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1. Introduction

This note is asummary of [20]. Throughout this paper $\mathrm{a}\mathrm{I}1$ spaces are assumed
to be $T_{1}$ topological spaces and the symbol $\gamma$ denotes an infinite cardinal.

The notions of relative normality and relative paracompactness are central in
the study of relative topological properties which has been posed by Arhangel ’

$\mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}}$

and Genedi [$4^{1}\rfloor$ , and also in the subsequent articles $\mathrm{L}^{2]}\lceil$ and [3] by $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}1’ \mathrm{s}\mathrm{k}\mathrm{i}_{\dot{1}}$.
Let $X$ be aspace and $Y$ asubspace of $X$ . Asubspace $Y$ is said to be normal,

(respectively, strongly normal) $)$ in $X$ if for each disjoint closed subsets $F_{0}$ , $F_{1}$ of
$X$ (respectively, of $Y$ ), there exist disjoint open subsets $G_{0}$ , $G_{1}$ of $X$ such that
$F_{\iota} \bigcap_{1}Y\subset G_{\iota}$ for each $i=0_{4}1$ . Asubspace $Y$ is said to be 1- (respectively, $2-\backslash$

)

paracompact in $X$ if for every open cover $\mathcal{U}$ of $X$ , there exists acollection $\mathcal{V}$ of
open subsets of $X$ with $X=\cup \mathcal{V}$ (respectively, $Y\underline{\tau}\cup \mathcal{V}$) such that $\mathcal{V}$ is apartial
refinement of&and $\mathcal{V}$ is locally finite at each point of $Y$ Here, $\mathcal{V}$ is said to be
apartial refinement of&if for each $V\in \mathcal{V}$ , there exists a $U\in \mathcal{U}$ containing $V$ .
Thc term $\mathrm{t}(2$-paracompact”is often simply said “paracompact”. In the definition
of 2-paracompactness of $Y$ in $X$ above, when we replace “open cover of $X$”by
“collection of open subsets of $X$ with $Y\subset\cup \mathcal{U}"$ , $Y$ is said to be Aull-paracompact
in $X(\backslash [3], [5])$ . Each of 1-paracompactness and Aull-paracompactness of $Y$ in
$X$ clearly implies 2-paracompactness of $Y$ in $X$ . Note that l-paracompactness
coincides with $\alpha$-paracompactness defined by Aull [ $6^{1}\rfloor$ for aclosed subset of a
regular space [23]. See also Theorem 3.11.

On the other hand, it is natural to define the following two relative notions;
asubspace $Y$ of aspace $X$ is said to be $\gamma$-collectionwise normal (respectively,
strongly $\gamma$-collectionwise no rmall) in $X$ if for every discrete collection $\{E_{\alpha}|\alpha <\gamma\}$

of closed subsets of $X$ (respectively, of $Y$ ), there is apairwise disjoint collection
$\{U_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that $E_{\alpha}\cap Y\subset U_{\alpha}$ (respectively, $E_{\alpha}\subset U_{\alpha}$ )
for every $\alpha<\gamma([18])$ . Clearly, $Y$ being $\omega$-collectionwise normal (respectively,
strongly $\omega$-collectionwise normal) in $X$ is equivalent to that $Y$ is normal (respec
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tively, strongly normal) in $X$ . When $Y$ is $\gamma$-collectionwise normal (respectively,
strongly $\gamma$-collectionwise normal) in $X$ for every $\gamma$ , we say $Y$ is collectionwise
normal (respectively, strongly collectionwise normal) in $X$ ; we see that collec-
tionwise normality (respectively, strongly collectionwise normality) of $Y$ in $X$ is
equal to being $\alpha-CN$ (respectively, $\gamma-CN$ ) of $Y$ in the sense of Aull [7].

2. Preliminaries and 1-or 2- (collectionwise) normality of
a subspace in a space

At first, we recall some preliminary notions and facts.
Let $Y$ be a subspace of a space $X$ . As is known, $Y$ is said to be $C^{*}-$ (respec-

tively, C-) embedded in $X$ if every bounded real-valued (respectively, real-valued)
continuous function on $Y$ is continuously extended over $X$ . A subspace $Y$ is said
to be P7- (respectively, P-) embedded in $X$ if every continuous $\gamma$-separable (re-
spectively, continuous) pseud0-metric on $Y$ is continuously extended over $X([1])$ ;
a pseud0-metric $d$ on $Y$ is $\gamma$-separable if the pseud0-metric space $(Y, d)$ has weight
$\leq\gamma$ . It is known that $P^{\omega}$-embedding is equal to $C$-embedding ([1]).

