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Abstract

The probabilistic reasoning given distribution evidence, virtual evidence, indirect evidence or like-
Lihood have been investigated in previous research. In this paper, we classify the reasoning into two
types and define each type of the reasoning by mathematical formulas. From the definition, we show
that the first type of reasoning is solved by the minimization of Kullback-Leibler(K-L) information
under marginal constraints and the second type is calculated by the ordinary probabilistic reasoning
methods such as Belief Propagation(BP). We also show that the Tterative Scaling Procedure(ISP) is
applied to the first type reasoning. Moreover, we propose an efficient propagation algorithm, which
are based on ISP, for the reasoning on Junction trees. Both the space and the time complexities of
the proposed algorithm are lower than that of the previous research.

1 Introduction

A probabilistic reasoning problem is defined by its input and the target output. The input of probabilis-
tic reasoning[Jensen 1996] [Pearl 1988} is a joint distribution P(Xi,...,X,) ! and information about
deterministic values of some random variables X; = z; j € Ic = {1,2,...,k} cI={L,2,... ,n} called
evidence. The target output is a joint distribution Pous(X1,- ., X,) = P(XT1e, Xte = zle) where

. XIe = gle denotes (X = #1,...,Xp = i) or the marginal distributions of P,u:. Thus the proba-
bilistic reasoning problem is defined as a deduction of the posterior probability (X% |X1e = z'¢) or
P(XT-Ie, XTe = z1o) from a prior probability and the information about the occurrence of some random
variables X; = z; j € Ig. The correctness of typical reasoning algorithms such as Belief Propagation
(BP) or HUGIN has been proved by how the algorithms can calculate the target posterior distribution
correctly.

The input information in ordinary probabilistic reasoning is given by deterministic values of some
random variables X; = z; j € Ic, while some previous research has investigated reasoning in which
the input information is given by distributions of some random variables P*(X;) j € Ic. This kind of
evidence is called soft evidence, distribution evidence, virtual evidence, indirect evidence or likelihood in
the previous research [Pearl 1990][Valtorta et al. 2002}.

There was 1o clear classification between these evidences. We think the reasoning using such kind of
evidence can be classified into two types from the viewpoint of the desired character of the target output
distributions. In the first type of reasoning, which we call Type 1 reasoning, the given distributions
P*(X;) j € I¢ coincide with the marginal of the output distribution Pous(X;) = 35 Pout (X1y.. s Xn)-
In the second type, which we call Type 2 reasoning, the given distribution does not always coincide with
the marginal of the output distribution.

Many kinds of reasoning methods have been proposed for Type 1 reasoning. A typical method for
Type 1 reasoning is based on Jeffry’s Rule[Pearl 1990]. Another typical reasoning method is based on the
principle of least change or the minimum divergence principle[Wen 1990] that minimizes the divergence

11n probabilistic reasoning, the joint distribution is represented by some graph. This means that the joint distribution
factors into a product of several functions of some subset of random variables. We investigate this in Section 4.
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between an input distribution Py, and the output distribution P,; under some condition. On the other
hand, the ordinary probabilistic reasoning algorithms such as the BP or the HUGIN propagation have
been used for Type 2 reasoning.

The previous research only proposed reasoning methods individually, but we have not seen any
research discussing the relationship between them or proving the mathematical justification of them.
The justification of the methods has been only given by qualitative and intuitive explanation m the
previous research.

We think the lack of mathematical justification is caused by a lack of a mathematical definition of the
reasoning problems. We have not seen any research defining Type 1 reasoning problems by mathematical
formulas. If there is no mathematical definition of the Input information and the target output, we cannot
evaluate the justification of reasoning algorithms.

The first objective of this paper is to give definitions of Type 1 and Type 2 reasoning problems
by mathematical formulas. We clarify the difference between Type 1 and Type 2 reasoning by these
definitions. The defined reasoning problems include ordinary probabilistic reasoning problems.

Secondly we show the correct reasoning under the definition. Type 1 reasoning is solved by the
minimization of Kullback-Leibler(K-L) information under the marginal distribution constraints repre-
sented by Type 1 evidence. Type 2 reasoning is exactly calculated by ordinary probabilistic reasoning
algorithms such as BP. Since we can use ordinary reasoning algorithms for Type 2 reasoning, we mainly
investigate Type 1 reasoning in the following sections.

