of the Allen-Cahn type
equation $u_{t}=\triangle u+\in-2(f(u)-\in g(x, t, u))$ , where the perturbation function
$g$ also depends on the unknown function $u$ .

The singular limit of Allen-Cahn equations has been studied in a large
number of articles: Let us mention for instance the results of Bronsard and
Kohn [4] in the case of spherical symmetry, the articles of de Mottoni and
Schatzman $[10, 11]$ and those of Xinfu Chen $[5, 6]$ . These results prove
convergence to the limit interface equation in a classical framework; that is,
under $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ assumption that the limit problem has a classical solution $\Gamma_{t}$ for
$0\leq t\leq T$ As for the case where $\Gamma_{t}$ is a viscosity or a weak solution of the
limit interface equation, we refer to the work of Barles, Soner and Souganidis
[2], Evans, Soner and Souganidis [8], Ilmanen [9] and Barles and Souganidis
[3].

2 The main results
Our results deal with the limiting behavior of the solution $u^{\Xi}$ of Problem
$(P^{\epsilon})$ as $\epsilon$ $arrow 0$ . Our first main result, Theorem 2.1, describes the profile of
the solution after a very short initial period. It asserts that: given a virtually
arbitrary initial data $u_{0}$ , the solution $u^{\epsilon}$ quickly becomes close to $\alpha_{\pm}$ , except
in a small neighborhood of the initial interface Fq, creating a steep transition
layer around $\Gamma_{0}$ (generation of interface). The time needed to develop such a
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transition layer, which we will denote by $t^{\epsilon}$ , is of order $\epsilon^{2}|\ln\epsilon|$ . The theorem
then states that the solution $u^{\xi j}$ remains close to $\mathrm{t}\mathrm{I}_{1}\mathrm{e}$ step function $\overline{u}$ on thc
time interval $(t^{\in}, T)$ (motion of interface). Moreover, as is clear fro1ll tlle
estimates in the theorem, the ”thickness” of tlle transition layer is of order
$\epsilon$ .

Theorem 2.1 (Generation and motion of interface). Let $\eta\in(0,$ $\min(a-$
$\alpha_{-)}\alpha_{+}-a))$ be arbitrary and set

$t_{\epsilon}= \frac{\epsilon^{2}|1\mathrm{n}\in|}{f’(a)}$ .

Then there exist positive constants $\epsilon_{0}$ and $C$ such that, for all $\epsilon$ $\in(0, \epsilon_{0})$ and
for all $t^{\overline{\mathrm{c}}}\leq t\leq T$ , we have

$u^{\epsilon}(x, t)\in\{$

$[\alpha_{-}-\eta, \alpha_{+}+\eta]$ if $x\in N_{C\epsilon}(\Gamma_{t})$

$[\alpha_{-}-\eta, \alpha_{-}+\eta]$ $\iota.f$ $x\in\Omega_{t}^{-}\backslash N_{C\epsilon}(\Gamma_{t})$

$[\alpha_{+}-\eta_{7}\alpha_{+}+\eta]$ if $x\in\zeta l_{t}^{+}\backslash N_{C\epsilon}(\Gamma_{t})$ ,

(2.1)

where $N_{r}(\Gamma_{t}):=\{x\in\Omega, d\iota st(x, \Gamma_{t})<r\}$ denotes the $r$ -neighborhood of $\Gamma_{t}$ .

Corollary 2.2 (Convergence). As $\epsilon$ $arrow 0$ , $u^{\mathrm{g}}$ converges to $\tilde{u}$ everywhere in
$\bigcup_{0<t<T(\Omega_{t}^{\pm}}\cross\{t\})$ .

The next theorem is concerned with $\mathrm{t}1_{1}\mathrm{e}$ relation between the actual irl-
terface $\Gamma_{t}^{\epsilon}:=\{x\in\Omega, u^{c}\vee(x, t)=a\}$ and the solution $\Gamma_{t}$ of Problem $(P^{0})$ .