By [2], $Y$ is said to be weakly $C$ embedded in $X$ if for every real-valued con-
tinuous function $f$ on $Y$ there exists a real-valued function on $X$ which is an
extension of $f$ and continuous at each point of $Y$ By [18], $Y$ is said to be weakly
$P^{\gamma_{-}}$ (respectively, weakly P-) embedded in $X$ if every continuous $\gamma$-separable (re-
spectively, continuous) pseud0-metric on $Y$ is extended to a pseud0-metric on $X$

which is continuous at each point of $Y\cross Y$ Weak $P^{\omega}$-embedding is equal to weak
$C$-embedding ([18]). A space $X$ is $\gamma$-collectionwise nomal if for every discrete
collection $\{E_{\alpha}|\alpha<\gamma\}$ of closed subsets there exists a pairwise disjoint collection
$\{G_{\alpha}|\alpha<\gamma\}$ of open subsets such that $E_{\alpha}\subset G_{\alpha}$ for each $\alpha<\gamma$ . Clearly, $X$ is
collectionwise normal if $X$ is $\gamma$-collectionwise normal for every $\gamma$ .

A subspace $Y$ is said to be Hausdorff in $X$ if for every two distinct points
$y_{1}$ , $y_{2}$ of $Y$ , there are disjoint open subsets $U_{1}$ , $U_{2}$ of $X$ such that $y_{i}\in U_{i}$ for each
$i=0,1$ . A subspace $Y$ is said to be strongly regular in $X$ if for each $x\in X$ and
each closed subset $F$ of $X$ with $x\not\in F$ , there exist disjoint open subsets $U$, $V$ of
$X$ such that $x\in U$ and $F\cap Y\subset Vr$

Let $X_{Y}$ denote the space obtained from the space $X$ , with the topology gener-
ated by a subbase { $U|U$ is open in $X$ or $U\subset X\backslash Y$ }. Hence, points in $X\backslash Y$ are
isolated and $Y$ is closed in $X_{Y}$ . Moreover, $X$ and $X_{Y}$ generate the same topology
on $Y([12])$ . As is seen in [2], the space $X_{Y}$ is often useful in discussing several
relative topological properties. It is easy to see that $Y$ is Hausdorff in $X$ if and
only if $X_{Y}$ is Hausdorff. The following results given in [2], [18] are fundamental
in the present paper
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Lemma 2.1 $([2],[18])$ . For a subspace $Y$ of a space $X$ the following statements
are equivalent.

(a) $Y$ is strongly normal in $X$ .

(b) $Y$ is normal in $G$ for every open subset $G$ of $X$ with $Y\subset G$ .

(c) $X_{Y}$ is normal.
(d) $Y$ is normal $\iota n$ $X_{Y}$ .
(e) $Y$ is normal itself and weakly $C$-embedded in $X$ .

Lemma 2.2 ([18]). For a subspace $Y$ of a space $X$ the following statements are
equivalent.

(a) $Y$ is strongly $\gamma$ -collectionwise normal in $X$ .
(b) $Y$ is $\gamma$ -collectionwise normal in $G$ for every open subset $G$ of $X$ with $Y\subset G$ .
(c) $X_{Y}$ is $\gamma$-collectionwise nomal.
(d) $Y$ is $\gamma$ -collectionwise normal in $X_{Y}$ .
(e) $Y$ is $\gamma$ -collectionwise normal itself and weakly $P^{\gamma}$ -embedded in $X$ .

Corresponding to Lemmas 2.1 and 2.2 we have the following lemma; $(a)\Leftrightarrow(c)$

was recently obtained in [30], and $(c)\Leftrightarrow(e)$ for $Y$ being Hausdorff in $X$ was proved
in [18, Lemma 4.6]. Other equivalences are easily proved.

Lemma 2.3. For a subspace $Y$ of a space $X$ , the following statements from (a)
to (d) are equivalent. If $Y$ is Hausdorff in $X$ , these are equivalent to (e).