Thirdly we propose basic procedures for Type 1 probabilistic reasoning. An efficient procedure called
the Iterative Scaling Procedure(ISP) [Csiszar 1975][Ireland and Kullback 1968] can be applied to the
reasoning procedure. Although some previdus research applied ISP to the method of reasoning given
distribution evidence, we deduce the procedure using ISP from a simple assumption and the definition
without intuitive concepts.

Finally an efficient algorithm of Type 1 reasoning on Junction Trees(JT) [Aji and Mcliece 2000]
[Jensen 1996] is proposed. The big clique algorithm using ISP was proposed in the previous research
[Valtorta et ol. 2002]. An effective implementation of ISP for the maximwum likelihood estimation on
contingency tables was also investigated in the previous research [Jirousek and Preucil 1995]. The com-
plexities of the previous algorithms are higher than that of the proposed algorithn.

2 Formalization of Type 1 and Type 2 probabilistic reasoning

First, we define Type 1 and Type 2 probabilistic reasoning. Let X; i € I and E; j € Ic C I be discrete
random variables for sake of brevity and E; is called implicit evidence.

We assume each piece of implicit evidence Ej; gives us the information only about X; not about
the other X; i € I — {j} ?. Formally, the above mentioned condition is represented by the following
assumption.

Assumption 1 # Fach piece of implicit evidence E; and every X; i € I — {j} are conditionally inde-
pendent given X; as follows:

P(X1,.o s Xn) Tep, P(X;, E;)

e POX) ’ @

P(Xy,..., X, Ef°) =

where B’ denotes (Ei,...,Ey).
Now, we define Type 1 probabilistic reasoning:

Definition 1 Type I probabilistic reasoning is defined by the following input and output. The input is

given by a distribution P(Xy,.. ., X,,) and the information of X; j € I as PX;)= zi#j P(X1,..., X,]

It is casy to extend this assumption to the assumption that each piece of implictt evidence gives us the information
about (Xj,..., Xj;,).
2This assumption is identical with the assumption of the previous research{Pearl 1990).
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Ble = eley = P(X,|Elc = eI¢), which is the marginal distribution of X; given evidence Ble =
ele | where Ble = el denotes (F1 = ey,..., B = ex). The target oulput Py, is the distribution
P(X4,-.., Xn|Efe = elo) or the marginal distributions of Pou:.

The output of the defined Type 1 probabilistic reasoning P(X I ple = efo) differs from the output
of the ordinary probabilistic reasoning, which is the conditional distribution P(X I=le|xle = glo),
However the conditional distribution P(X?| B¢ = efe) includes P(XT~1o, X'c = 27°) as a special case.
If the distribution P(X;|E’¢ = €/¢) is the point mass in X; = x;, ie., P(X; = z;|Blo = efe) = 1,
the information from the implicit evidence e; is the same as "z occurred”, ie., X; = z;. In this
case, the defined output distribution is identical with P{XxI-1Te, XIe = g!e), Thus, the defined Type 1
probabilistic reasoning includes the ordinary probabilistic reasoning as a special case.

From Definition 1, the given distributions P*(X;) j € I¢ coincide with the marginal of the output
distribution Pou(X;) = 3 145 P(X1,...; Xn|Bfe = e¢’c). This satisfles the requirement of the previous
research on Type 1 reasoning.

Next, we define Type 2 probabilistic reasoning.

Definition 2 Type 2 probabilistic reasoning is defined by the following input and output. The input is
given by o distribution. P(Xy,...,X,) and information P(X;) = aP(X;,E; = ¢;) or P(X;, B; =
e;)/P(X;) in Formula(1). The target output Pou is the distribution P(X1,..., Xn|Efe = ele) or the
marginal distributions of Ppy-

The difference between two types of reasoning problems is the information of X; j € Ic given by
implicit evidence. Thus, P**(Xj) does not always coincide with the marginal of the output distribution
Pout(X5) = 3545 P(Xy,...,X,|Blc. = efc). We can easily prove that ordinary probabilistic reasoning
algorithms deduce the output distribution of Type 2 reasoning. That is the reason why the HUGIN
aleorithm can be applied to the reasoning for indirect evidence or likelihood, i.e., Type 2 evidence.

