CHARACTERIZATIONS OF NORMAL COVERS ON RECTANGULAR PRODUCTS AND INFINITE PRODUCTS

神奈川大学・工学部 矢島 幸信 (YUKINOBU YAJIMA)

1. INTRODUCTION

An open cover \mathcal{O} of a topological space X is *normal* if there is a sequence $\{\mathcal{U}_n\}$ of open covers of X such that each \mathcal{U}_n is a star-refinement of \mathcal{U}_n for each $n \in \omega$, where $\mathcal{U}_0 = \mathcal{O}$.

We may well know the following characterization of normal covers of topological spaces. For example, it is seen in [AS, p.122], [Ho, Theorems 1.2 and 1.4] and [Mo, Theorem 1.2] etc.

Theorem 1.1 [Stone-Michael-Morita]. Let X be a topological space and \mathcal{O} an open cover of X. Then the following are equivalent.

- (a) \mathcal{O} is normal.
- (b) \mathcal{O} has a σ -locally finite cozero refinement.
- (c) \mathcal{O} has a σ -discrete cozero refinement.
- (d) \mathcal{O} has a locally finite cozero refinement.
- (e) \mathcal{O} has a locally finite, σ -discrete, cozero refinement which has a shrinking consisting of zero-sets.

Now, we recall that a product space $X \times Y$ is said to be *rectangular* if every finite cozero cover of $X \times Y$ has a σ -locally finite refinement consisting of cozero rectangles. This concept was introduced by Pasynkov [Pa] in dimension theory.

The following is easily seen by the definition (see [HM, Lemma 1]).

Fact 1.2. A product space $X \times Y$ is rectangular if and only if every normal cover of $X \times Y$ has a σ -locally finite refinement consisting of cozero rectangles.

In this report, for normal covers of rectangular products, we give some characterizations analogous to Stone-Michael-Morita's Theorem above in terms of refinements consisting of cozero rectangles. Next, we can apply these characterizations to the strong rectangularity and the base-paracompactness of rectangular products as well as in [Y2]. Finally, we also give the same kind of characterization of normal covers on infinite products of metrizable spaces.

These results for normal covers of rectangular products are included in the paper [Y3] with their complete proofs. But the paper does not refer to normal covers of infinite products stated in the last section.

Throughout this paper, all spaces are *topological spaces* without any separation axiom. However, paracompact spaces are assumed to be *Hausdorff*.

Typeset by $\mathcal{AMS}\text{-}T_{\mathrm{E}}X$

Let X be a space and \mathcal{U} a cover of X. A cover \mathcal{V} of X is called a *refinement* of \mathcal{U} if each member of \mathcal{V} is contained in some member of \mathcal{U} . A cover $\{W_U : U \in \mathcal{U}\}$ of X is called a *shrinking* of \mathcal{U} if $\overline{W_U} \subset U$ for each $U \in \mathcal{U}$.

Let $X \times Y$ be a product space. A subset of the form $A \times B$ in $X \times Y$ is called a *rectangle*. For a subset R in $X \times Y$, R' and R'' denote the projections of R into X and Y, respectively. A rectangle $R = R' \times R''$ is called a *cozero rectangle (zero rectangle)* if R' and R'' are cozero-sets (zero-sets) in X and Y, respectively.

For the sake of convenience, a cover \mathcal{G} of a product space $X \times Y$ is said to be *cozero rectangular (resp., zero rectangular, rectangular)* if each member of \mathcal{G} is a cozero rectangle (resp., zero rectangle, rectangle) in $X \times Y$.

2. X-RECTANGULAR PRODUCTS

A product space $X \times Y$ is said to be X-rectangular [Oh] if every finite cozero cover \mathcal{O} of $X \times Y$ has a cozero rectangular refinement \mathcal{G} such that $\pi_X(\mathcal{G}) = \{G' : G \in \mathcal{G}\}$ is σ -locally finite in X.

Lemma 2.1. A product space $X \times Y$ is X-rectangular if and only if every finite cozero cover \mathcal{O} of $X \times Y$ has a cozero rectangular refinement \mathcal{G} such that $\pi_X(\mathcal{G}) = \{G': G \in \mathcal{G}\}$ is σ -discrete in X.

Remark. X-rectangular products were originally defined for Tychonoff products in [Oh]. In the case of a Tychonoff product $X \times Y$, the proof of Lemma 3.1 can be obtained by a modification of that of [Oh, Theorem 2.2]. However, the assumption that Y is Tychonoff is necessary in his proof, because the Stone-Čech compactification βY of Y has to be used there.

