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APPLICATIONS OF EXACTNESS

NATHANIAL P BROWN

ABSTRACT The theory of exact $\mathrm{C}$ ’-algebras rose to prominence following the ground-breaking work of
Eberhard Kirchberg over adecade ago. In this survey we look at afew unexpected applications of this
theory.

1. INTRODUCTION
This article is abrief survey of some recent applications of the theory of exact C’-algebras. Following

Kirchberg’s seminal work in the late 1980’s and early $1990’ \mathrm{s}$ , many operator algebraists became casually
acquainted with the theory. (See [20] for anice treatment of exactness ) Now it seems that familiarity with
afew of the fundamental theorems in the subject is almost aprerequisite for students wishing to study
$\mathrm{C}$ ’-algebras.

Several researchers in the operator space community have made significant contributions to our under-
standing of this rather elusive concept. Moreover, interesting connections with amenable actions and the
Novikov conjecture have also been discovered In this note Iwill not discuss these interactions as the former
has already been thoroughly treated in the wonderful book of Pisier [16] while the latter has not yet produced
any new examples of groups satisfying the Novikov conjecture

Instead, Iwill discuss three non-trivial applications of exactness (which haven’t yet appeared in abook)
The first will be to aproblem in single operator theory, the second falls in the realm of free probability and
the third -revolutionary work of Narutaka Ozawa -is to the structure theory of type $\mathrm{I}\mathrm{I}_{1}$ factors Iwill not
reproduce any proofs, though Iwill refer the reader to the appropriate papers in the literature.

2. OPERATOR THEORY
In the 1970’s Paul Halmos introduced the notion of aquasidiagonal operator on aseparable Hilbert space

(cf [9]).

Definition 2.1. Abounded, linear operator $T\in B(H)$ is called quasidiagonal if there exists an increasing
sequence of finite rank, orthogonal projections $P_{1}\leq P_{2}\leq P_{3}\leq$ such that

(1) $||P_{n}(v)-v||arrow 0$ , as $narrow\infty$ , for all $v\in H$ (i.e. $P_{n}arrow 1_{H}$ in the strong operator topology) and
(2) $||[P_{n}, T]||=||P_{n}T-TP_{n}||arrow 0$ as $narrow\infty$ .

We denote the set of all such operators by $QD(H)$ .

This definition is anatural generalization of the notion of block diagonal operator –i e. (infinite) direct
sums of finite dimensional matrices.

Definition 2.2. $S\in B(H)$ is called block diagonal if there exist finite rank projections $P_{n}\leq P_{n+1}$ which
converge (s.o.t.) to the identity and such that $[T, P_{n}]=0$ for all $n\in \mathrm{N}$ . We denote the set of all such
operators by $BD(H)$ .

Keep in mind the matrix picture of block diagonal operators. If we write
$H=P_{1}H\oplus(P_{2}-P_{1})H\oplus(P_{3}-P_{2})H\oplus\cdot$ .

then the matrix of $S$ w.r.t. this decomposition is really “block diagonal” with each block being finite dimen-
sional. Here is anatural subset of the block diagonal operators.

Definition 2.3. $S\in B(H)$ is called block diagonal with bounded blocks if there exist finite rank projections
$P_{n}\leq P_{n+1}$ which converge (s.o.t.) to the identity, $[T, P_{n}]=0$ for all $n\in \mathrm{N}$ and

$\sup_{n}rank(P_{n}-P_{n-1})<\infty$ .

We denote the set of all such operators by $BD_{bdd}(H)$ .

This survey was written during ayear-long visit to The University of Tokyo. Ithank this institution, and especially Yasuyuki
Kawahigashi and Narutaka Ozawa, for their hospitality
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Again, thinking of block matrices and the decomposition

$H=P_{1}H\oplus(P_{2}-P_{1})H\oplus(P_{3}-P_{2})H\oplus$

this terminology should be clear.
Halmos first observed that every quasidiagonal operator is the norm limit of a sequence of block diagonal

operators –i.e. $QD(H)=\overline{BD(H)}$ Examples suggested that the norm closures of $BD(H)$ and $BD_{bdd}(H)$

may coincide (i.e. for awhile, all the known examples of quasidiagonal operators could be shown to come
from the norm closure of BDbdd{H)). It was Herrero who first formulated the following question:

Is every quasidiagonal operator in the norm closure of $BD_{bdd}(H)$ ?