(a) $Y$ is Aull-paracompact in $X$ .
(b) $Y$ is 2-paracompact in $G$ for every open subset $G$ of $X$ with $Y\subset G$ .
(c) $X_{Y}$ is paracompact.
(d) $Y\iota s$ $2$ -paracompact in $X_{Y}$ .
(e) $Y$ is paracompact itself and weakly $P$-embedded in $X$

We now introduce notions of 1-or 2- (collectionwise) normality of $Y$ in $X$ .
We say that a subspace $Y$ of a space $X$ is 1- (respectively, 2-) normal in $X$ if for
each disjoint closed subsets Fo, $F_{1}$ of $X$ there exist open subsets $G_{0}$ , $G_{1}$ of $X$ such
that $F_{i}\cap Y\subset G_{\iota}$ for each $i=0,1$ and $\{G_{0}, G_{1}\}$ is discrete in $X$ (i.e. $\overline{G_{0}}\cap\overline{G_{1}}=\emptyset$ )
(respectively, discrete at each point of $Y$ in $X$ (i.e. $\overline{G_{0}}\cap\overline{G_{1}}\cap Y=\emptyset$ )).

A subspace $Y$ of a space $X$ is $1-\gamma-$ (respectively, $2-\gamma-$ ) collectionwise normal
in $X$ if for each discrete collection $\{F_{\alpha}|\alpha<\gamma\}$ of closed subsets of $X$ there exists
a collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that $F_{\alpha}\cap Y\subset G_{\alpha}$ for each
$\alpha<\gamma$ and $\{G_{\alpha}|\alpha<\gamma\}$ is discrete in $X$ (respectively, discrete at each point of
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$Y$ in $X$ ). If $Y\dot{\mathrm{i}}\mathrm{s}1-$ (respectively, 2-) $\gamma$-collectionwise normal in $X$ for every $\gamma$ , $Y$

is said to be 1- (respectively, 2-) collectionwise normal in $X^{\uparrow}$ .
In the above definitions of 2-normality and $2-\gamma$-collectionwise normality of $Y$

in $X$ , it is easy to see that both $\{G_{1}, G_{2}\}$ and $\{G_{\alpha}|\alpha<\gamma\}$ can be taken to be
disjoint. Therefore, 2- (collectionwise) normality of $Y$ in $X$ implies (collectionwise)
normality of $Y$ in $X$ .

These definitions above admit the following result; for brevity $‘’.\mathrm{c}\mathrm{w}$ normal
means collectionwise normal. Moreover, the symbols “

$\mathrm{H}’$
) and $” \mathrm{S}\mathrm{R}$

” mean the
assumptions that “$Y$ is Hausdorff in $X$” and “$Y$ is strongly regular in $X”$ , re-
spectively.

Proposition 2.4. For a subspace $Y$ of a space $X$ the following implications hold.

$X$ is paracompact $X$ is $cw$ normal $X$ is normal
$\downarrow$

$\downarrow$
$\downarrow$

$Y$ is $Y$ is $Y$ isSR-paracompact l-cw-nounal l-nomal
in $X$ in $X$ in $X$

$\downarrow$
$\downarrow$

$\downarrow$

$Y$ is $Y$ is $Y$ isSR2-paracompact 2-cw-n0rmal 2-n0rmal
in $X$ in $X$ in $X$

$\uparrow$ $|\begin{array}{ll}\backslash _{Y} iscw- nomal inX \end{array}|inX$

$Y$ is $Y$ is $Y$ is
$Aull- paracompact\underline{\mathrm{H}}$ strongly $cw$-normal– strongly normal

$in_{1}X$ $in_{\mathrm{I}}X$ $in_{1}X$

$X_{Y}$ is
$paracompact\downarrow$

$X_{Y}$ is
$cw_{\mathrm{I}}$

normal
$X_{Y}is_{\mathrm{I}}normal$

$Y$ is paracompact $Y$ is $cw$ normal $Y$ is nomal

$\uparrow 2$-coUectionwise normality of $Y$ in $X$ is called collectionwise normality of $Y$ in $X$ in a recent
paper of E. Grabner, G. Grabner, Miyazaki and Tartir, “Relative collectionwise $nom\iota ality$

” to
appear in Appl. Gen. Top. Moreover, they also independently proved the implication “

$\mathrm{Y}$ is
$\mathrm{S}\mathrm{R}$

2-paracompact in $Xarrow Y$ is 2-cw-n0rmal in $X$” in Proposition 2.4 assuming further that $X$

is Hausdorff
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Bella and Yaschenko [8] proved the following theorem. A space $X$ is said to

be almost compact if for every pair of disjoint zer0-sets $Z_{0}$ , $Z_{1}$ in $X$ , either $Z_{0}$ or
$Z_{1}$ is compact. Note that a Tychonoff space $X$ is almost compact if and only if
$|\beta X\backslash X|\leq 1$ , where $\beta X$ is the $\mathrm{S}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{e}-\check{\mathrm{C}}$ ech compactification of $X$ .