Theorem 2.3 (Error estimate). There exists C $>0$ such that

$\Gamma_{t}^{\epsilon}\subset N_{C\in}(\Gamma_{t})$ for $0\leq t\leq T$ (22)

Corollary 2.4 (Convergence of interface). There exists C $>0$ such that

$d_{\mathcal{H}}(\Gamma_{t}^{\epsilon}, \Gamma_{t})\leq C\xi j$ for $0\leq t\leq T$ . (2.3)

where $d_{\mathcal{H}}(A, B):= \max\{\sup_{a\in A}d(a, B);\sup_{b\in B}\mathrm{d}(6, A)\}$ denotes the Haus-
dorff distance between two compact sets $A$ and $B$ .

Note that the estimates (2.2) and (2.3) follow from Theorem 2.1 in the
range $t^{\epsilon}\leq t\leq T$ but the range $0\leq t\leq t^{\epsilon}$ has to be treated by a separate
argument. In fact, this is the time range in which a clear transition layer is
formed rapidly from an arbitrarily given initial data, therefore tlle behavior of
the solution is quite different from the one in the later time range $t^{\Xi}\leq t\leq T$

where things move more slowly
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The estimate (2.1) in Theorem 2.1 implies that, once a transition layer
is formed, its thickness remains of order $\epsilon$ for the rest of the time. The
best estimate, so far, was of order $\in|\ln\in|$ (see [5]), except that Xinfu Chen
llas recently obtained an order $\xi j$ estimate for the case $N=1$ by a different
method (private communication). Here, by “thickness of interface” we mean
tlle smallest $r>0$ satisfying

$\{x\in\Omega, u(x, t)\not\in[\alpha_{-}-\eta, \alpha_{-}+\eta]\cup[\alpha_{+}-\eta_{7}\alpha_{+}+\eta]\}\subset N_{r}(\Gamma_{t}^{\in})$ .

Naturally this quantity depends on $\eta$ , but the estimate (2.1) asserts that it
always remains within $O(\epsilon)$ regardless of the choice of $\eta>0$ .

Remark 2.5 (Optimality of the thickness estimate). The above $O(\epsilon)$ estimate
is optimal, $i.e.$ , the interface cannot be thinner than this order. In fact,
rescaling time and space as $\tau:=t/\epsilon^{2}$ , $y:=x/\epsilon_{1}$ we get

$u_{\tau}=\triangle_{y}u+f(u)-\in$ $g$ .

Thus, by the uniform boundedness of $u$ and by standard parabolic estimates,

wc have $|\nabla_{y}u|\leq M$ for some constant $M>0$ , which implies

$| \nabla_{x}u(x, t)|\leq\frac{M}{\in}$ .

From this bound it is clear that the thickness of interface cannot be smaller
than $M^{-1}(\alpha_{+}-\alpha_{-})\epsilon \mathrm{i}$ , hence, by (2.1), it has to be exactly of order $\in$ . $\square$

Remark 2.6 (Optimality of the generation time). The estimate (2.1) also im-
plies that the generation of interface takes place within the time span of $t^{\in}$ .

This estimate is optimal. In other words, a well-developed interface cannot
form much earlier, as the following proposition shows. $\square$

Proposition 2.7. Denote by $\tilde{t}^{\in}the$ smallest time such that (2.1) holds for
all $t\in[\tilde{t}_{1}^{\epsilon}T]$ . Then there exists a constant $L>0$ such that

$\tilde{t}^{\epsilon}\geq\mu^{-1}\epsilon^{2}(|\ln\epsilon|-L)$

for $all\in$ $\in(0, \epsilon_{0})$ .

3 Generation of interface
The result below shows that within a very short time interval of order $\in^{2}|\ln\in|$

an interface is formed in a neighborhood of $\Gamma_{0}=\{x\in\Omega, u_{0}(x)=a\}$ . In the
sequel, $\eta_{0}$ will stand for the following quantity:

$\eta_{0}.=\min(a-\alpha_{-}, \alpha_{+}-a)$ .
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Theorem 3.1. Let $\eta\in(0, \eta_{0})$ be arbitrary and set

$t \Leftarrow.=\frac{\in^{2}|1\mathrm{n}\epsilon|}{f’(a)}$ . (3.1)

Then there exist positive constants $\Xi_{0}$ and $M_{0}$ such that, for $all\in$ $\in(0, \in_{0})f$

$(\mathrm{i})$ for all $x\in\Omega$ ,
$\alpha_{-}-\eta\leq u^{\epsilon}(x, t_{\epsilon})\leq\alpha_{+}+\gamma]$ ; (3.2)