Remark 1 In this problem setting, it is important that we know the marginal distributions P(Xy,..., X,)
as the input distribution but do not need the whole joint distribution P(Xq,...,Xq, Fle)., Under As-
sumption 1, we can determine the target outpul distribution P(Xq,.. . X, |Efe = ele) from the infor-
mation P(X;|E; = e;) and P(Xx, ..., Xn) without P(X1,..., Xy, E'c). Although the problem is defined
on. the probability space of (Xu,.... X, Ele), we can treat the problem as being only on the space of

(Xi,...,Xn), which is the sume space as for ordinary probabilistic reasoning.

The output distributions calculated by Type 1 probabilistic reasoning are interpreted as generalized

posterior distributions given marginal distributions P~(X;) instead of given strict values XTo = zle.

Generalized posterior distributions play the same role as posterior distributions do in statistical inference.

3 A Basic procedure for Type 1 probabilistic reasoning

3.1 Relationship between the output distribution and a prior distribution

We investigate the property of the output distribution deduced by the defined Type 1 probabilistic
reasoning. The relationship between the output distribution and a prior distribution is shown by the
following lemma and theory.

Lemma 1 Under Assumption 1, the output distribution Pour = P(X1,..- , Xn|Ele = ef¢) that is de-
duced from an input distribution P(X1,...,Xx) and information P*(X;) = P(X;|ETe =¢fe) j € Ic by
Type 1 reasoning is given by

Py :aP(le'*}Xﬂ) H ﬁ(X?L (2)

jelc

where B{X;) > 0.
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Proof:
P = P(Xi,...,X,|El° =€) (3)
= aP(Xi,..., Xn, B¢ =) (4)
_ QP(XI"“’X"‘)HjeIC P(X;,E; =€) (5)
Hjelc P(Xj)
= aP(Xy,...,Xa) [] BXy)- (6)
jsle

Formula(5) is given by Assumption 1.

Remark 2 If P(y) # 0 then the conditional probability P(zly) = P(z,y)/Ply) can be defined. So the
region R(z1°) of deterministic value of X; for the evidence of ordinary probabilistic reasoning is restricted
as follows:
 R(a’°) = {z'°|P(z') #£ 0}. (7)
In a similar fashion, the region of the value of the probability given as Type 1 evidence is restricted
as follows:

R(PIG) =
{Ple| 36(X1) > 0---38(Xy) > 0Vie I
P(X)= Y aP(Xi,...,X.) [] B} (8)

X+#X; jele

where PTe = (P(X1),..., P(X3)).

If Ple € R(Pe) then the generalized posterior distribution or the generalized conditional probability
given P can be defined. It is regarded as a generalization of the condition under which the ordinary
conditional distribution can be defined.

An important characteristic of the output distribution is shown by the following theorem.

Theorem 1 Let Mg be the setb of the distributions on the random. variables Xy, ..., X, that satisfy the
marginal condition P(X;) = P*(X;) j € Ic and Ple € R(P¥). Under Assumption 1, the output
distribution Py, = P{X4,..., X,|E'c = el°) that is deduced by Type 1 reasoning is given by

P =arg e I{P||Py.), ©)

where Py, is a prior distribution P(Xy,...,Xy) and I1(-||.) is Kullback-Leibler(K-L) information.
Proof:
Let Py be the distribution as follews:

Py = arg in I(P|| P). (10)

We consider the following T,,(X1,...,Xy) as T(z) in Theorem 2.1 of the paﬁer[Kullback 1959/

1 P =&
Tzi(le--aXn) = { 0 §L #ﬁl . (11)

From Theorem 2.1 of the paper, Py is given by

k
eziemefP(xl,“- )
S |
Z:n Lo Zmn elai=1 ‘-P(.’EI, e ,.17,1)

Py =
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Let us set e7= = ().