Theorem 2.5 ([8]). For a Tychonoff space Y. the following statemants are equiv-

alent.
(a) $Y$ is weakly $C$ -embedded in every larger Tychonoff (or equivalently, regular)

space.
(b) $Y$ is either Lindel\"of or almost compact.

Theorem 2.5 was improved to the following.

Theorem 2.6 ([18]). For a Tychonoff space $Y$ , the following statemants are
equivalent.

(a) $Y$ is $weakly.\mathrm{P}^{\gamma}$ -embedded in every larger Tychonoff (or equivalently, regular)

space.
(b) $Y$ is either $Lindel\dot{\mathit{0}}f$ or almost compact.

With Theorem 2.5, Bella arld Yaschenko [8] further $\mathrm{p}_{\mathrm{A}}^{r}\mathrm{c}\mathrm{v}\mathrm{e}\mathrm{d}\mathrm{t}\mathrm{i}_{1}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{I}\mathrm{o}\mathrm{w}\underline{\mathrm{i}}\mathrm{n}\mathrm{g}$ the-
orem, which was independently proved by Matveev et al. $[25\overline{\rfloor\}}$ .

Theorem 2.7 ([8], [25]. For a $T\acute{y}$chonoff ( $respectively_{f}$ regular) space $Y$ , the

following statemants are equivalent

( $a1,\cdot Y$ is strongly normal in every larger Tychonoffff $(_{\backslash }respectively,$ $\sim e(gular_{J}^{\backslash }$ space.

(b) $Y$ is normal in every larger Tychonoff (respectively, regular) space.

(c) $Y$ is either $Lindel\dot{o}f$ or normal and almost compact.

Similarly, Theorem 2.6 and Lemma 2.2 provide the following theorem.

Theorem 2.8 ([18]). For a Tychonoff (respectively, regular) space $Y$ , the fol-
lowing statemants are equivalent.

(a) $Y$ is strongly collectionwise normal in every larger Tychonoffff $(respect\iota vely_{f}$

regular) space.
(b) $Y$ is collectionwise normal in every larger Tychonoff (respectively, regular)

space.
(c) $Y$ is either Lindel\"of or normal and almost compact.

Remark 2.9. Combining Proposition 2.4 and Theorems 2.7, 2.8, we have that
“strongly normal” (respectively, “strongly collectionwise normal”) can be replaced
by “2-normal” (respectively, “2-collectionwise normal”) in Theorem 2.7 (respec-

tively, Theorem 2.8),.
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Moreover, the following theorem follows from Theorem 2.6 and Lemma 2.3.

Theorem 2.10 ([4], [15], [30]). For a Tychonoff spac\"e $Y$ , the following state-
mants are equivalent.

(a) $Y$ is Aull-paracompact in every larger Tychonoff (or equivalently, regular)
space.

(b) $Y$ is 2-paracompact in every $varger|$ Tychonoff (or equivalently, regular) space.
(c) $Y$ is Lindel\"of.

Remark 2.11. In Theorems 2.5, 2.6, 2.7, 2.8 and 2.10, all “larger Tychonoff
(respectively, regular) space” can be replaced by “larger Tychonoff (respectively,
regular) space containing $Y$ as a closed subspac\"e.

Remark 2.12. Yamazaki [29] showed that the following are equivalent for a
Hausdoff space $Y$ :

(a) $Y$ is weakly $C$-embedded (or equivalently, weakly $P$-embedded) in every
larger Hausdorff space.

(b) $Y$ is either compact or every continuous real-valued function on $Y$ is con-
stant.

In the condition (a), “larger Hausdorff space” can be replaced by “larger Hausdorff
space containing $Y$ as a closed subspac\"e.

