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Dieudonné Completeness and Continuous Selections
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The purpose of this note is to introduce some results in [6] and to show some
additional ones. Let X be a topological space and Y a topological vector space.
Symbols 2¥, K(Y), and F.(Y) stand for the set of all non-empty subsets of
Y, the set of all non-empty convex subsets of Y, and the set of all non-empty
closed convex subsets of Y, respectively. A mapping f : X — Y is called a
selection of a mapping ¢ : X — 2¥ if f(z) € p(z) for every z € X. A mapping
¢ X — 2¥ is lower semicontinuous (Ls.c. for short) if the set ¢~ }(V) = {z €
X | @(z)NV # 0} is open in X for every open subset V of Y. A subset S of X
is a zero-set (respectively a cozero-set) if S = {z € X | f(z) = 0} (respectively
S ={z € X | f(z) # 0}) for some real-valued continuous function f on X. A
Hausdorff space X is paracompact if every open cover has a locally finite open
refinement. A Tychonoff space X is called realcompact if every z-ultrafilter (that
is, a maximal filter consisting of zero-sets) on X with the countable intersection
property has non-empty intersection. For undefined notations and terminology
we refer to [1] or [3].
The following is a well-known selection theorem due to Michael.

Theorem 1 (Michael [4]). A Ti-space X is paracompact if and only if, for
every Banach space Y, every l.s.c. mapping ¢ : X — F.(Y) admits a continuous
selection.

This result not only guarantees the existence of a selection but describes para-
compactness in terms of continuous selections. In addition to this theorem, some
topological properties have been characterized by means of continuous selections.
Among these results, Blum and Swaminathan [2] characterized realcompactness
for Tychonoff spaces of non-measurable cardinal as in Theorem 2.

Before stating Theorem 2, let us recall some terminology introduced by Blum
and Swaminathan [2]. An ls.c. mapping ¢ : X — 2V is said to be of infinite
character if there exists a neighborhood V of the origin of Y such that the open
cover {o~}(y+V) |y € Y} of X has no finite subcover; and otherwise ¢ is called
of finite character. For a family S of subsets of a space X, a mapping ¢ : X — 2Y
is S-fized if {p(z) | z € S} # 0 for every S € S. For a given Tychonoft space
X, let B be a family of subsets of X defined as follows:
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B = {B C X | B is a realcompact cozero-set in X and X ~\ B is not compact}.

A cardinality 7 is called measurable if the discrete space of cardinal 7 admits
a non-trivial {0, 1}-valued countably additive measure.

Theorem 2 (Blum-Swaminathan [2]). For a Tychonoff space X of non-
measurable cardinal, the following are equivalent:

(a) X 1is realcompact,

(b) for every locally convex topological vector space Y, every B-fized l.s.c. map-
ping ¢ : X — K(Y') is of finite character;

(c) for every locally convex topological vector space Y, every B-fized l.s.c. map-
ping p : X — K(Y) of infinite character admits a continuous selection.

Let us recall that a Tychonoff space X is Dieudonné complete if there exists
a complete uniformity on the space X. For a Tychonoff space X, Blum and
Swaminathan defined the collection C of subsets of X as follows:

C={CcX

C is a Dieudonné complete cozero-set in X
and X \ C is not compact}.

In [6] the following characterizations of realcompactness and of Dieudonné com-
pleteness analogous to Theorem 1 are obtained.

Theorem 3 ([6]). A Tychonoff space X is realcompact if and only if, for every
Banach space Y, every B-fized l.s.c. mapping ¢ : X — F.(Y') admits a continuous
selection f such that f(X) is separable.

Theorem 4 ([6]). A Tychonoff space X is Dieudonné complete if and only if,
for every Banach space Y, every C-fized l.s.c. mapping ¢ : X — F(Y) admits a
continuous selection.

In this note, we give characterizations (Theorems 5 and 9) analogous to The-
orem 2.

