Cofinal types around $\mathcal{P}_{\kappa}\lambda$ and the tree property for directed sets

Masayuki Karato (柄戸 正之) karato@logic.info.waseda.ac.jp

> 早稲田大学大学院理工学研究科 Graduate School for Science and Engineering, Waseda University

Keywords: cofinal type, directed set, mild ineffability, tree property, Tukey ordering

Abstract

Generalizing a result of Todorčević, we prove the existence of directed sets D, E such that $D \not\geq \mathcal{P}_{\kappa} \lambda$ and $E \not\geq \mathcal{P}_{\kappa} \lambda$ but $D \times E \geq \mathcal{P}_{\kappa} \lambda$ in the Tukey ordering. As an application, we show that the tree property for directed sets introduced by Hinnion is not preserved under products. Most of the results appear in [14].

1 Introduction

Any notion of convergence, described in terms of sequences, nets or filters, involves directed sets, or at least a particular kind of them. In general, directed sets are considered to express the type of convergence. Tukey defined an ordering on the class of all directed sets [17]. This ordering, now called Tukey ordering, was studied by Schmidt [15], Isbell [11],[12], Todorčević [16] and others. In particular, the directed sets of the form $\mathcal{P}_{\kappa}\lambda$ are of interest, because they possess some nice properties. In section 4 we generalize the directed sets D(S) introduced by Todorčević to $D_{\kappa}(S)$, where κ is an arbitrary infinite regular cardinal. With these directed sets, we show (Theorem 4.8) that there exist directed sets D, E such that $D \not\geq \mathcal{P}_{\kappa}\lambda$ and $E \not\geq \mathcal{P}_{\kappa}\lambda$ but $D \times E \geq \mathcal{P}_{\kappa}\lambda$ in the Tukey ordering.

The notion of tree property for infinite cardinals (the nonexistence of an Aronszajn tree) is well known, and is related to a large variety of set theoretic statements. The tree property for directed sets was invented by Hinnion [10], and studied by Esser and Hinnion [8],[9]. It is a generalization of the usual tree property for infinite cardinals and especially, for $\mathcal{P}_{\kappa}\lambda$, it is closely related with the mild ineffability if κ is strongly inaccessible (see Corollary 7.5). By an application of the result mentioned above, we show (Theorem 8.1) that there exist two directed sets D, E for which $\operatorname{add}(D) = \operatorname{add}(E)$ is weakly compact, and both D and E have the tree property but $D \times E$ does not. It was an open problem whether such D, E exist [8].

2 Directed sets and cofinal types

By classifying directed sets into isomorphism types, and further identifying a directed set with its cofinal subset, we arrive at the notion of cofinal type. On the other hand, the same equivalence relation is deduced from a quasi-ordering on the class of all directed sets. First we state the definitions.

Definition 2.1 Let $\langle D, \leq_D \rangle$, $\langle E, \leq_E \rangle$ be directed sets. A function $f: E \to D$ which satisfies

$$\forall d \in D \exists e \in E \forall e' \geq_E e \ [f(e') \geq_D d]$$

is called a convergent function. If such a function exists we write $D \leq E$ and say E is cofinally finer than D. \leq is transitive and is called the Tukey ordering on the class of directed sets. A function $g: D \to E$ which satisfies

$$\forall e \in E \exists d \in D \forall d' \in D \ [g(d') \leq_E e \to d' \leq_D d]$$

is called a Tukey function.

If there exists a directed set C into which D and E can be embedded cofinally, we say D is cofinally similar with E. In this case we write $D \equiv E$. \equiv is an equivalence relation, and the equivalence classes with respect to \equiv are the cofinal types.

The following propositions give the connection between the definitions. For the proofs, consult [16]

Proposition 2.2 For directed sets D and E, the following are equivalent.

- (a) $D \leq E$.
- (b) There exists a Tukey function $g: D \to E$.
- (c) There exist functions $g: D \to E$ and $f: E \to D$ such that $\forall d \in D \forall e \in E \ [g(d) \leq_E e \to d \leq_D f(e)].$

Proposition 2.3 For directed sets D and E, the following are equivalent.