Put(@ry. - @m) = &' Plas, ..,a) T] B'es), (13)

jelc

where
Py(x;) = P{z;) j € Io- (14)

From Lemma 1 and Definition 1, Poyz s represented by

Poit(@1,- ., 3n) = aP(z1,...,2a) ] Blay), (15)

jelc

where
Pom(mj) = P*(;Ej) j € Ic. (16)

From the uniqueness of B'(z;) and B(x;), we obtain the following formula and the theorem can be
proved.

Pout(xlp---7mn):PM(xh'"axn) (17)

The theory shows that the distribution calculated by Type 1 probabilistic reasoning is the distri-
bution that is closest to the prior distribution with K-L information under the restriction of marginal
distributions.

Some previous research proposed the reasoning methods based on the principle of least change or the
minimum divergence principle[Wen 1990] that minimizes the divergence between prior distribution P,
and output distribution P,y under some condition. However the correctness of the principle also has not
been justified in the research. There are a lot of measures of the divergence between two distributions.
For exauple, if we use K-L information as the divergence, which divergence is correct, I{(P, || Pout) or
I(P,u:||Pin)? The selection of the measure has been still supported by a qualitative concept or one’s
intuition in the research. In this paper, justification of the minimum divergence principle can be proved
from the definition of Type 1 probabilistic reasoning and Assumption 1.

On the other hand, there was some previous research investigating the distribution given by mini-
mizing K-L information. The paper{Kullback 1959] used in the proof of Theorem 1 is one example of
_the previous research. The paper showed that the distribution given by minimizing K-L information
under some linear restriction is represented by the product of some parameters and a prior distribution
as Formula (2). Inversely, the previous paper[Skyrms1985] claimed that if the target distribution is as-
sumed as the product of some parameters and a prior distribution then the distribution can be deduced
by minimizing K-L information under some restriction.

Since ‘Type 1 reasoning was not defined by mathematical formalization in the previous research, the
property of the output distribution was unclear. However, from Definition 1 and Lemma 1, we show that
the output distribution of Type 1 reasoning can be represented by the product of some parameters and
a prior distribution. Thus we can also show that the output distribution can be deduced by minimizing
K-L information in Theorem 1.

3.2 A basic procedure for Type 1 probabilistic reasoning and ISP

Type 1 probabilistic reasoning problem shown in Theorem 1 is regarded as one of the conditional opti-
mization problems. The computational complexity for calculating an optimum solution in a conditional
optimization problem is generally very high. However, Iterative Proportional Fitting Procedure (IPFP)
or the Iterative Scaling Procedure (ISP) can be applied to the procedure of the defined Type 1 probabilis-
tic reasoning. ISP is used for computing the maximum likelihood estimators (MLEs) in a probabilistic
model of a contingency table/Ireland and Kullback 1968] under the condition that some marginal sums
are given. ISP is also applied to Type 1 probabilistic reasoning.
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[Procedure 1: ISP]

begin
P(X]_,.. .,Xr,z,) = B.,,(Xl,. ‘e ,Xrn);
go=1;
while Ejr:'[cP(Xj) # P*(Xj) do
begin
J =1t mod [Ic;
P(X1,...,Xn) = P(X1,..., X,) 552
g =1+ 1;
end
Poug(Xl,. .. ,Xn) = P(Xl, e ,Xn);
end

Lemma 2 If Ple* € R(P¢) then Procedure 1 halts and the value calculated by Procedure 1 converges

to P(X,..., X, |Ele = ¢fo).
Proof: It is obvious from Theorem 1 and the property of ISP{Csiszar 1975][Ireland and Kullback 1968].

ISP is a very simple iterative procedure for calculating generalized posterior distributions. ISP renews
the distribution by adjusting its marginal probability to each restricted marginal value P* at each cycle.
ISP repeats this renewal lteratively until the marginals of the calculated distribution converge to the
restricted values.

Procedure 1, i.e., the ISP for Type 1 probabilistic reasoning, differs from the ISP for MLE at several
points. Each joint probability P(x1,...,%, ) correspouds to a cell of the contingency table of the ISP for
MLE. All cells of the contingency table are set to a constant at the first stage in the ISP for MLE. The
given marginal distributions correspond to the marginal sums of given data in the ISP for MLI.