Theorem 2.2. Let $X \times Y$ be an X-rectangular product and \mathcal{O} an open cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} is normal.
- (b) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (c) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite cozero rectangular refinement.
- (e) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

It is pointed out in the proof of [Ta, Theorem 1] that if X is a metric space, then the rectangularity of $X \times Y$ implies the X-rectangularity. So we have

Corollary 2.3. Let X be a metric space. Let $X \times Y$ be a rectangular product and \mathcal{O} an open cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} is normal.
- (b) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (c) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite cozero rectangular refinement.
- (e) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

Remark. If a product space $X \times Y$ is not rectangular, there is a normal cover of $X \times Y$ which has no σ -locally finite cozero rectangular refinement (see Fact 1.2). In fact, there is a non-rectangular product with a metric factor (see [Pr], [Ta]). So we cannot exclude the assumption of rectangularity of $X \times Y$ in Corollary 2.3.

3. Products with a σ -space factor.

Recall that a regular T_1 -space X is a σ -space if there is a σ -discrete (closed) net of X.

Theorem 3.1. Let X be a paracompact σ -space and Y a space. Let \mathcal{O} be a normal cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (b) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (c) \mathcal{O} has a locally finite cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

Theorem 3.1 immediately yields the following extension of Corollary 2.3.

Corollary 3.2. Let X be a paracompact σ -space. Let $X \times Y$ be a rectangular product and \mathcal{O} an open cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} is normal.
- (b) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (c) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite cozero rectangular refinement.
- (e) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

Theorem 3.3. If X is a paracompact Σ -space and Y is a paracompact P-space, then every open cover of $X \times Y$ has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

Comparing Theorems 3.1 and 3.3, it is natural to raise the following question.

Question. Can " σ -space" be replaced by " Σ -space" in Theorem 3.1?

4. PRODUCTS WITH A FACTOR DEFINED BY TOPOLOGICAL GAMES

Telgársky [Te] introduced the topological game $G(\mathbf{DC}, X)$, where \mathbf{DC} denotes the class of all spaces which have a discrete cover consisting of compact sets.

According to [GT], a function s from the family of all closed sets in X to itself is called a winning strategy for Player I in $G(\mathbf{DC}, X)$ if it satisfies

- (a) $s(F) \in \mathbf{DC}$ and $s(F) \subset F$ for each closed set F in X,
- (b) if $\{F_n\}$ is a decreasing sequence of closed sets in X such that $s(F_n) \cap F_{n+1} = \emptyset$ for each $n \in \omega$, then $\bigcap_{n \in \omega} F_n = \emptyset$.

A space X is said to be **DC**-like if there is a winning strategy for Player I in $G(\mathbf{DC}, X)$.

Theorem 4.1. Let X be a paracompact DC-like space and Y a space. Let \mathcal{O} be a normal cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (b) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (c) \mathcal{O} has a locally finite cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

If a Hausdorff space X is subparacompact and C-scattered or it has a σ -closurepreserving cover consisting of compact sets, then Player I has a winning strategy for $G(\mathbf{DC}, X)$, that is, X is **DC**-like (see [Te, Theorems 9.7 and 14.7]). So the following is an immediate consequences of Theorem 4.2.

Corollary 4.2. Suppose that a paracompact space X is C-scattered or has a σ -closure-preserving cover consisting of compact sets and Y is a space. Let $X \times Y$ be a rectangular product and \mathcal{O} an open cover of $X \times Y$. Then the following are equivalent.

- (a) \mathcal{O} is normal.
- (b) \mathcal{O} has a σ -locally finite cozero rectangular refinement.
- (c) \mathcal{O} has a σ -discrete cozero rectangular refinement.
- (d) \mathcal{O} has a locally finite cozero rectangular refinement.
- (e) \mathcal{O} has a locally finite, σ -discrete, cozero rectangular refinement which has a zero rectangular shrinking.

5. Applications to rectangular products

A product space $X \times Y$ is called a *strongly rectangular* [Y1] if every finite cozero (or normal) cover of $X \times Y$ has a locally finite cozero rectangular refinement.

Theorem 2.2 immediately yields

Corollary 5.1. If a product space $X \times Y$ is X-rectangular, then it is strongly rectangular.

Theorem 4.1 immediately yields

Corollary 5.2. Let X be a paracompact σ -space. Then $X \times Y$ is rectangular if and only if it is strongly rectangular for any space Y.

Moreover, Corollary 4.2 immediately yields

Corollary 5.3. Let X be a paracompact space which is C-scattered or has a σ -closure-preserving cover consisting of compact sets. Then $X \times Y$ is rectangular if and only if it is strongly rectangular for any space Y.

A Hausdorff space X is said to be *base-paracompact* [Po] if there is a base \mathcal{B} of X such that $|\mathcal{B}| = w(X)$ and every open cover of X has a locally finite refinement consisting of members of \mathcal{B} .

Proposition 5.4. Let X and Y be base-paracompact spaces. Assume that every normal cover of $X \times Y$ has a locally finite cozero rectangular refinement which has a zero rectangular shrinking. If $X \times Y$ is paracompact, then it is base-paracompact.

Theorem 3.1 and Proposition 5.4 immediately yield

Corollary 5.5. Let X be a base-paracompact σ -space and Y a base-paracompact space. If $X \times Y$ is paracompact and rectangular, then it is base-paracompact.