Hence, if we replace all “Tychonoff” in Theorems 2.7, 2.8 and 2.10 by “Haus-
dorff”. the conditions (c) of each theorems are replaced by “$Y$ is compact” (see
also [29], [30] $)$ .

Remark 2.13. Yamazaki [31] constructed a $T_{1}$ spac\"e $X$ and a subspace $Y$ such
that $Y$ is normal in $X$ , but not 2-normal in $X$ . We do not know similar ex-
amples under higher separation axioms. Furthermore, it is unknown whether if
2-normality implies $2-\omega$-collectionwise normality, or coUectionwise normality im-
plies 2-collectionwise normality.

3. $\mathrm{Q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{C}^{*}-$ , quasi-C- and $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{P}^{\gamma}$-embeddings

In this section, we introduce new extension properties called $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- C^{*}-$ , quasi-
$C$-and quasi-P-embeddings, which will play basic roles on the study of 1- (col-
lectionwise) normality.

Let $X$ be a space and $\mathcal{E}=\{E_{\alpha}|\alpha\in\Omega\}$ a collection of subsets of $X$ . Then
$\mathcal{E}$ is said to be uniformly discrete in $X$ if there exist a collection $\{Z_{\alpha}|\alpha\in\Omega\}$

of zer0-sets of $X$ and a discrete collection $\{G_{\alpha}|\alpha\in\Omega\}$ of cozer0-sets of $X$ such
that $E_{\alpha}\subset Z_{\alpha}\subset G_{\alpha}$ for each $\alpha\in\Omega([9])$ .
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Let us now define that a subspace $Y$ of a space $X$ is $quasi- C^{*}$ -embedded in $X$

if for each pair $Z_{0}$ , $Z_{1}$ of disjoint zer0-sets of $Y$ , there exist open subsets $G_{0}$ , $G_{1}$

of $X$ such that $\{G_{0}, G_{1}\}$ is discrete in $X$ and $Z_{i}\subset G_{\iota}$ for each $i=0,1$ .

A subspace $Y$ of a space $X$ is said to be $quas\iota- P^{\gamma}$-embedded in $X$ if for each
uniformly discrete collection $\{Z_{\alpha}|\alpha<\gamma\}$ of zer0-sets of Y. there exists a discrete

collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that $Z_{\alpha}\subset G_{\alpha}$ for each $\alpha<\gamma$ . $\mathrm{A}$

subspace $Y$ is quasi-P-embedded in $X$ if $Y$ is $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- P^{\gamma}$-embedded in $X$ for every
$\gamma$ . Furthermore, $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- P^{\omega}$-embedding is called quasi-C-embedding.

Definitions of quasi-C*-embedding and $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- P^{\gamma}$-embedding should be com-
pared with the following results in [9], [18] and [19].

Lemma 3.1 ([9]). A subspace $Y$ of a space $X$ is $P^{\gamma}$ -embedded in $X$ if and only
$\iota f$ if for every uniformly discrete collection of subsets of $Y$ of cardinality $\leq\gamma$ is

also uniformly discrete in $X$ .

Lemma 3.2 ([18]). A subspace $Y$ of a space $X$ is weakly $C$ -embedded in $X$ if
and only if if for each pair Zq, $Z_{1}$ of disjoint zerO-sets of $Y$, there exist disjoint
open subsets $G_{0)}G_{1}$ of $X$ such that $Z_{i}\subset G_{\iota}$ for each $i=0,1$ .

Lemma 3.3 ([19]). A subspace $Y$ of a space $X$ is weakly $P^{\gamma}$ -embedded in $X$ if
and only if for each uniformly discrete collection $\{E_{\alpha}|\alpha<\gamma\}$ of zerO-sets of $Y$

there exists a pairwise disjoint collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such
that $E_{\alpha}\subset G_{\alpha}$ for each $\alpha<\gamma$ .

By Lemmas 3.1, 3.2 and 3.3, we have the following implications.

$\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- P-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- C-\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}- C^{*}PCC^{*}\downarrow\downarrow\downarrow$

$\downarrow$

$\downarrow$

weak $P$ weak $C$

We note that none of reverse implications above is true.

Proposition 3.4. For a subspace $Y$ of a space $X$ , the following statements hold.