(ii) for all $x\in\Omega$ such that $|u_{0}(x)-a|\geq\Lambda f_{0}\epsilon$ , we have that

if $u_{0}(x)\geq a+M_{0}\epsilon$ then $u^{\epsilon}(x, t_{\in})\geq\alpha_{+}-\eta$ , (3.3)
if $u_{0}(x)\leq a-M_{0}\in$ then $u^{r}(\vee x, t_{-}.)\leq\alpha_{-}+\eta$ . (3.4)

As we will see below, the above theorem is proved by constructing $\mathrm{d}’$

suitable pair of sub and super-solutions

3.1 The perturbed bistable ordinary differential equa-
tion

We first consider a slightly perturbed nonlinearity,

$f_{\delta}(u)=f(u)+\delta$,

where $\delta$ is any constant. For $|\delta|$ small enough, this function is still bistable,
and more precisely it has the following properties.

Lemma 3.2. For $|\delta|<\delta_{0}$ small enough,

(i) $f_{\delta}$ has exactly three zero, namely $\alpha_{-}(\delta)$ , $a(\delta)$ and $\alpha_{+}(\delta)$ and we can
find a positive constant $C$ such that

$|\alpha_{-}(\delta)-\alpha_{-}|+|a(\delta)-a|+|\alpha_{+}(\delta)-\alpha_{+}|\leq C|\delta|$ . (3.5)

(ii) We have that

$f_{\delta}$ is strictly positive in $(-\infty, \alpha_{-}(\delta))\cup(a(\delta), \alpha_{+}(\delta))$ ,
(3.6)

$f_{\delta}$ is strictly negative in $(\alpha_{-}(\delta), \mathrm{a}(\mathrm{S})\cup(\alpha_{+}(\delta), +\infty)$ .

(iii) Set
$\mu(\delta):=f_{\delta}’(a(\delta))=f’(a(\delta))$ ,

then we can find a positive constant, which we denote again by $C$ , such
that

$|\mu(\delta)-\mu|\leq C|\delta|$ . (3.7)
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In order to construct a pair of sub and super-solutions for Problem $(P^{\epsilon})$

we define $Y(\tau, \xi).\delta)$ as $\mathrm{t}\mathrm{l}\iota \mathrm{e}$ solution of the ordinary differential equation

$\{$

$Y_{\tau}(\tau, \xi;\delta)$ $=f_{\delta}(Y(\tau, \xi;\delta))$ for $\tilde{\prime}>0$

$Y(0, \xi)$. $\delta$ ) $=\xi$ ,
(3.8)

for $\delta\in(-\delta_{0}, \delta_{0})$ and $\xi\in(-2C_{0},2C_{0})$ . In [1], we present several useful
estimates on the growth of $Y$ and its derivatives.

3.2 Construction of sub and super-solutions

We set
$w_{\epsilon}^{\pm}(x_{\backslash }t)=Y( \frac{t}{\epsilon^{2}}$ , $u_{0}(x) \pm c^{2}r(\pm\epsilon \mathcal{G}, \frac{t}{\epsilon^{2}}))$

.
$\pm\in \mathcal{G})$ ,

where $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ constant $\mathcal{G}$ is defined by

$\mathcal{G}=$ $\sup$ $|g(x, t)|)$

$(x,t)\in\overline{1l}\cross[0,T]$

and the function $r(\delta, \tau)$ is given by

$r(\delta, \tau)=C_{6}(e^{\mu(\delta)\tau}-1)$ .

Lemma 3.3. There exist positive constants $\epsilon_{0}$ and $C_{6}$ such that for $all\in\in$

$(0, \epsilon_{0})$ , $(?L_{\mathcal{E}}^{\rangle}-, w_{\epsilon}^{+})$ is a pair of sub and super-solutions for Problem $(P^{\epsilon})$ .

Proof. We define the operator

$Lu=u_{t}- \triangle u-\frac{1}{\epsilon^{2}}(f(u)-\epsilon g(x, t))$ . (3.9)

Then

$Lu_{\epsilon}^{+})= \frac{1}{\epsilon}[\mathcal{G}+g(x, t)]+Y_{\xi}[C_{6}\mu(\epsilon \mathcal{G})e^{\mu(\epsilon \mathcal{G})t/\in^{2}}-\triangle u_{0}-\frac{Y_{\xi\xi}}{Y_{\xi}}|\nabla u_{0}|^{2}]$ .