Zhong [Zh] actually proved that the product $X \times Y$ of a stratifiable space X and a paracompact space Y is rectangular if it is (countably) paracompact. So our Corollaries 5.2 and 5.5 are extensions of [Y2, Corollaries 4.2 and 4.4], respectively.

6. INFINITE PRODUCTS OF METRIZABLE SPACES

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product space. A subset of the form $\prod_{\lambda \in \Lambda} Y_{\lambda}$ in X is called a *rectangle* if there is a finite subset θ of Λ such that $Y_{\lambda} = X_{\lambda}$ for each $\lambda \in \Lambda \setminus \theta$. Recall that a subset U of X is *R*-distinguished if $\pi_R^{-1}\pi_R(U) = U$ holds, where $R \subset \Lambda$ and π_R denotes the projection from X onto $\prod_{\lambda \in R} X_{\lambda}$. A subset V of X is called a *cylinder* (resp., ω -cylinder) if V is *R*-distinguished for some finite (resp., countable) $R \subset \Lambda$.

$$rectangle \implies cylinder \implies \omega$$
-cylinder

A cover \mathcal{G} of X is said to be *rectangular* (resp., *cylindrical*, ω -*cylindrical*) if each member of \mathcal{G} is a rectangle (resp., cylinder, ω -cylinder) in X.

By Theorem 4.3, the following is easily seen by induction.

Lemma 6.1. Let $X = \prod_{i \leq n} X_i$ be a finite product of paracompact Σ -spaces. Then every open cover of X has a locally finite, σ -discrete, cozero rectangular refinement which has a rectangular shrinking.

For the countable product case, we have

Lemma 6.2. Let $X = \prod_{n \in \omega} X_n$ be a countable product of metrizable spaces. Then every binary open cover of X has a locally finite, σ -discrete, open cylindrical refinement which has a cylindrical shrinking.

For the uncountable product case, we can prove

Lemma 6.3. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product of metrizable spaces. Then every binary cover of X by open F_{σ} -sets has a locally finite, σ -discrete, open ω -cylindrical refinement which has a ω -cylindrical shrinking.

A basic idea of the proof of Lemma 6.3 is due to Yamazaki's which is found in that of [Ya, Theorem 1.3].

Remark. Lemma 6.3 is an extension of [Kl, Theorem 1].

Finally, by Lemmas 6.1, 6.2 and 6.3, we can obtain the following result.

Theorem 6.4. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product of metrizable spaces and \mathcal{G} an open cover of X. Then the following are equivalent.

- (a) \mathcal{G} is normal.
- (b) \mathcal{G} has a σ -locally finite open rectangular refinement.
- (c) \mathcal{G} has a σ -discrete open rectangular refinement.
- (d) \mathcal{G} has a locally finite open rectangular refinement.
- (e) \mathcal{G} has a locally finite, σ -discrete, open rectangular refinement which has a rectangular shrinking.

REFERENCES

- [AS] R. A. Alo and H. L. Shapiro, Normal topological spaces, (Cambridge University Press, London, 1974).
- [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, NJ, 1960.
- [GT] F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology and Appl. 22 (1986), 51-69.
- [Ho] T. Hoshina, Extensions of mappings II, in: K. Morita and J. Nagata, Eds., Topics in General Topology, (North-Holland, 1989), pp. 41–80.
- [HM] T. Hoshina and K. Morita, On rectangular products of topological spaces, Topology Appl. 11 (1980), 47–57.
- [Kl] B. S. Klebanov, On subspaces of products of metric spaces, Soviet Math. Dokl. 21 (1980), 303-306.
- [Mo] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1962), 223-236.
- [Na] K. Nagami, Σ -spaces, Fund. Math. 65 (1969), 169–192.
- [Oh] H. Ohta, Extensions of zero-sets in the product of topological spaces, Topology and Appl. 35 (1990), 21-39.
- [Pa] B. A. Pasynkov, On the dimension of rectangular products, Soviet Math. Dokl. 16 (1975), 344-347.
- Po] J. E. Porter, Base-paracompact spaces, Topology and Appl. 128 (2003), 145–156.
- [Pr] J. C. Przymusiński, A solution to a problem of E. Michael, Pacific J. Math. 114 (1984), 235-242.
- [Ta] K. Tamano, A note on E. Michael's example and rectangular products, J. Math. Soc. Japan 34 (1982), 187-190.
- [Te] R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193-223.
- [Y1] Y. Yajima, Topological games and products I, Fund. Math. 113 (1981), 141-153.
- [Y2] Y. Yajima, A base property in paracompact products and its applications, Topology and Appl. 142 (2004), 19-30.
- [Y3] Y. Yajima, Characterizations of normal covers of rectangular products, Topology and Appl. (to appear).
- [Ya] K. Yamazaki, A base-normality and product spaces, Topology and Appl. (to appear).
- [Zh] N. Zhong, Products with an M_3 -factor, Topology and Appl. 45 (1992), 131–144.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221-8686, JAPAN *E-mail address*: yajimy01@kanagawa-u.ac.jp