(a) If $Y$ is itself $\gamma$-collectionwise normal and $quasi- P^{\gamma}$ -embedded in $X_{f}$ then $Y$

is $1-\gamma$ -collectionwise nomal in $X$ .
(b) If $Y$ is itself normal and quasi-C*-embedded in $X_{f}$ then $Y$ is l-normal in

$X$ .
Moreover, if $Y$ is closed in $X_{f}$ each of (a) and (b) reverses
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In [6], Aull defined that a subspace $Y$ of a space $X$ is $\alpha$-paracompact in $X$

if for every collection $\mathcal{U}$ of open subsets of $X$ with $Y\subset\cup \mathcal{U}$ , there exists a
collection $\mathcal{V}$ of open subsets of $X$ such that $Y\subset\cup \mathcal{V}.$,

$\mathcal{V}$ is a partial refinement of
14 and $\mathcal{V}$ is locally finite in $X$ . Note that $\alpha$-paracompactness of $Y$ in $X$ implies
Aull-paracompactness of $Y$ in $X([3], [4])$ .

Related to $\alpha$-paracompactness, let us recall the following results in [22] and
[23, Theorem 1. $\mathrm{S}$].

Theorem 3.5 ([22]). A Hausdorff ( $respectively_{f}regular_{f}$ Tychonojf) space $Y$ is
$\alpha$ -paracompact in every Hausdorff (respectively, regular, Tychonojf) space con-
taining $Y$ as a closed subspace if and only if $Y$ is compact.

Theorem 3.6 ([23]). For a closed subspace $Y$ of a regular space $X_{f}Y$ is 1-
paracompact in $X$ if and only if $Y$ is $\alpha$ -paracompact in $X$ .

Theorems 3.5 and 3.6 immediately induce a characterization of absolute 1-
paracompactness as follows.

Corollary 3.7. For a Tychonoff (respectively, regular) space $Y_{j}$ the following
statemants are equivalent.

(a) $Y$ is 1-paracompact in every larger Tychonoff ( $respectively_{f}$ regular) space.
(b) $Y$ is $\alpha$ -paracompact in every larger Tychonoff ( $respectively_{f}$ regular) space.
(c) $Y$ is compact.

The following is one of our main theorems characterizing absolute quasi-P-,
quasi-C- and quasi-C*-embeddings.

Theorem 3.8. For a Tychonoff space Y. the following statements are equivalent.
(a) $Y$ is quasi-P-embedded in every larger Tychonoff space.
(b) $Y$ is quasi-C-embedded in every larger Tychonoff space.
(c) $Y$ is quasi-*-embedded in every larger Tychonoff space.
(d) $Y$ is almost compact.

In the conditions from (a) to $(c)fl‘ Tychonoffff’ f$ can be replaced by $ltregular^{f}$’

By Proposition 3.4 and Theorem 3.8, we have

Corollary 3.9. For a Tychonoff ( $respectively_{f}$ regular) space $Y$ , the following
statements are equivalent.

(a) $Y$ is 1-collectionwise normal in every larger Tychonoff (respectively, regular)
space.

(b) $Y$ is 1-normal in every larger Tychonoff (respectively, regular) space.
(c) $Y$ is normal and almost compact.
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In Corollary 3.9, $(b)\Leftrightarrow(c)$ also follows from $\lceil\lfloor 25$ , Theorem 2.6]. For the Haus-

dorff case, we have the following.

Theorem 3.10. For a Hausdorff space $Y$ , the following statements are equivalent.

(a) $Y$ is quasi-C*-embedded in every larger Hausdorff space
(b) Every continuous real-valued function on $Y$ is constant.

In (a), $t$‘quasi-C*-embedded’$f$ can be replaced by $\mathrm{f}lquasi- P- embedded^{f}$
’ or $‘$

${}^{t}quasi-$

$C$ -embedded $\prime f$ and larger Hausdorff spac$e^{fj}$ can be replaced by $\iota\iota larger$ Hausdorff
space containing $Y$ as a closed subspace $f’$ .