By the definition of $\mathcal{G}$ tlle first term is positive, and one can show that, for
a positive constant $C_{5}$ independent of 6, there holds

$Lu)_{\mathcal{E}}+$
$\geq Y_{\xi}[C_{6}\mu(\epsilon \mathcal{G})e^{\mu(\in \mathcal{G})t/\epsilon^{2}}-|\triangle u_{0}|-C_{5}(e^{\mu(\in \mathcal{G})t/\epsilon^{2}}-1)|\nabla u_{0}|^{2}]$

$\geq Y_{\xi}[(C_{6}\mu(\epsilon \mathcal{G})-C_{5}(|\nabla u_{0}|^{2})e^{\mu(\epsilon \mathcal{G})t/\epsilon^{2}}-|\triangle u_{0}|+C_{5}|\nabla u_{0}|^{2}]$ .
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In view of (3.7), this inequality implies that, for $\epsilon$ $\in(0, \epsilon_{0})$ , wi 11 $\epsilon_{0}$ small
enough, and for $C_{6}$ large enough,

$Lw_{\epsilon}^{+} \geq[\frac{\mu C_{6}}{2}-C_{5}C_{0}^{2}-C_{0}]\geq 0$ ,

which completes the proof of the lemma. $\square$

Hence the comparison principle can be applied to deduce that

$w_{\epsilon}^{-}\leq u^{\epsilon}\leq w_{\in}^{+}$ in $\overline{\Omega}\cross[0, T]$ , (3.10)

which in turn yields the result of Theorem 3.1.

4 Motion of interface
We consider below Problem $(P^{\in})$ with an $\xi$-depende1lt initial function $u_{0}^{F}$

which converges to $\alpha_{\pm}$ in $\Omega_{0}^{\pm}$ as $\epsilonarrow 0$ . The precise hypotheses on $u_{0}^{\epsilon}$ will
clearly appear in Corollary 4.3.

In this section we sketch the proof of tfie following convergence result.

Theorem 4.1. Let $\Gamma_{0}=\partial\Omega_{0}$ be a $9iven$ smooth interface in $\zeta?$ . Let $\Gamma:=$

$\bigcup_{0<t<T}(\Gamma_{t}\cross\{t\})$ be the smooth solution of the free boundary problem $(P^{0})$ on
( $0,\overline{T}\overline{)}$ . Then there exists a family of continuous functions $\{u_{0}^{\overline{\epsilon}}\}_{0<\epsilon\leq\epsilon_{0}}$ , $w\iota.tf\iota$

$\epsilon_{0}$ small enough, such that the solution $u^{\in}of$ Problem $(P^{c}.)$ with initial data
$u_{0}^{\in}$ satisfies:

$\lim_{\epsilonarrow 0}u^{\in}(x, t)=\{$

$\alpha_{+}$ for all $x\in\Omega_{t}^{+}$

$\alpha_{-}$ for all $x\in\Omega_{t}^{-}$

The idea is to construct sub and super-solutions $u_{\epsilon}^{-}$ and $u_{\epsilon}^{+}$ for Problem
$(P^{\epsilon})$ which are such that

$u_{\epsilon}^{-}\leq u^{\epsilon}\leq u_{\epsilon}^{+}$ on $Q_{T}$ ,

and such that, for all $t\in(0, T)$ ,

$u_{\in}^{-}(t)$ , $u_{\epsilon}^{+}(t)-\{$

$\alpha_{+}$ in $\Omega_{t}^{+}$

$\alpha_{-}$ in $\Omega_{t}^{-}$

as $\epsilonarrow 0$ . As a consequence the same property will hold as well for $u^{\Xi}$ .
To begin with we present mathematical tools which are essential for the

construction of sub and super-solutions
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4.1 A modified signed distance function