- (a) $D \equiv E$.
- (b) $D \leq E$ and $E \leq D$.

So we can regard \leq as an ordering on the class of all cofinal types.

One should always keep in mind the distinction between the unbounded and the cofinal subsets of a directed set.

Proposition 2.4 For directed sets D and E,

- (i) $f: E \to D$ is convergent iff $\forall C \subseteq E$ cofinal [f[C]] cofinal.
- (ii) $g: D \to E$ is Tukey iff $\forall X \subseteq D$ unbounded [g[X] unbounded].

With two or more directed sets, we can form the product of these, to which we will always give the product ordering.

Proposition 2.5 For directed sets D and E, $D \times E$ is the least upper bound of $\{D, E\}$ in the Tukey ordering.

The next two cardinal functions are the most basic ones, being taken up in various contexts (mostly on a paticular kind of directed sets).

Definition 2.6 For a directed set D,

$$\operatorname{\mathsf{add}}(D) \ \stackrel{\mathrm{def}}{=} \ \min\{|X| \mid X \subseteq D \text{ unbounded}\},$$

$$\operatorname{\mathsf{cof}}(D) \ \stackrel{\mathrm{def}}{=} \ \min\{|C| \mid C \subseteq D \text{ cofinal}\}.$$

These are the *additivity* and the *cofinality* of a directed set. add(D) is only well-defined for D without maximum. In the sequel, any statement referring to add(D) presupposes that D has no maximum.

Proposition 2.7 For a directed set D (without maximum),

$$\aleph_0 \leq \operatorname{add}(D) \leq \operatorname{cof}(D) \leq |D|.$$

Furthermore, add(D) is regular and $add(D) \leq cf(cof(D))$. Here cf is the cofinality of a cardinal, which is the same as the additivity of it.

Proposition 2.8 For directed sets D and E, $D \leq E$ implies

$$\operatorname{add}(D) \geq \operatorname{add}(E) \quad and \quad \operatorname{cof}(D) \leq \operatorname{cof}(E).$$

From the above proposition we see that these cardinal functions are invariant under cofinal similarity.

Example 2.9 (see [1, chapter 2]) Let \mathcal{M}, \mathcal{N} be respectively the meager ideal and the null ideal, each ordered by inclusion. $\langle {}^{\omega}\omega, \leq^* \rangle$ is the eventual dominance order on the reals. We have $\langle {}^{\omega}\omega, \leq^* \rangle \leq \mathcal{M} \leq \mathcal{N}$ in the Tukey ordering, and thus

$$\aleph_1 \leq \mathsf{add}(\mathcal{N}) \leq \mathsf{add}(\mathcal{M}) \leq \mathfrak{b} \leq \mathfrak{d} \leq \mathsf{cof}(\mathcal{M}) \leq \mathsf{cof}(\mathcal{N}) \leq 2^{\aleph_0}.$$

Proposition 2.10 For directed sets D and E,

$$\begin{array}{rcl} \operatorname{add}(D\times E) &=& \min\{\operatorname{add}(D),\operatorname{add}(E)\},\\ \operatorname{cof}(D\times E) &=& \max\{\operatorname{cof}(D),\operatorname{cof}(E)\}. \end{array}$$

3 The width of a directed set

In the following, κ is always an infinite regular cardinal. If P is partially ordered set, we use the notation $X_{\leq a} = \{x \in X \mid x \leq a\}$ for X a subset of P and $a \in P$.

The cofinal type of $\mathcal{P}_{\kappa}\lambda$ is an interesting topic by itself (see [16]). As usual, $\mathcal{P}_{\kappa}\lambda = \{x \subseteq \lambda \mid |x| < \kappa\}$ is ordered by inclusion.

Lemma 3.1 add($\mathcal{P}_{\kappa}\lambda$) = κ , and $\lambda \leq \operatorname{cof}(\mathcal{P}_{\kappa}\lambda) \leq \lambda^{<\kappa}$. In particular, if κ is strongly inaccessible, then $\operatorname{cof}(\mathcal{P}_{\kappa}\lambda) = \lambda^{<\kappa}$.

