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Absolute embeddings in Hausdorff spaces
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Arhangel’skii and Tartir [3] characterized compactness by some relative
separation property and posed the following problem; characterize Tychonoff
spaces $X_{J}$ for which there is a Tychonoff space $Y$ containing disjoint closed
copies $X_{1}$ and $X_{2}$ of $X$ such that these copies cannot be separated in $Y$ by open
subsets. Answering this question, Bella and Yaschenko [4] proved the following

theorem. We note that this theorem also follows from Matveev, Pavlov and
Tartir [6, Theorem 2.3].

Theorem 1(Bella-Yaschenko [4]; see also [6]). For a Tychonoffspace $X_{r}$

the following conditions are equivalent.
(a) $X$ is $Lindel\dot{o}f$.
(b) If a Tychonoff space $Y$ contains two disjoint closed copies $X_{1}$ and $X_{2}$ of

$X$ , then these copies can be separated in $Y$ by open subsets.

As another type of absolute embeddings, Bella and Yaschenko [4] also
obtained the following characterization of absolute weak $C$-embeddings; recall
that asubspace $Y$ of aspace $X$ is weak$lyC$-ernbedded in $X$ if every continuous
real-valued function $f$ on $Y$ has an extension over $X$ which is continuous at
every point of $Y([1])$ . A Tychonoff space $X$ is almost compact $\mathrm{i}\mathrm{f}|\beta X\backslash X|\leq 1$ ,

where $\beta X$ denotes the $\mathrm{S}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}-\check{\mathrm{C}}$ ech compactification of $X$ .

Theorem 2(Bella-Yaschenko [4]). A Tychonoff space $X$ is weakly $C$ -em-
bedded in every larger Tychonoff space if and only if $X$ is almost compact or
$Lindel\dot{\mathit{0}}f$.

Concerning Theorem 2, Arhangel’ $\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}[2]$ posed the following problem;
when is a Hausdorff (Tychonoff) space $Y$ weakly $C$ -embedded en every larger

Hausdorff space $X$ ? Yamazaki [9] answered this problem as follows.

Theorem 3(Yamazaki [9]). A Hausdorff space $X$ is weakly C-embedded
in every larger Hausdorff space if and only if either $X$ is $co$ ompact or every
continuous real-valued function on $X$ is constant.

In view of these results, it is natural to consider acharacterization of spaces
$X$ satisfying the condition (6) of Theorem 1in the realm of Hausdorff spaces.
We give acharacterization of such spaces as follows.
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Theorem 4. For a Hausdorff space $X$ , the following conditions are equiva-
Gen.

(a) $X$ is compact.
(b) If a Hausdorff space $Y$ contains two disjoint closed copies $X_{1}$ and $X_{2}$ of

$X_{\rangle}$ then these copies can be separated in $Y$ by open subsets.

For the detail of the proof, see [5].

Remark 5. Using [6, Theroem 2.3], we obtain the regular case of Theorem 1
as follows; for a regular space $X$ , the following conditions are equivalent.

(a) $X$ is $Lindel\dot{\mathit{0}}f$.
(b) If a regular space $Y$ contains two disjoint closed copies $X_{1}$ and $X_{2}$ of

$X$ , then these copies can be separated in $Y$ by open subsets.

Remark 6. Yajima [7] proved that the following condition $(’c)$ is equivalent
to the conditions (a) and (6) in Theorem 1; (c) For every compactification
$\alpha X$ of $X_{2}$ any two disjoint closed copies of $X$ in $(X\mathrm{x} \alpha X)\cup(\alpha X\cross X)$ are
completely separated in it

Remark 7. It was proved in [8]; for a Tychonoff space $X_{f}$ the following con-
ditions are equivalent.

(a) $X$ is compact.
(b) If a Tychonoff space $Y$ contains two disjoint closed copies $X_{1}$ and $X_{2}$ of

$X_{r}$ then these copies can be completely separated in $Y$

How about the corresponding case of regular (HausdorfF) spaces? Indeed,
for a non-empty regular (respectively, Hausdorff) space $X$ , we can construct
a regular (respectively, Hausdorff) space $Y$ contains two disjoint closed copies
$X_{1}$ and $X_{2}$ of $X$ such that these copies cannot be completely separated in $Y$

$([5])$ .
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