Lct $u’-$. be the solution of $(P^{\Xi})$ . We recall that $\Gamma_{t}^{c}.:=\{x\in\Omega, u^{\epsilon}(x, t)=a\}$

is the interface at time $t$ and call $\Gamma^{\in}:=\bigcup_{t\geq 0}(\Gamma_{t}^{\in}\cross\{t\})$ the interface. Let
$\Gamma=\bigcup_{0\leq t\leq T}(\Gamma_{t}\cross\{t\})$ be the unique solution of the limit geometric motion

Problem $(P^{0})$ and let $\overline{d}$ be the signed distance function to $\Gamma$ defined by:

$\overline{d}(x, t)=\{$

dist(x, $\Gamma_{t}$ ) for $x\in\Omega_{t}^{+}$

- dist(x, $\Gamma_{t}$ ) for $x\in\Omega_{t}^{-}$ .
(4.1)

where dist $(x, \Gamma_{t})$ is the distance from $x$ to the hypersurface $\Gamma_{t}$ in $\Omega$ . We
remark that $\overline{d}=0$ on $\Gamma$ and that $|\nabla\overline{d|}=1$ in a neighborhood of $\Gamma$ Rather
than working with the signed distance function, we define a cut-0ff signed
distance function $d$ as follows. Let $t\in[0, T]$ for some $T>0$ . Let $d_{0}$ a positive
number such that $\overline{d}(\cdot, \cdot)$ is smooth in the tubular neighborhood of $\Gamma$

$\{(x, t)\in\overline{Q_{T}}, |\overline{d}(x, t)|<3d_{0}\}$

and that
$dist(\Gamma_{t}, \partial\Omega)>3d_{0}$ for all $t\in[0, T]$ . (4.2)

We define $d$ as a smooth modification of $\overline{d}$ such that $d\overline{d}\geq 0$ and:

$\{$

$d=\overline{d}$ if $|\overline{d|}<d_{0}$

$d_{0}\leq|d|<2d_{0}$ if $d_{0}\leq|\overline{d}<2d_{0}$

$|d|=2d_{0}$ if $|\overline{d|}\geq 2d_{0}$ .

Note that $|\nabla d|=1$ in $\{(x, t)\in\overline{Q_{T}}, |\overline{d}(x, t)|<d_{0}\}$ and that, in view of (4.2),
$\nabla d=0$ in a neighborhood of $\partial\Omega$ . Furthermore, since the moving interface $\Gamma$

satisfies Problem $(P^{0}))$ an alternative equation for $\Gamma$ is given by

$d_{t}=\triangle d-c_{0}(\alpha_{+}-\alpha_{-})g(x, t)$ on $\Gamma_{t}$ . (4.3)

4.2 Construction of sub and super-solutions

First we define $U_{0}(z)$ as the unique solution of the stationary problem

$\{$

$U_{0}’+f(U_{0})=0$

$U_{0}(-\infty)=\alpha_{-}$ , $U_{0}(0)=a$ , $U_{0}(+\infty)=\alpha_{+}$ ,
(4.4)

and $U_{1}(x, t, z)$ as the unique solution of the problem

$\{$

$U_{1zz}+f’(U_{0}(z))U_{1}=g(x, t)-\gamma_{0}(x, t)U_{0}’(z))$

$U_{1}(x, t, 0)=0$ , $U_{1}(x, t, \cdot)\in L^{\infty}(\mathbb{R})$

(4.5)
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where
$\gamma_{0}(x, t)=c_{0}(\alpha_{+}-\alpha_{-})g(x, t)$ . (4.6)

We look for a pair of sub and super-solutions $u_{\epsilon}^{\pm}$ for $(P^{\in})$ of thc form

$u_{\mathcal{E}}^{\pm}(x, t)=U_{0}( \frac{d(x,t)\pm\in p(t)}{\in})+\in U_{1}(x,$ $t$ , $\frac{d(x,t)\pm\epsilon p(t)}{\epsilon})\pm q(t)$ (4.7)

where
$- \beta\frac{t}{2}$

$A(t)=e$ $\in$

$p(t)=-A(t)+e^{Lt}+K$

$q(t)=\sigma A(t)+\epsilon^{2}\overline{\gamma}Le^{Lt}$ .

We prove below the following result.