Proof For the last statement, notice that in general for a cofinal $C \subseteq \mathcal{P}_{\kappa}\lambda$, $\mathcal{P}_{\kappa}\lambda = \bigcup_{x \in C} \mathcal{P}x$, and thus $\lambda^{<\kappa} \leq 2^{<\kappa} \cdot |C|$.

Lemma 3.2 For a directed set D, if $add(D) \ge \kappa$ and $cof(D) \le \lambda$, then $D \le \mathcal{P}_{\kappa} \lambda$.

It turns out that the following cardinal function, which seems to be a natural one, gives a suitable formulation of Theorem 7.1.

Definition 3.3 The width of a directed set D is defined by

$$\operatorname{wid}(D) \stackrel{\text{def}}{=} \sup\{|X|^+ \mid X \text{ is a thin subset of } D\},\$$

where 'a thin subset of D' means

$$\forall d \in D[|X_{\leq d}| < \mathsf{add}(D)].$$

Example 3.4 Let κ , λ , μ be regular with $\lambda^{<\kappa} = \lambda$ and $\lambda \leq \mu$. Then for the directed set $\mu \times \mathcal{P}_{\kappa} \lambda$ ordered by

$$\langle \alpha, x \rangle \le \langle \beta, y \rangle \iff \alpha \le \beta \land x \subseteq y$$

we have

$$\begin{array}{lll} \operatorname{add}(\mu \times \mathcal{P}_{\kappa} \lambda) & = & \kappa, \\ \operatorname{wid}(\mu \times \mathcal{P}_{\kappa} \lambda) & = & \lambda^+, \\ \operatorname{cof}(\mu \times \mathcal{P}_{\kappa} \lambda) & = & \mu. \end{array}$$

The second equation can be verified using Proposition 4.1.

Fix D and put $\kappa := \operatorname{add}(D)$.

Lemma 3.5 For any cardinal $\lambda \geq \kappa$, the following are equivalent.

- (a) D has a thin subset of size λ .
- (b) $D \geq \mathcal{P}_{\kappa} \lambda$.
- (c) There exists an order-preserving function $f: D \to \mathcal{P}_{\kappa} \lambda$ with f[D] cofinal in $\mathcal{P}_{\kappa} \lambda$.

Proof (a) \Rightarrow (b) Let $X \subseteq D$ be a thin subset of size λ . Define

$$\begin{array}{ccc} f: D & \to & \mathcal{P}_{\kappa} X \\ & & & & \psi \\ & d & \mapsto & X_{\leq d} \end{array}$$

Then f is (order-preserving and) convergent.

(b) \Rightarrow (c) If $f: D \to \mathcal{P}_{\kappa} \lambda$ is convergent, define

$$\begin{array}{ccc} g: D & \to & \mathcal{P}_{\kappa} \lambda \\ & & & \cup \\ d & \mapsto & \bigcap_{d' \geq d} f(d') \end{array}$$

Then g is convergent and also order-preserving.

(c) \Rightarrow (a) For such g as above, pick for each $\alpha \in \lambda$ a $d_{\alpha} \in D$ such that $g(d_{\alpha}) \ni \alpha$, and put $X := \{d_{\alpha} \mid \alpha \in \lambda\}$. It is readily seen that X is thin. Furthermore $|X| = \lambda$ since $\bigcup_{d \in X} g(d) = \lambda$.

Corollary 3.6

$$wid(D) = \sup\{\lambda^{+} \mid D \geq \mathcal{P}_{\kappa}\lambda\}$$

=
$$\sup\{\lambda^{+} \mid \exists f \colon D \to \mathcal{P}_{\kappa}\lambda \text{ order-preserving with } f[D] \text{ cofinal in } \mathcal{P}_{\kappa}\lambda\}.$$

The next inequality is checked easily.

Lemma 3.7

$$\operatorname{add}(D)^+ \le \operatorname{wid}(D) \le \operatorname{cof}(D)^+.$$

Lemma 3.8 wid(D) is never singular.