By Theorem 3.10 and Proposition 3.4, we have the following; a Hausdorff
space $Y$ is 1-collectionwise normal (or $equivalently_{f}1$ -normal) in every larger

Hausdorff space if and only if $|Y|\leq 1$ . Moreover, $;\eta arger$ Hausdorffff space can
be replaced by “larger Hausdorff space containing $Y$ as a closed subspace’$f$

Finally we consider the condition under which 2-paracompactness implies 1-
paracompactness. We say a subspace $Y$ of a space $X$ is $T_{4^{-}}$ (respectively, $T_{3^{-}}$ )

$\backslash$

embedded in $X$ if for every closed subset $F$ of $X$ disjoint from $Y(’\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}1\mathrm{y}$,
$z\in X_{\backslash }\backslash Y1$, $\cdot$

$F$ (respectively, z) and $Y$ are separated by disjoint open subsets of
$X$ . The idea of these notions already appeared in Aull [6]. It is easy to see that
$\mathrm{i}_{1}^{\mathrm{r}}Y$ is $T_{3}$-embedded in $X$ , then $Y$ is closed in $X$ .

The following is a finer result of Theorem 3.6; $+_{\mathrm{b}}\mathrm{o}$ show $‘((b)\Rightarrow(c)"$
$\}$

the
implication “

$(b)\Rightarrow Y1^{\cdot}\mathrm{s}\urcorner T_{4}$-embedded in $X$ ” is due to Aull [6, Theorem $6_{\rfloor^{1}}^{\mathfrak{l}}\urcorner$ . By

using this fact, Lupianez and Outerelo [23. Lemma 1.2 and TheOrem1.3] proved
$(c_{\acute{4}})\Rightarrow(c)\Rightarrow(b_{\grave{J}}\Rightarrow(c1’$ $\Rightarrow(a)$ .

Theorem 3.11 ([23]). For a closed subspace $Y$ of a regular space $X$ the following
statements are equivalent.

(a) $Y$ is 1-paracompact $\iota nX$ .

(b) $1^{r}$ is $\alpha$ -paracompact in $X$

(c) $Y$ is 2-paracompact in $X$ and $T_{4}$ -embedded in $X$ .

The proof of Theorem 3.11 essentially shows the following.

Theorem 3.12. For a subspace $Y$ of a space $X$ the following statements are
equivalent.

(a) $Y$ is 1-paracompact in $X$ and $T_{3}$ -embedded in $X$ .

(b) $Y$ is $\alpha$ -paracompact in $X$ and for every $y\in Y$ and every closed subset
$F$ of $X$ with $F\cap Y=\emptyset$ , there exists an open subset $U$ of $X$ such that
$y\in U\subset\overline{U}^{X}\subset X\backslash F$ .

(c) $Y$ is 2-paracompact in $X$ and $T_{4}$ -embedded in $X$ .
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Proposition 3.13. For a Tychonoff space $Y$ the following statements are equiv-

alent.
$(0,)Y$ is $T_{4}$ -embedded in every larger Tychonoff space.
(b) $Y$ is compact.

Remark 3.14. In Theorem 3.8, Corollaries 3.7 and 3.9, Proposition 3.13, all
“larger Tychonoff (respectively, regular) space” can be replaced by $‘(\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{r}$ Ty-
chonoff (respectively, regular) space containing $Y$ as a closed subspace”

Theorem 2.10, Theorem 3.11 and Proposition 3.13 give an alternative proof
to Corollary 3.7.

In case $Y$ is Hausdorff, we have the following; a Hausdoff space $Y$ is $T_{4^{-}}$

embedded in every larger Hausdorff space if and only if $Y=\emptyset$ . The similar proof
provides the following; a Hausdorff space $Y$ is 1-paracompact in every larger
Hausdorff space if and only if $Y=\emptyset$ . Moreover, in both statements, $((\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{r}$

Hausdorff space” can be replaced by “larger Hausdorff space containing $Y$ as a
closed subspac\"e. This should be compared with Theorem 3.5 and Corollary 3.7.

4. On 1-metacompactness of a subspace in a space

In this section, we describe absolute case of 1-metacompactness. A subspace
$Y$ of a space $X$ is said to be 1-metacompact in $X$ if for every open cover $\mathcal{U}$ of $X$ ,
there exists an open refinement $\mathcal{V}$ of $\mathcal{U}$ such that $\mathcal{V}$ is point-finite at every $y\in Y$

$([21])$ . In [16], 1-metacompactness of $Y$ in $X$ is called strongly metacompactness
of $Y$ in $X$ .

A space $X$ satisfies the discrete finite chain condition (DFCC, for short) if
every discrete collection of non-empty open subsets of $X$ is finite (see [24], for
example). Recall that a Tychonoff space $X$ is pseudocompact if and only if $X$

satisfies the DFCC. It is also known that a Tychonoff space $X$ is compact if and
only if $X$ is pseudocompact and metacompact ([27], [28]). Furthermore, a regular
space $X$ is compact if and only if $X$ satisfies the DFCC and is metacompact
([27]).