Lemrna 4.2. There exist positive constants $\beta$ and $\sigma$ such that for any $K>1$ ,
we can find positive constants $\epsilon_{0}$ , $L$ , and $\overline{\gamma}$ such that, if $\xi j$ $\in(0, \epsilon_{0})$ , $(u_{\overline{\mathrm{c}}}^{-}, u_{\epsilon}^{+})$

is a pair of sub and super-solutions for Problem $(P^{\xi})$ .

We postpone the proof of Lemma 4.2 and remark that Theorem 4.1 di-
rectly follows from the above lemma. More precisely, since for $t\in(0, T)$ ,

$\lim_{\epsilonarrow 0}u_{\in}^{\pm}(x, t)=\{$

$\alpha_{+}$ for all $x\in\Omega_{t}^{+}$

(4.8)
$\alpha_{-}$ for all $x\in\Omega_{t}^{-}$ .

we have the following result.

Corollary 4.3. The conclusion of Theorem 4.1 holds for any initial condition
$u_{0}^{\epsilon}$ which satisfies

$U_{0}( \frac{d_{0}(x)}{\epsilon}-K)+\epsilon U_{1}(x, 0, \frac{d_{0}(x)}{\in}-K)-\sigma-\epsilon^{2}\overline{\gamma}L$

$\leq u_{0}^{\in}(x)\leq U_{0}(+K)+\epsilon U_{1}(x.0,+K)+\sigma+\epsilon^{2}\overline{\gamma}L\underline{d_{0}(x)}\underline{d_{0}(x)}\in\in$

where do (x) $=d(x, 0)$ .

Indeed, in this case, since $u_{\epsilon}^{-}(x, 0)\leq u_{0}^{\epsilon}(x)\leq u_{\epsilon}^{+}(x, 0)1$ the comparison
principle asserts that, for all $(x, t)\in Q_{T}$ ,

$u_{\in}^{-}(x, t)\leq \mathrm{d}\mathrm{o}(\mathrm{x})t)\leq u_{\epsilon}^{+}(x, t)$ .

Note that, for $\in$ small enough, such functions $u_{0}^{\in}$ exist because $U_{0}$ is increasing
and $U_{1}$ is bounded
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4.3 Proof of Lemma 4.2
First, using that $\nabla d=0$ in a neighborhood of $\partial\Omega$ arld the fact that the
function $g$ satisfies the homogeneous Neumann boundary condition (1.3),

one can show that $\frac{\partial u_{\in}^{\pm}}{\partial\nu}=0$ on $\partial\Omega\cross[0, T]$ . Furthermore we prove in [1] that

$Lu_{\Xi}^{+}:=(u_{\epsilon}^{+})_{t}- \triangle u_{\epsilon}^{+}-\frac{1}{\mathcal{E}\mathrm{i}^{2}}$ ( $f(u_{\epsilon}^{+})$ -do (x) $t_{\backslash }u_{\epsilon}^{+}$ ) $)\geq 0$ ,

an(l a similar result for $n_{c}^{-}$.

5 Proof of Theorem 2.1
Let $\eta\in(0_{7}\eta_{0})$ be arbitrary. Choose $\beta$ and $\sigma$ such that Lemma 4.2 holds.
MoreoverI, we ca1l assume that

$\sigma\leq\frac{\eta}{3}$ . (5. 1)

By $\mathrm{t}\mathrm{l}\iota \mathrm{e}$ generation of interface Theorem 3.1, there exist positive constants
$\in_{0}$ and $\Lambda l_{0}$ such that (3.2), (3.3) and (3.4) hold with $\frac{\sigma}{2}$ instead of $\eta$ . Since
$\nabla u_{0}$ $n\neq 0$ everywhere on $\Gamma_{0}$ and since $\Gamma_{0}$ is a $\mathrm{c}\mathrm{o}$ mpact hypersurface, we
can find a positive constant $\Lambda f$ such that

if $d_{0}(x)$ $\geq$ $M\in$ then $u_{0}(x)\geq a+M_{0}\in$

(5.2)
if do(x) $\leq-\Lambda f\in$ then $u_{0}(x)\leq a-\cdot M_{0}\epsilon$ .