The application of Jeffry’s Rule to Type 1 reasoning was proposed by the previous research[Pearl 1990].
Procedure 1 is identical with Jeffry’s Rule in the case given one piece of Type | evidence. Some previous
research[Valtorta et al. 2002] applied ISP to the reasoning method. However the research has only pro-
posed the method without defining the target output distribution. Although the previous research has
only given qualitative and intuitive explanations for applying ISP to the reasoning method, we deduce
procedure 1, which is the procedure using ISP, from Assumption 1, Definition 1 and Theoremn 1 without
intuitive concepts.

4 An Efficient procedure on Junction Trees

4.1 Probability model of Junction Trees

A Junction Graph/Tree is defined by a clique node set SV = {N(,N3,... Ny, }, an intersection node
set SP = {D1,...,Dn,} and the neighboring node set S¥(D,,) of every intersection node D,,m =
l, NN 13D

Each intersection node is connected to all clique nodes in its neighboring node set with arcs in a
Junction Graph/Tree. A Junction Tree(JT) is applied to the representation of the probability model
whose joint distribution factors into a product of several local functions of some subset of random
variables. A typical type of joint distributions represented by JTs are shown as follows:

P(Ny)P(N3) - -+ P(Nypy)
P(Dy)---P(Dyy)

P(X1,..., X)) = (18)
where P(N;) = P(X;, ¢y, .- s Xiyw) and P(Dy,) = P(Xi myse - Koy (m))-

i(Nl) = {Xil(l); cee, Xin(z)(l)} le {l, cen ,nN} and t(Dm) = {Xil(m)9 ces aXi,,(m)(m)} m e {1, cas ,TZD}
are called clique elements and intersection elements respectively. Abbreviate t(N;), t(Dy,) to N;, Dy,
respectively. The distributions that can be represented by BN are included in this type of distributions.
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4.2 A propagation algorithm on Junction Trees

We propose a new propagation algorithm on JTs for calculating the marginal distributions of the output
distribution: FPu:(Ny) = EX@{N; P(Xy, -, XulBfe = efe),l=1,...,nn. The JT used for the calcu-
lation of Type 1 reasoning is the same as that of ordinary probabilistic reasoning. So the JT does not
have the cliques including implicit evidence Ej.

Before the propagation algorithm is explained, several terms are defined. First, restricted intersection
node(RIN) is defined. If the element of an intersection node is equivalent to a restricted random variable
as D = {X;} j € Ic, the intersection node is called a restricted intersection node(RIN). If there
does not exist an intersection node satisfying Dy, = {X;} j € Ig, the RIN corresponding to every
such restricted random variable X; is produced and connected to an arbitrary clique node IV; satisfying
X; €N, 4, The set of all RINs is denoted by Sgrn.

The restricted tree(RT) of a JT is defined as the smallest subtree whose leaves are all RINs in the
JT 5. All clique nodes on a RT are numbered in order of the depth first search from an arbitrary root as
in Fig 1. The intersection node between a clique node N, and IV, is dencted by D, .. Each node may
have multiple numbers. We numbers the clique nodes and the intersection nodes in @ RT with a view
to simplifying and clarifying the procedure and the proof of Theorem 2. So the indexes of nodes in a
RT are different from those in Formula (18). The maximum number of the numbered cliques in a RT is
denoted by lgr.

Example 1 Let a prior joint distribution be

P(Xiy.oo, Xn) =
P(X1, X4)P(X4, Xs) P(Xs, X6, X7) P(X2, X5)
P(X3)P(X3)P(X4)
P(Xa, Xg)P(X3, X7)P(Xs, Xo)
P(X5)P(Xs)P(X7) '

(19)

Let the restricted random variables, i.e., the variables whose distributions are given as Type 1 evidence
be X1, Xa,X3. The RINs in the original JT of the joint distribution mentioned above are {X2}, {Xs}
and there is no intersection node corresponding to X;. So we produce the new RIN {X1} and connect it
to the clique node { X, X1} as in Fig 1.
" The restricted tree(RT) of the JT is shown in Fig 1. The leaves of the RT are the intersection nodes
{X1},{X2}, {Xs}, which are all RINs. The RT 1is comstructed by deleting the cligue nodes { X2, Xs},
{X3,Xo} from the original JT.