Szarek first showed the existence of counterexamples to Herrero’s question (cf. [17]) but his argument
was probabalistic and did not provide concrete examples. Voiculescu provided the first explicit examples of
quasidiagonal operators which do not belong to the norm closure of $BD_{bdd}(H)$ (cf. [18]). More importantly,
he recognized what the right operator algebraic obstruction was - exactness! More precisely, Voiculescu
noticed that if $T\in B(H)$ belongs to the norm closure of $BD_{bdd}(H)$ then the $\mathrm{C}^{*}$ -algebra generated by $T$ ,
$C^{*}(T)$ , must be nuclearly embeddable and hence exact. Voiculescu’s counterexample amounts to producing
a quasidiagonal operator which does not generate an exact $\mathrm{C}^{*}$-algebra.

It thus became natural to try and understand precisely what the norm closure of $BD_{bdd}(H)$ is The
answer, at least in operator algebraic terms, was already hinted at in Voiculescu’s work. To give a purely
operator theoretic formulation we need one more well-known concept.

Definition 2.4. $S\in B(H)$ is called banded if there exists an orthonormal basis $\{v_{i}\}$ of $H$ such that the
matrix of $S\mathrm{w}.\mathrm{r}.\mathrm{t}$ . $\{v_{i}\}$ is banded (meaning only a finite number of non-zero diagonals). We let Band(H)
denote the set of banded operators on If

We can now give a precise description of the norm closure of $BD_{bdd}(H)$

Theorem 2.5. $\overline{BD_{bdd}(H)}=QD(H)\cap\overline{Band(H)}$ . In other words, if there exists a banded sequence $S_{n}$ such
that $||T-S_{n}||arrow 0$ and a block diagonal sequence $U_{n}$ such that $||T-U_{n}||arrow 0$ then there must exist a sequence
$X_{n}$ which is simultaneously banded and block diagonal such that $||T-X_{n}||arrow 0$ .

Though this result is formulated only in operator theoretic terms, the proof has virtually nothing to do
with single operator theory –it is all about exact, quasidiagonal $\mathrm{C}^{*}$-algebras. Indeed, the real theorem
behind everything is the following result.

Theorem 2.6. Let $A$ be an exact $\sigma$ algebra and $\pi$ : $Aarrow B(H)$ be a quasidiagonal representation. Then
for each finite set $\mathrm{f}\mathrm{f}$ $\subset A$ and $\epsilon>0$ there exists a finite dimensional $\sigma$ subalgebra $B\subset B(H)$ such that

$\pi(S)\subset^{\epsilon}B$

In the case that $\mathrm{i}\mathrm{r}\{\mathrm{A}$ ) contains no non-zero compact operators this theorem is due to Marius Dadarlat (cf.
[4] $)$ Passage to the general case was achieved in [1] where trickery, together with Kirchberg’s remarkable
theorem that exactness implies local reflexivity (cf. [10]), was employed to reduce to Dadarlat’s result.

I want to emphasize that it is far from obvious how an operator theorist would go about proving Theorem
2.5 As I mentioned, local reflexivity of exact $\mathrm{C}^{*}$-algebras plays a crucial role in the proof This, in turn,
depends on Connes’ uniqueness theorem for the injective $\mathrm{I}\mathrm{I}_{1}$ factor (cf [2]) together with modular theory and
even direct integral theory. In other words, operator theorists would have to find a way around Kirchberg’s
deep work on exact $\mathrm{C}^{*}$-algebras and the remarkable structure theory for von Neu mann algebras developed
in the $1970’ \mathrm{s}$ .

3. FREE PROBABILITY

In this section I will describe a recent application to a natural problem in free probability theory. In
Gaboriau’s striking work on cost of equivalence relations (cf. [5]) he shows that if $A\subset M$ is a Cartan
subalgebra of a von Neumann algebra $M$ and the cost of the corresponding equivalence relation is attained
( $\mathrm{i}\mathrm{e}M$ has a set of generators of ‘minimal support’) then $M$ is isomorphic to a free product of von Neumann
algebras with amalgamation over A. (Many thanks to Yoshimichi Ueda for a wonderful series of lectures, at
The University of Tokyo, on Gaboriau’s work.)