In the implication (c) = (a) of Theorem 2, the assumption that X is of non-
measurable cardinal cannot be dropped. Indeed, a discrete space D of measurable
cardinal satisfies the condition (c) of Theorem 2 since every set-valued mapping
on D has a continuous selection. But D is not realcompact (see (3, 3.11.D}). It is
known that every realcompact space is Dieudonné complete and that Dieudonné
complete space of non-measurable cardinal is realcompact (see (3, 8.5.13 (h)]).
Thus Theorem 2 is valid with substitution of the phrases “Dieudonné complete”
for “realcompact”, and “C-fixed” for “B-fixed”. In fact, Theorem 2 with this

substitution is true for Tychonoff spaces of any cardinal, that is, the following
holds.



Theorem 5. For a Tychonoff space X the following are equivalent:
(a) X 1is Dieudonné complete;

(b) for every locally convez topological vector space Y, every C-fized l.s.c. map-
ping ¢ : X — K(Y') is of finite character;

(c) for every locally convex topological vector space Y, every C-fized l.s.c. map-
ping p : X — K(Y) of infinite character admits a continuous selection;

(d) for every Banach space Y, every C-fized l.s.c. mapping ¢ : X — Fc(Y) of
infinite character admits a continuous selection.

To prove Theorem 5 we need some preparation. Let X be a topological space.
For a subset S of X, clx(S) stands for the closure of S in X. Let us denote
C(X) the set of all real-valued continuous functions on X. For f € C(X), set
Z(f) = {x € X | f(z) = 0} and Coz(f) = {x € X | f(z) # 0}. A family
{pr | X € A} of continuous functions py : X — [0, 1] is called a partition of unity
on X if 3,capa(z) = 1 for each z € X. A partition of unity {p) | A € A} on
X is said to be locally finite if the cover {Coz(p,) | A € A} of X is locally finite.
For an open cover U of X, a partition of unity {p) | A € A} on X is subordinated
to U if the cover {Coz(py) | A € A} refines 4. Let R and N be the set of all
real numbers and the set of all natural numbers, respectively. For a set A, [;(A)
means the Banach space of all functions y : A — R such that ) ., |y(a)| < 00
with the norm |y|| = 3,4 ly(a)|. For a € A, let m, : ;(A) — R be the a-th
projection.

Lemma 6 (Michael [4]). Let U be an open cover of a topological space X . Let
w: X — 24 be g mapping defined by

ple)={ye )| llyl =1, y(U) 20 for every U € U,
and y(U) =0 for allU € U with z ¢ U},

for z € X. Then o is l.s.c. and closed-and-convez-valued. Furthermore, if ¢ has
a continuous selection, then there exists a locally finite partition of unity on X
subordinated to U.

For a Tychonoff space X, 3X and uX stand for the Stone-Cech compactifi-
cation of X and the Dieudonné completion of X, respectively.

Theorem 7 (Tamano [5]). For a Tychonoff space X and a point a € 8X, a €
BX \ uX if and only if there exists a (locally finite) partition of unity {px | A € A}
on X such that a € clgx(Z(py)) for each A € A.

Proposition 8 ([6]). Let X be a Tychonoff space. If X is the union of a compact
subspace and a Dieudonné complete subspace, then X is Dieudonné complete.
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Proof of Theorem 5. Proof of the implication (a) = (b) is the same as [2, Theo-
rem 2]. Implications (b) = (c) and (c) = (d) are obvious. To see (d) = (), let
X be a Tychonoff space satisfying that, for every Banach space Y, every C-fixed
l.s.c. mapping ¢ : X — F.(Y) of infinite character admits a continuous selection.
Assume that X is not Dieudonné complete and take ay € pX ~ X. We will
deduce a contradiction. Put U = {Coz(p) | p € C(X), ao € clgx(Z(p))}. Then
U is an open cover of X. Let Y = [; () and define a mapping ¢ : X — 2Y as in
Lemma 6. Then ¢ is Ls.c. and ¢(z) € F,(Y') for each z € X.