[The strategy of propagation]

1. Repeat the propagation of Procedure 2 on the RT until the values of all cliques converge to some
value.

2. Propagate messages from the RT to the whole J T by an ordinary probabilistic reasoning algorithm.

[Procedure 2]
begin
ii= min{kiD;ﬂ7k+1 € SRfN};
while 3p=s,, y P(D) # P*(D) do
begin
% := 1 mod [ g7}
v =1+ 1 mod [gr;
if Du,u € Sgrn then P(Du,v) = P* (Du,v)
4When we connect the produced RINs to clique nodes, from the viewpoint of complexity, we should select the clique

nodes as the extended JT includes the smallest restricted tree.
* 8In the case where the given JT is divided into subtrees by disconnecting every middle RIN, we can calculate the target
distribution by applying the following propagation algorithm to the RT of each divided sub JT individually.
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Figure 1: Numbered clique nodes and intersection nodes on a restricted tree and the route of propagation,
where the black box nodes are RINs.

else P(Du,o) = Yxup, , P(Nu) 3

P(D..,
P(Ny) := P(Nu)ﬁ?)m ;

ir=d+1;
end
Poua(W) = P(N);

end

Theo;"em 2 If Plc* ¢ R{Pe) then Procedure 2 hults and the value calculated by Procedure 2 converges
to P(N|E7 =¢e”) in every clique.
Proof: See Appendiz.

4.3 |Comparisons between Procedure 2 and previous research

The propose procedure propagates messages in numerical order of the clique numbers. The calculation
at each clique is simple and similar to the HUGIN propagation. Although the HUGIN propagation
stops after a round trip between leaves and the root, i.e., Collect Evidence and Distribution Evidence,
Procedure 2 repeats the cycle until the calculated values converge to the target values. Needless to say,
the HUGIN algorithm can be applied to only ordinary reasoning and Type 2 reasoning, but not to Type
1 reasoning.

The space complexity of Procedure 2 is O we =gN [Ty 1X]) where SE. is the set of all clique nodes
in the RT and | X| denotes the number of values in X The time c01nplex1tv of multiplication in one cycle
of Procedure 2 is Z(ZN_SN Hxen X+ ZD,_5D [Ixcp | X]) where SEr is the set of all intersection
nodes in the RT. The time complemty of addition in one cycle of Procedure 2 is 2(} . s lxen XD

The space complemty for variables of Procedure 1 is O(TT;c; 1X:l). The time comple)(lty of multiph-
cation in one cycle © of Procedure 1 is |I5| I];-, | Xi|- So both the space and the time complexities of
Procedure 2 are extremely lower than those of Procedure 1, ie., ISP.

The big clique algorithm, which applies ISP to the calculation of soft evidence reasoning on JTs, was
proposed in the previous research[Valtorta et al. 2002). The algorithm uses the big clique that includes
the whole RT for the calculation. The algorithm applies an ISP directory to the big clique. So the space
complexity of the algorithm is more than O(HXEUN w N |X]). The time complexity of multiplication

SSky

8Qune cycle corresponds to |I| loops from j = 1 to |{Iz| in Procedure 1.



17

in one cycle of the algorithin is |1 HYEU N |X| and the time complexity of addition in one cycle

. Ne SRT

is |[Io| T ]y eUpoon N |X|. Thus both the space and the time complexities of the previous algorithm are
NESRT

higher than those of Procedure 2.

An effective algorithm, which applies ISP for calculating maximum likelihood on a contingency table,
was proposed in a previous paper[Jirousek and Preucil 1995]. The message of each RIN is propagated
on a graph in order of satisfying the running intersection property. This method is interpreted as the
following procedure. Let a RIN be a root of the JT representing a prior probabilistic model. The
algorithm propagates the marginal restriction of the root RIN to the whole JT in the same way as the
calculation of a clique in the HUGIN propagation. Next, let another RIN be a root of the JT. And the
algorithm repeats the same manner of calculation until the values converge.

So the time complexity of multiplication in one cycle of the algorithm is [Io|(3- yogn [Txan IX] +
Y pesp Ilvep 1X]). The time complexity of addition in one cycle of the algorithm is | Io|(3 vz sn [Txen
1X]). Even if the RT of a JT is the same as the JT, the time complexity of the previous algorithm is
higher than that of Procedure 2. The space complexity of the algorithin is O(3yesy ITxen [X]) Thus
the space complexity of the algorithm is the same as that of the proposed algorithm.