It follows from work of Voiculescu (see [19] for a nice survey) that if the free entropy of an $n$-tuple of self-
adjoint operators in a tracial von Neumann algebra, {Xl, $\ldots$ , $X_{n}$ } $\subset M$ , is finite (i.e. $\chi(X_{1}$ , $\ldots$ , $X_{n})>-\infty$ )
then the free entropy dimension must be as large as possible: $\delta(X_{1}, \ldots, X_{n})=n$ . On the other hand, if it
turns out that $\delta$ is a $\mathrm{W}^{*}$ -invariant and one knows $\delta(X_{1}$ , . . , $X_{n})=n$ then the set $\{X_{1}, . . , X_{n}\}$ must be a
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minimal set of generators (meaning that no set of $n-1$ self-adjoints can generate $M$ ). Hence the following
question of Dima Shlyakhtenko is a natural analogue of Gaboriau’s theorem mentioned carlier

If $\chi(X_{1}, \ldots, X_{n})>-\infty$ is $W^{*}(X_{1}, . . , X_{n})necessar\dot{\iota}ly$ a free group $factor^{\mathit{9}}$

When combined with a sufficient number of other known results, the theory of exactness easily yields
counterexamples to ths question. However, unlike Herrero’s approximation problem, it does not make an
explicit appearance. Rather, the philosophy of extemal approximation (which underlies exactness) is the
necessary tool. Hence this section may be more of a spiritual application of exactness.

More precisely, the following well-known fact is the key observation we will need. (Actually, this fact
was used by Voiculescu in the previous section to show that any operator belonging to the norm closure of
$BD_{bdd}(H)$ must generate an exact $\mathrm{C}^{*}$-algebra.)

Lemma 3.1. If A $\subset B(H)$ and there exist exact $\sigma$ algebras $A_{n}\subset B(H)$ with the property that for each
a $\in A$ there is a sequence $a_{n}\in A_{n}$ such that $||a-a_{n}||arrow 0$ then A must also be exact.

Proof. This is a simple application of Kirchberg’s theorem that exactness implies nuclear embeddability.
Indeed, if a finite set $\mathfrak{F}$ $\subset A$ and $\epsilon>0$ are given then we can choose $n$ large enough that $S$ is $\epsilon$-contained in
$A_{n}$ Since $A_{n}$ is exact we can find $\mathrm{u}.\mathrm{c}.\mathrm{p}$ . maps $\phi$ : $A_{n}arrow M_{k}$ , $\psi$ : $M_{k}arrow B(H)$ which approximate any given
finite subset of An. By Arveson’s Extension Theorem we may assume that $\phi$ is defined on all of $B(H)$ and
hence these maps work for $\mathrm{f}\mathrm{f}$ as well (by norm continuity). $\square$

The point here is that the $A_{n}$ ’s are approximating $A$ from the ‘outside’. They are not subalgebras
of $A$ ; they need not even intersect $A$ non-trivially. But still exactness is preserved under this ‘external
approximation ’.

In the context of von Neumann algebras this external norm approximation should be replaced with $\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}$

sort of external approximation in a weaker topology. Moreover, we need to be a little more careful about
the ‘universe’ in which this aU takes place It turns that if we replace $B(H)$ by a $\mathrm{I}\mathrm{I}_{1}$ factor (i.e. move to a
finite universe) and require that $a_{n}arrow a$ in the 2-norm coming from the unique $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ then everything will
work smoothly.

Of course, we also need a replacement for tlle $\mathrm{C}^{*}$-notion of exactness. There are a number of options but
perhaps the easiest to apply is the Haagerup approximation property.

Definition 3.2. A finite von Neumann algebra $(M, \tau)$ is said to have the Haagemp approximate on property
if there exists a sequence of u.c.p. $\tau$-preserving maps $\phi_{n}$ $Marrow M$ such that (a) $||\phi_{n}(x)-x||_{2}arrow 0$ for all
$x\in M$ and (b) the map induced by $\phi_{n}$ on $L^{2}(M, \tau)$ is a compact operator

The seminal paper [8] is where Haagerup proved that free group factors have this property.
More precisely, the following lemma is a fairly simple exercise.

Lemma 3.3. Let $M$ be a $II_{1}$ factor wzth subfactors $N$, $M_{k}\subset M$ . Assume that for every $n\in N$ we have
$E_{M_{k}}^{M}(n)arrow n$ in 2-n0m ($i.e$ . strong operator topology) and that each $M_{k}$ has the Haagemp approximation
property. Then $N$ also has the Haagerup approximation property.