The mapping ¢ is C-fixed. To prove this, let C € C. Then C = Coz(h)
for some h € C(X) as C is a cozero-set. Since Coz(h) is Dieudonné complete
and clgx (Z(h)) is compact, by Proposition 8, Coz(h) U clgx (Z(h)) is Dieudonné
complete and contains X. Thus we have uX C Coz(h) U clgx(Z(h)), and hence
ap € pX N X C clgx(Z(h)). Thus C = Coz(h) € U. Let y € I;(U) be the element

defined by
1, ifU=C,
y(U) = .
0, ifU # C,

for each U € U. Then y € ({p(z) | z € C}, so that ¢ is C-fixed.

The mapping ¢ is of infinite character. For, let V = {y € li(Uf) | ||y|| < 1} and
take y1, 2, . ., yx € Y arbitrarily. It suffices to show the collection {¢ (3 +V) |
i =1,2,...,k} does not cover X. Put U’ = {U € U | y(U) # O for some 1 €
{1,2,...,k}}. Then Card U’ is countable, so that we may denote U’ = {U; |
i € N}. We show that &’ does not cover X. Suppose that (JU' = X. By the
definition of U, for i € N there exists a continuous mapping f; : X — [0, 1] such
that W; = Coz(f;) and ag € clgxZ(f;). Then the mapping f : X — R defined
by f(z) = 2, fi(x)/2" for z € X is continuous and f(z) > 0 for every z € X.
Define p; : X — R by pi(z) = fi(z)/(2!f(z)) for z € X. Then {p; | i € N}
is a partition of unity on X such that aq € clgx(Z(p;)) for each i € N. By
virtue of Theorem 7, aqg € SX ~ pX. That contradicts the choice of ag. Thus U’
does not cover X. Choose z € X \ | JU' and y € ¢(z). Then y(U) = 0 for each
U € U, s0 that ||y~ uill = Svauly(U) — (V)] = Sveunse 40|+ Svewls:(U)] 2
Sveuwwly(U)] = |ly|l = 1, and hence y ¢ y; + V for each ¢ € {1,2,...,k}. Thus
@(z) N (y; + V) =0 for each i € {1,2,...,k}, which implies z ¢ U{¢ (i + V) |
i1=1,2,...,k}. Therefore ¢ is of infinite character.

By hypothesis, ¢ admits a continuous selection f : X — Y. Put py =ny o f
for U € U. Then {py | U € U} is a partition of unity on X such that Coz(py) C
U, and hence ag € clgx(Z(py)) for each U € U. Thus ag € X \ puX due to
Theorem 7, that contradicts the choice of ap. Hence X is Dieudonné complete. [

A topological space satisfies the discrete countable chain condition (DCCC
for short) if every discrete collection of non-empty open sets is countable. Every
Lindelof T;-space and every separable space satisfy the DCCC. We also note that
every metrizable space satisfying the DCCC is second countable.
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Theorem 9. For a Tychonoff space X the following are equivalent:
(a) X is realcompact;

(b) for every locally convez topological vector space Y, every B-fized l.s.c. map-
ping ¢ : X — K(Y) of infinite character admits a continuous selection
fsuch that f(X) is DCCC;

(¢) for every Banach space Y, every B-fized l.s.c. mapping ¢ - X — F,(Y) of
infinite character admits a continuous selection f such that f(X) is sepa-
rable.

Proof. Due to [2, Theorem 2], the implication (a) = (b) of Theorem 2 is valid
without assuming that X is of non-measurable cardinal. Thus (a) = (b) holds.
The implication (b) = (c) is clear. For the proof of (c) = (a), see the proof of
the “if” part of [6, Theorem 1.3]. 0O

Remark 10. Note that Theorem 9 holds for Tychonoff spaces X of any cardinal.
Due to Theorem 9, the implication (b) = (a) of Theorem 2 also holds for a
Tychonoff space X of any cardinal.
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