According to [2], in [4], Arhangel’ $\mathrm{s}\mathrm{k}\mathrm{i}\dot{1}$ and Genedi remarked the following fact;
let $Y$ be a countable dense subset of a regular space $X$ Then $Y$ is l-metacompact
(or equivalently, 1-paracompact) in $X$ if and only if $X$ is Lindel\"of. The proof of
this fact is applied to show the following lemma.

Lemma 4.1. Take a separable space $Z$ and a non-DFCC space $Y$ , arbitrarily.
Let $\{d_{n}|n\in \mathrm{N}\}$ be a countable dense subset of $Z_{f}\{U_{n}|n\in \mathrm{N}\}$ a countable

discrete collection of non-empty open subsets of $Y$ and $\{y_{n}|n\in \mathrm{N}\}$ a countable
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closed discrete subset of $Y$ such that $y_{n}\in U_{n}$ for each $n\in \mathrm{N}$ . Let $X$ be the
quotient space obtained from $Y\oplus Z$ by identifying $y_{n}$ with $d_{n}$ for each $n\in \mathrm{N}$ .

If $Y$ is $l$ -metacompact in $X$ , then $Z$ is $Lindel\dot{\mathit{0}}f$.
Moreover, if $Y$ and $Z$ are Tychonoff (respectively, regular), then $X$ is also

Tychonoff ( $respect\iota vefy_{f}$ regular).

Theorem 4.2. A Tychonoff (respectively, regular, Hausdorff) space $Y$ is l-meta-
compact in every larger Tychonoff ( $respectively_{f}regular_{f}$ Hausdorff) space if and
only if $Y$ is compact.

Theorem 4.2 extends the following result due to E. Grabner et al. [16]; $a$

normal space $Y$ is $l$ -metacompact in every larger regular space if and only if $Y$

is compact.

5. On 1-subparacompactness of a subspace in a space

It was defined in [26] that a subspace $Y$ of a space $X$ is $l$ -subparacompact in
$X$ if for every open cover $\mathcal{U}$ of $X$ , there exists a $\sigma$-discrete collection $\prime p$ of closed
subsets of $X$ with $Y\subset\cup P$ such that $P$ is a partial refinement of $\mathcal{U}$ .

In [26], Qu and Yasui asked a question as follows; let $X$ be a regular space
and $Y$ a subspace of X. Is it true that if $Y$ is 1-paracompact in $X$ , then $Y$ is
$l$ -subparacompact in $X$ ? The following theorem gives a negative answer to this
question.

Theorem 5.1. There exists a Tychonoff space $X$ and a subspace $Y$ of $X$ such
that $Y$ is 1-paracompact but not $l$ -subparacompact in $X$ .

Construction. Let $X$ be the set $(\omega_{2}+1)\cross(\omega_{1}+1)\backslash \{\langle\omega_{2}, \omega_{1}\rangle\}$ . For $\alpha\in\omega_{1}$ and
$\beta\in\omega_{2}$ , define $G_{\alpha}=(\omega_{2}+1)\cross\{\alpha\}$ and $H_{\beta}=\{\beta\}\mathrm{x}$ $(\omega_{1}+1)$ , respectively. Define
a topology on $X$ as follows. For $\alpha\in\omega_{1}$ , a neighborhood base at $\langle\omega_{2}, \alpha\rangle$ is the
family of all sets of the form $G_{\alpha}\backslash E$ , where $E$ is a finite subset of $\omega_{2}\cross\{\alpha\}$ . For
$\beta\in\omega_{2}$ , a neighborhood base at $\langle\beta, \omega_{1}\rangle$ is the family of all sets of the form $H_{\beta}\backslash F$ .

where $F$ is a finite subset of $\{\beta\}\cross$ $\omega_{1}$ . All other points of $X$ are isolated in $X$ .

The construction of $X$ is based on a example in [11]. Let $Y=X\backslash ((\omega_{2}\cross\{\omega_{1}\})\cup$

$(\{\omega_{2}\}\cross\omega_{1}))$ . Then $Y$ is 1-paracompact but not 1-subparacompact in $X$ .
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