We then fix $IC$ large enough so that

$U_{0}(-M+K) \geq\alpha_{+}-\frac{\sigma}{3}$ and $U_{0}(\Lambda I-K)\leq\alpha_{-+\frac{\sigma}{3}}$ . (5.3)

For this value of $K$ , we choose 60, $L$ and $\overline{\gamma}$ as in Lemma 4.2. Next, we prove
that

$U_{0}( \frac{d_{0}(x)}{\in}-K)+\epsilon U_{1}(x, 0, \frac{d_{0}(x)}{\epsilon}-K)-\sigma-\in^{2}\overline{\gamma}L\leq u^{\epsilon}(x, t_{\epsilon})$ (5.4)

and that

$u^{\in}(x, t_{\epsilon}) \leq U_{0}(\frac{d_{0}(x)}{\in}+K)+\epsilon U_{1}(x, 0,+K)\underline{d_{0}(x)}\in+\sigma+\epsilon^{2}\overline{\gamma}L$. (5.5)

We only present the proof of the inequality (5.4); the proof of the inequality
(5.5) is similar and omitted. To that purpose, we distinguish two cases
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First, assume that $d_{0}(x)\leq M_{\mathrm{c}}^{r}$ . Since $U_{0}$ is increasing and sirlcc $|U_{1}|$ is
bounded by a constant $\underline{C}$

) we have that

$U_{0}( \frac{d_{0}(x)}{\in}-K)+\in U_{1}(x, 0,-K)\underline{d_{0}(x)}\in-\sigma-\in^{2}\overline{\gamma}L$

$\leq U_{0}(M-K)+\in\underline{C}-\sigma-\epsilon^{2}\mathrm{C}$

$\leq\alpha_{-}+\frac{\sigma}{3}+\in\underline{C}-\sigma-\epsilon^{2}\mathrm{C}$

$\leq\alpha_{-}-\frac{\sigma}{2}$ ,

for $\in$ $\in(0, \epsilon_{0})$ , with $\epsilon_{0}$ small enough. Hence, in this case, (5.4) directly follows
from (3.2).

We now assume that do (x) $\geq\Lambda l\epsilon \mathrm{i}$ . We get

$U_{0}(_{\in}^{\underline{d_{0}(x)}}-K)+\epsilon U_{1}(x, 0.-K)\underline{d_{0}(x)}\in-\sigma-\epsilon^{2}\overline{\gamma}L\leq \mathfrak{a}_{+}+\epsilon\underline{C}-\sigma-\epsilon^{2}\mathrm{C}$

$\leq\alpha_{+}-\frac{\sigma}{2}$ ,

for $\in\in(0, \epsilon_{0})$ , $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\in 0$ small enough. Hence, in this case, (5.4) follows from
(3.3) and (5.2).

We remark that (5.4) and (5.5) can be written as

$u_{\mathrm{r}}^{-}.(x., \mathrm{O})\leq u^{\Xi}(x, t_{\in})\leq u_{\in}^{+}(x, 0)$ ,

where $(u_{\epsilon}^{-}, u_{\epsilon}^{+})$ is the pair of sub and super-solutions of Problem $(P^{\epsilon})$ for tlle
motion of interface defined in (4.7). Applying the comparison principle then
leads to

$u_{\epsilon}^{-}(x, t)\leq u^{\epsilon}(x, t+t_{\epsilon})\leq u_{\Xi}^{+}(x, t)$ for $0\leq t\leq T$ (5.6)

Note that, in view of (4.8), this completes the proof of Corollary 2.2 Let
now $C$ be a positive constant such that

$U_{0}(C-e^{LT}-K) \geq\alpha_{+}-\frac{\eta}{2}$ and $U_{0}(-C+e^{LT}+K) \leq\alpha_{-}+\frac{\eta}{2}$ . (5.7)

One then easily checks, in view of (5.6) and (5.1), that, for $\epsilon_{0}$ small enough,
for $t\geq 0$ , we have

if $d(x, t)\geq$ $C\in$ then $u^{\in}(x, t+t_{\epsilon})\geq\alpha_{+}-\eta$

(58)
if $d(x, t)\leq-C\epsilon$ then $u^{\mathrm{r}}\vee(x, t+b_{c}.)\leq\alpha_{-}+\eta$ ,

and
$u^{\mathrm{r}}(\vee x, t+t_{\epsilon})\in[\alpha_{-}-\eta, \alpha_{+}+\eta]$ ,

which completes the proof of Theorem 2.2.
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