Proof Assume $\lambda := \operatorname{wid}(D) > \operatorname{cf}(\lambda)$ for a directed set D with $\operatorname{add}(D) = \kappa$. Fix a sequence of ordinals $\langle \theta_{\alpha} \mid \alpha < \operatorname{cf}(\lambda) \rangle$ converging up to λ . Then there are convergent order-preserving mappings $f_{\alpha} : D \to \mathcal{P}_{\kappa} \theta_{\alpha}$ for all $\alpha < \operatorname{cf}(\lambda)$. Fix also a convergent order-preserving $g : D \to \mathcal{P}_{\kappa} \operatorname{cf}(\lambda)$. Consider

$$\begin{array}{ccc} h: D & \to & \mathcal{P}_{\kappa} \lambda \\ & & & \cup \\ d & \mapsto & \bigcap_{\alpha \in g(d)} f_{\alpha}(d). \end{array}$$

h is order-preserving and convergent. Hence we have a contradiction.

However, the next proposition will show that $\operatorname{wid}(D)$ can be a limit cardinal. For example, that for any strongly inaccessible λ there is a directed set D such that $\operatorname{wid}(D) = \lambda$.

Proposition 3.9 Let κ be regular and let λ be strongly κ^+ -inaccesible (i.e. λ is regular and $\forall \mu < \lambda \ [\mu^{\kappa} < \lambda]$). Then there exists a directed set D such that $\mathsf{add}(D) = \kappa$ and $\mathsf{wid}(D) = \lambda$.

Proof Consider

$$D = \prod_{\kappa \le \alpha < \lambda}^{(\kappa^+)} \mathcal{P}_{\kappa} \alpha.$$

I.e. D is the set of functions f such that $dom(f) \subseteq \lambda \setminus \kappa$, $|dom(f)| \leq \kappa$, and for all $\alpha \in dom(f)$, $f(\alpha) \in \mathcal{P}_{\kappa}\alpha$. The order is given by

$$f \leq_D g \iff \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \land \forall \alpha \in \operatorname{dom}(f) \ [f(\alpha) \subseteq g(\alpha)].$$

Since $\operatorname{add}(D) = \kappa$ and $\mathcal{P}_{\kappa}\alpha \leq D$ for each $\alpha \in \lambda \setminus \kappa$, $\operatorname{wid}(D) \geq \lambda$. To show that equality holds, let $\langle f_{\alpha} \mid \alpha < \lambda \rangle$ be a sequence of distinct elements in D. By the Δ -system lemma there are $d \subseteq \lambda \setminus \kappa$ and $A \subseteq \lambda$ such that $|A| = \lambda$ and $\operatorname{dom}(f_{\alpha}) \cap \operatorname{dom}(f_{\beta}) = d$ for distinct $\alpha, \beta \in A$. Then by noting that $|\prod_{\alpha \in d}^{(\kappa^+)} \mathcal{P}_{\kappa}\alpha| < \lambda$, there is a $g \in D$ which bounds κ -many f_{α} 's.

4 The directed sets $D_{\kappa}(S)$

One notices at once that if add(D) = add(E), then $wid(D \times E) \ge \max\{wid(D), wid(E)\}$. But unlike add and cof, the width of finite products cannot be computed easily. In this section we show that there are directed sets D, E such that add(D) = add(E) and $wid(D \times E) > \max\{wid(D), wid(E)\}$.

Before that, we will take a look at the case $add(D) \neq add(E)$.

Proposition 4.1 If add(D) < add(E), then $wid(D \times E) = wid(D)$.

This is proved by the next lemma.

Lemma 4.2 Let $\kappa := \operatorname{add}(D) < \operatorname{add}(E)$. Then

$$\mathcal{P}_{\kappa}\lambda < D \times E \iff \mathcal{P}_{\kappa}\lambda < D$$

for any cardinal $\lambda \geq \kappa$.

Proof (\Leftarrow) Let $X \subseteq D \times E$ be a thin subset of size λ , and let $p: D \times E \to D$ be the projection. Put Y := p[X]. Then Y is thin and $|Y| = \lambda$, since for each $d \in Y$, $|p^{-1}[Y_{\leq d}]| < \kappa$.

$$(\Rightarrow)$$
 Trivial, using transitivity of \leq .