With this observation in hand we can easily describe the counterexamples mentioned earlier One begins
with any self-adjoint generating set of the group von Neumann algebra of a residually finite property $\mathrm{T}$

group; $\mathrm{e}\mathrm{g}$ . $\{X_{1}, . . ) X_{n}\}\subset L(SL(3, \mathbb{Z}))$. Now let $\{S_{1}, \ldots, S_{n}\}$ be a family of free semicircular elements
which are also free from $\{X_{1}, . . , X_{n}\}$ . One then defines

$X_{i}^{(\epsilon)}=X_{i}+\epsilon S_{i}$ and $M^{(\epsilon)}=W^{*}(X_{1}^{(\epsilon)}$, . ,$X_{n}^{(\epsilon)})$

A result of Voiculescu implies that the free entropy of the $n$-tuple $\{X_{1}^{(\epsilon)}, \ldots, X_{n}^{(\epsilon)}\}$ is finite (cf. [19]) and so
if we assume that Shlyakhtenko’s question has an affirmative answer then it would follow that each $M^{(\epsilon)}$ is
a free group factor. Hence, for each $\epsilon$ , $M^{(\epsilon)}$ would enjoy the Haagerup approximation property $\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}_{7}$ by
our external approximation lemma, the von Neumann algebra $W^{*}$ $(X_{1}\backslash \cdot$ . . ’

$X_{n})=\mathrm{L}(\mathrm{T})$ would also have the
Haagerup approximation property. But, since we started with a property $\mathrm{T}$ group $\Gamma$ , this is llot possible by
a result of Connes and Jones (cf. [3]) –the desired contradiction.

4. $\mathrm{s}_{\mathrm{T}\mathrm{R}\mathrm{U}\mathrm{C}\mathrm{T}\mathrm{U}\mathrm{R}\mathrm{E}}$ OF $\mathrm{I}\mathrm{I}_{1}$ FACTORS

In the final section $0\dot{\mathrm{f}}$ this note I will briefly discuss the single most surprising, not to mention important,
application of exactness to date. This is work of Narutaka Ozawa and its influence has been tremendous To
keep things simple I will not discuss all of Ozawa’s work or even give a proper historical account. However, I
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hope the point will be conveyed; Ozawa’s application of exactness was a vast generalization of some important
previous work... and the proof was a lot simpler.

We begin with a definition.

Definition 4.1. A $\mathrm{I}\mathrm{I}_{1}$ factor is called pnme if it can’t be decomposed as a tensor product of $\mathrm{I}\mathrm{I}_{1}$ factors.

Every $\mathrm{I}\mathrm{I}_{1}$ factor can be decomposed as the tensor product of a finite dimensional matrix algebra and
another $\mathrm{I}\mathrm{I}_{1}$ factor However, for many years it was not known whether or not a prime $\mathrm{I}\mathrm{I}_{1}$ factor existed. This
problem was eventually solved by Liming Ge who used some highly non-trivial free probability techniques
to show that the free group factors are prime. (See [6] for a survey.) This was later generalized by Marius
Stefan to finite index subfactors of free group factors.

While these were certainly exciting results it turns out that exactness, together with some geometric group
theory, provides much, much better theorems. Indeed, in [13] Ozawa proved the following.

Theorem 4.2. Let $\Gamma$ be a hyperbolic group (cf. [7]) and $N\subset L(\Gamma)$ be a subfactor of the group von Neumann
algebra of $1^{\urcorner}$ . Then either (a) $N$ is a matrix algebra, (b) $N$ is the (non-prime) hyperfinite $II_{1}$ factor or (c)
$N$ is prime.

Ozawa’s proof is not trivial, but it is quite short, extremely clever and significantly simpler than the
free entropy approach (which only works on free group factors). Also, it seems likely that the free entropy
approach would never have been able to handle the case of infinite index subfactors, while Ozawa’s approach
treats all subfactors on equal footing. Moreover, Ozawa’s result holds for many other examples of groups
(not just hyperbolic) and has led to some exciting (non)isomorphism theorems (cf. [14], [15]). In short, it is
a spectacular piece of work: a deep, important and completely unexpected application of exactness.
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