5 CONCLUSION

We defined Type 1 and Type 2 probabilistic reasoning problem by mathematical formulas. The correct
reasoning under the definition of Type 1 reasoning is solved by the minimization of K-L information
under the marginal distribution constraints. We showed ISP can be applied to Type 1 probabilistic
reasoning and proposed an efficient propagation algorithm on Junction Trees. Both the time and the
space complexities of the proposed algorithm are lower than those of the previous algoritlims using ISP.

Appendix: Proof of Theorem 2

First we show the following lemma for proving Theorem 2. PH{Xy,...,X,) denotes the P(X;,..., X,)
calculated at the Ith loop 7 in Procedure 1. P#(N) denotes the P{N) that is calculated in Procedure 2
alter messages have passed throngh h RINs. We assume that the order of the RINs are Xi,..., X

Lemma 3 When a message reaches a cligue N at h = k in Procedure 2, the calculated distribution of
the clique N satisfies the following equation.

Pi(N)= 3 PE(Xs,.os Xn). (20)
XegN

Proof:

We prove Lemma 8 by the inductive method. It is obvious at h = 0.
We assume that Lemma 3 holds in a cliqgue node N, at h = k.
1) In the case where the next intersection node 4s a RIN
Let the mext intersection node be D, ,. From the assumption,

Z P;(Nv) = z Pik(le'-:Xn)

X2D.,, X¢Duv
= PF(Dyy). (21)
Remark N, = N, because D, ,, is a RIN.
Following Procedure 2, PYT1(N,) is calculated as follows:

P*(Duy) )

PFYYN,) = PHN”)Pf(DM)‘

"The index % = ! at the ith loop in Procedure 1.
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Procedure 1 calculates PFT1(X1,..., X, as follows:
PFYX,. ., Xy)

P*(D,,
= PEX,..., Xy B D)

Py (Duw)
From the definition of RTs, the marginal distribution PFY1(N,) is given as follows:

Z P{H-I(Xl:- . rXT‘-}
XEN,

(23)

P*(D, )
— PkX,...,Xn—-——’—
> P, Xa) prp

X ¢EN,

P*(Dy) .
= P{“(Nv)m- (24)

Thus, from Formulas (22), (24), Formula (20) holds in N, at h =k + 1 as follows:

P§+1(Nl’) = Z P1k+l(Xl$" . 1Xn) . (25}
X¢N,

2) In the case where the next intersection node ts not u RIN

Let the next intersection node be D, .. RT, denotes the mazimum subtree of the RT that includes
Ny and not N,,. Let Sn,, be the vector or the set of random variables in RT, and Sy, the vector or the
set of random variables in the complement tree of RT,.

By using the intersection node D, ,, the joint distribution calculated at the kith loop in Procedure 1
can be represented as follows:

_ PE(Sn)PT"(S,)

PE(X1,.. X)) = T (26)
1 w,v

where r is the number of the clique nodes in RT,.
The marginal distribution of N, with respect to the joint distribution of Formula(26) is given by

k—r k
Y Pi(Xyyen, X)) = ! ,ﬂ(f\f’)Pl (M), 27
Y ‘fNu Pl (DU{U)

From the assumption and the calculation process of Procedure 2,

PE(NG) = 3 PE(Xy...,Xu) = PE(N.),
X &N,

Pég_’r(Nv) - Z P{C_T(Xl, .- '7X") = Pf“T(N'U).
X¢EN,

Following Procedure 2, PF(N,) is calculated as follows:
P (Dup)
Sx¢p., P2 (V)
Py (Du,)
P " (Dup)’

Thus, from Formulas (27), (28), Formula (20) holds in N,,, which is the nezt cligue of Ny, at h =k as
follows:

Py(N,) = B~"(N)

PyT () (28)

P;(Nv)z Z Plk(Xla'“’Xﬂ)' (29)
X¢N,

Thus, Theorem 2 can be proved from Lemma 2 and Lemma 3.
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