Now we turn to our main results on cofinal types.

Definition 4.3 Let κ , λ be both regular with $\kappa < \lambda$. We define the following directed set, where the ordering is given by inclusion. For $S \subseteq E_{\kappa}^{\lambda} = \{\alpha \in \lambda \mid \text{cf}\alpha = \kappa\}$,

$$D_{\kappa}(S) \stackrel{\text{def}}{=} \{x \subseteq S \mid |x| \le \kappa \text{ and } \forall y \subseteq x \text{ [otp } y = \kappa \to \sup y \in x]\}.$$

Here, otp denotes the order type of a set of ordinals.

Todorčević [16] defined and studied these directed sets for $\kappa = \omega$. Note that by letting $S := \{\alpha \in E_{\kappa}^{\lambda} \mid \alpha \text{ is not a limit point of elements of } E_{\kappa}^{\lambda}\}$, we have $D_{\kappa}(S) = \mathcal{P}_{\kappa}S \cong \mathcal{P}_{\kappa}\lambda$. The following statements mimic Lemmas 1,2,3 and Theorems 4,6 in [16], but because of the assumption on cardinal arithmetic, they are not full generalizations.

Lemma 4.4 Let $\omega \leq \kappa < \lambda$, where κ is regular and λ is strongly κ^+ -inaccessible, and let $S, S' \subseteq E_{\kappa}^{\lambda}$ with S unbounded in λ . Then

$$D_{\kappa}(S) \leq D_{\kappa}(S')$$
 implies $S' \setminus S$ is nonstationary in λ .

Proof Let $f: D_{\kappa}(S) \to D_{\kappa}(S')$ be a Tukey function. Without loss of generality, f depends only on its values for singletons, i.e. $f(x) = \bigcup_{\alpha \in x} f(\{\alpha\})$ for all nonempty $x \in D_{\kappa}(S)$. By the Δ -system lemma we obtain an $A \subseteq S$ of size λ and a $d \subseteq S'$ such that

$$\begin{split} \forall \alpha, \beta \in A \ [\alpha \neq \beta \to f(\{\alpha\}) \cap f(\{\beta\}) = d \,], \\ \forall \alpha \in A \ [\min(f(\{\alpha\}) \setminus d) > \sup d \,], \\ \text{and} \quad \forall \alpha, \beta \in A \ [\alpha < \beta \to \sup(f(\{\alpha\}) \setminus d) < \min(f(\{\beta\}) \setminus d)]. \end{split}$$

Next, put

$$C_0 = \left\{ \alpha \in \lambda \mid \text{there exists a strictly increasing sequence } \langle \alpha_{\xi} \mid \xi < \kappa \rangle \text{ such that } \alpha = \sup \left\{ \alpha_{\xi} \mid \xi < \kappa \right\} = \sup \bigcup_{\xi < \kappa} f(\{\alpha_{\xi}\}) \right\}$$

and let C be the topological closure of C_0 in λ (with respect to the order topology). C_0 is closed for κ -sequences and also unbounded in λ , and thus C becomes a club. For our aim, we demonstrate that $C \cap (S' \setminus S) = \emptyset$. Suppose there were a $\gamma \in C \cap (S' \setminus S)$. Then $\gamma \in C_0$, so fix a sequence $\langle \alpha_{\xi} \mid \xi < \kappa \rangle$ witnessing it. But $\gamma \in S' \setminus S$ implies that $\{\alpha_{\xi} \mid \xi < \kappa\}$ is unbounded in $D_{\kappa}(S)$ and that $\{\gamma\} \cup \bigcup_{\xi < \kappa} f(\{\alpha_{\xi}\})$ is an upper bound of $\{f(\alpha_{\xi}) \mid \xi < \kappa\}$ in $D_{\kappa}(S')$. This contradicts the assumption that f is Tukey. \square

Theorem 4.5 Let $\omega \leq \kappa < \lambda$, where κ is regular and λ is strongly κ^+ -inaccessible. Denote by $\mathcal{D}(\kappa, \lambda)$ the set of cofinal types with additivity κ and cofinality λ . Then there are 2^{λ} many pairwise incomparable elements of $\mathcal{D}(\kappa, \lambda)$.

Proof For $i \in \lambda \times 2$ let $A_i \subseteq E_{\kappa}^{\lambda}$ be pairwise disjoint stationary sets. For each $f \in {}^{\lambda}2$, put $S_f := \bigcup_{i \in f} A_i$. Now $\langle D_{\kappa}(S_f) \mid f \in {}^{\lambda}2 \rangle$ is a family of pairwise incomparable elements of $\mathcal{D}(\kappa, \lambda)$.

Lemma 4.6 ([14]) Let $\omega \leq \kappa < \lambda$, where κ is regular and λ is strongly κ^+ -inaccessible, and let $S, S' \subseteq E_{\kappa}^{\lambda}$ be unbounded in λ . Then

$$D_{\kappa}(S) \times D_{\kappa}(S') \ge \mathcal{P}_{\kappa} \lambda$$
 iff $S \cap S'$ is nonstationary in λ .

Proof (\Rightarrow) This is proved by a similar argument as in Lemma 4.4.

(\Leftarrow) Suppose that $S \cap S'$ is nonstationary in λ . Pick a club $C \subseteq \lambda$ disjoint from $S \cap S'$. For $\xi < \lambda$ pick recursively $\alpha_{\xi} \in S$ and $\beta_{\xi} \in S'$ so that for all $\xi < \zeta < \lambda$ there is a $\gamma \in C$ such that

$$\alpha_{\xi}, \beta_{\xi} < \gamma < \alpha_{\zeta}, \beta_{\zeta}.$$

Consider

$$f: \mathcal{P}_{\kappa} \lambda \to D_{\kappa}(S) \times D_{\kappa}(S')$$

$$\psi \qquad \qquad \psi$$

$$x \mapsto \langle \{\alpha_{\xi} \mid \xi \in x\}, \{\beta_{\xi} \mid \xi \in x\} \rangle.$$

We show that this function is Tukey. First note that $X \subseteq \mathcal{P}_{\kappa}\lambda$ is unbounded iff $|\bigcup X| \ge \kappa$. If X is such, then

$$f[X] = \{ \langle \{ \alpha_{\mathcal{E}} \mid \xi \in x \}, \{ \beta_{\mathcal{E}} \mid \xi \in x \} \rangle \mid x \in X \}$$

is also unbounded, since there exists a $\gamma \in C$ which is a limit of two strictly increasing κ -sequences consisting of α_{ξ} ($\xi \in \bigcup X$) and β_{ξ} ($\xi \in \bigcup X$) respectively.

Corollary 4.7 ([14]) Under the same notations and assumptions as above,

$$D_{\kappa}(S) \geq \mathcal{P}_{\kappa}\lambda$$
 iff S is nonstationary in λ .

Proof Just take S = S' in Lemma 4.6.

Theorem 4.8 ([14]) Let κ, λ be infinite regular cardinals with $\kappa^+ < \lambda$ and λ strongly κ^+ -inaccessible. Then there exist directed sets D_1 and D_2 such that

$$D_i \not\geq \mathcal{P}_{\kappa} \lambda \quad for \ i = 1, 2$$

but

$$D_1 \times D_2 \equiv \mathcal{P}_{\kappa} \lambda$$
.

Proof To prove the Theorem, let A be any unbounded nonstationary subset of E_{κ}^{λ} . Split $E_{\kappa}^{\lambda} \setminus A$ into two disjoint stationary sets S'_1 and S'_2 . Then apply Lemma 4.6 to $D_{\kappa}(S'_1 \cup A) \times D_{\kappa}(S'_2 \cup A)$. That $D_i \leq \mathcal{P}_{\kappa} \lambda$ (i = 1, 2) is clear from Lemma 3.2.

We will call such a pair D_1, D_2 of directed sets a Tukey decomposition of $\mathcal{P}_{\kappa}\lambda$.

Remark 4.9 We note that, in view of Lemma 4.2, the above D_1 and D_2 must satisfy $\mathsf{add}(D_1) = \mathsf{add}(D_2)$. Besides, D_1 and D_2 must have different cofinal types, because $D \times D \equiv D$ for any directed set D. (This follows from Proposition 2.5, or from the fact that the diagonal $\{\langle d, d \rangle \mid d \in D\}$ is cofinal in $D \times D$.)

5 The tree property for directed sets

Definition 5.1 (κ -tree) ([8]) Let D denote a directed set. A triple $\langle T, \leq_T, s \rangle$ is said to be a κ -tree on D if the following holds.

- 1) $\langle T, \leq_T \rangle$ is a partially ordered set.
- 2) $s: T \to D$ is an order preserving surjection.
- 3) For all $t \in T$, $s \upharpoonright T_{\leq t} : T_{\leq t} \xrightarrow{\sim} D_{\leq s(t)}$ (order isomorphism).

4) For all $d \in D$, $|s^{-1}\{d\}| < \kappa$. We call $s^{-1}\{d\}$ the level d of T.

Note that under conditions 1)2)4), condition 3) is equivalent to 3'):

3') (downwards uniqueness principle) $\forall t \in T \forall d' \leq_D s(t) \exists ! \ t' \leq_T t \ [s(t') = d'].$ We write $t \downarrow d$ for this unique t'.

If a κ -tree $\langle T, \leq_T, s \rangle$ satisfies in addition

5) (upwards access principle) $\forall t \in T \forall d' \geq_D s(t) \exists t' \geq_T t \ [s(t') = d'],$ then it is called a κ -arbor on D.

If D is an infinite regular cardinal κ , a ' κ -tree on κ ' coincides with the classical ' κ -tree'. Moreover, an 'arbor' is a generalization of a 'well pruned tree'.

Definition 5.2 (tree property) ([8]) Let $\langle D, \leq_D \rangle$ be a directed set and $\langle T, \leq_T, s \rangle$ a κ -tree on D. $f: D \to T$ is said to be a faithful embedding if f is an order embedding and satisfies $s \circ f = \mathrm{id}_D$. If for each κ -tree T on D there is a faithful embedding from D to T, we say that D has the κ -tree property. If D has the add(D)-tree property, we say simply D has the tree property.

We note that in [8] the tree property in our definition is called 'weakly ramifiable', and a κ -arbor is called κ -arborescence.

Classically, κ has the tree property (as a cardinal) if κ carries no Aronszajn tree, which is, in our words, a κ -tree on κ into which there is no faithful embedding.

Proposition 5.3 ([8]) Let D be directed set and let $\kappa = \operatorname{add}(D)$. D has the tree property iff for any κ -arbor on D there is a faithful embedding into it.

In [8], Esser and Hinnion posed the question whether the tree property for directed sets with the same additivity is preserved under products. In fact, for the case $\mathsf{add}(D) \neq \mathsf{add}(E)$, a positive result was given.

Proposition 5.4 ([8]) Let D, E be directed sets and add(D) < add(E). If D has the tree property, then $D \times E$ also has the tree property.

Proof Put $\kappa := \operatorname{\mathsf{add}}(D \times E) = \operatorname{\mathsf{add}}(D)$. Let $\langle T, \leq_T, s \rangle$ be an arbitrary κ -tree on $D \times E$. We have to find a faithful embedding $f \colon D \times E \to T$.

First, for each $d \in D$, $T_d := s^{-1}[\{d\} \times E]$ is a κ -tree on $\{d\} \times E \ (\cong E)$. Now we have $\kappa < \mathsf{add}(E)$ and hence there exists a faithful embedding into T_d , and moreover the number of faithful embeddings is less than κ (see [8]). Let F_d be the set of all faithful embeddings from $\{d\} \times E$ to T_d , and let $\overline{g} : D_{\leq d} \times E \to \bigcup_{d' \leq_D d} T'_d$ denote the faithful embedding which is generated by $g \in F_d$. Define

$$T_* := \bigcup_{d \in D} \{ \overline{g} \mid g \in F_d \},$$
$$\overline{g} \leq_* \overline{g'} \iff \overline{g} \subseteq \overline{g'},$$
$$s_*^{-1} \{d\} := \{ \overline{g} \mid g \in F_d \}$$

so that $\langle T_*, \leq_*, s_* \rangle$ becomes a κ -tree on D. Since we are assuming that D has the tree property, we get a faithful embedding $f_* \colon D \to T_*$. Define f(d, e) to be $(f_*(d))(e)$, and this completes the proof.

So we may concentrate on the case add(D) = add(E).

The following proposition gives the connection between our problem and the Tukey ordering. It is implicit in [10] but we give a direct proof. This has the advantage that the related statements in [10] can now be obtained as corollaries.

Proposition 5.5 If E has the tree property, $D \leq E$ in the Tukey ordering and add(D) = add(E), then D also has the tree property.

Proof Let $\kappa := \mathsf{add}(D) = \mathsf{add}(E)$, and let $\langle T, \leq_T, s \rangle$ be an arbitrary κ -arbor on D. We have to construct a corresponding κ -arbor on E.

Fix a pair of functions $g: D \to E$ and $f: E \to D$ such that

$$\forall d \in D \forall e \in E \ [g(d) \leq_E e \to d \leq_D f(e)]$$

(see Proposition 2.2). Define a κ -arbor $\langle T', \leq', s' \rangle$ on E so that

$$s'^{-1}\{e\} = \left\{ \left\langle e, \ T_{\leq t} \cap s^{-1}g^{-1}[E_{\leq e}] \right\rangle \ \middle| \ t \in s^{-1}\{f(e)\} \right\} \quad \text{for } e \in E,$$
 and
$$\langle e_1, A \rangle \leq' \langle e_2, B \rangle \iff e_1 \leq_E e_2 \ \land \ A \subseteq B \qquad \text{for } \langle e_1, A \rangle, \langle e_2, B \rangle \in T'.$$

We check that $T' = \bigcup_{e \in E} s'^{-1}\{e\}$ is actually a κ -arbor on E. It is straightforward that \leq' is transitive, that s' is order preserving, and that each level has size less than κ . To prove the upwards access property, fix $e_0, e \in E$ with $e_0 \leq_E e$ and $t_0 \in s^{-1}\{f(e_0)\}$ arbitrarily. Take some upper bound of $\{f(e_0), f(e)\}$ in D, say d^* . By the upwards access property of T, there is some $t^* \in s^{-1}\{d^*\}$ with $t^* \geq_T t_0$. Then by the downwards uniqueness property of T,

$$\langle e_0, T_{\leq t_0} \cap s^{-1}g^{-1}[E_{\leq e_0}] \rangle \leq' \langle e, T_{\leq t^*} \cap s^{-1}g^{-1}[E_{\leq e}] \rangle \in s'^{-1}\{e\}.$$

To prove downwards uniqueness, fix $e_0 \leq_E e$ and $t \in s^{-1}\{f(e)\}$ arbitrarily. Take an upper bound d^* of $\{f(e_0), f(e)\}$ in D. By the upwards access property of T, we have a $t^* \in s^{-1}\{d^*\}$ with $t^* \geq_T t$. Put $t_0 := t^* \downarrow f(e_0)$. Then

$$\langle e_0, T_{\leq t_0} \cap s^{-1}g^{-1}[E_{\leq e_0}] \rangle = \langle e_0, T_{\leq t^*} \cap s^{-1}g^{-1}[E_{\leq e_0}] \rangle$$

$$= \langle e_0, T_{\leq t} \cap s^{-1}g^{-1}[E_{\leq e_0}] \rangle = \langle e, T_{\leq t} \cap s^{-1}g^{-1}[E_{\leq e}] \rangle \downarrow e_0.$$

By assumption, there exists a faithful embedding $\varphi \colon E \to T'$. From it we can deduce a faithful embedding from D into T, by choosing the image to be exactly $\bigcup \{A \mid \exists e \in E \ [\langle e, A \rangle = \varphi(e)] \}$.

Thus the tree property is a property applying to the cofinal type of a directed set.

Remark 5.6 We note that this proposition does not hold if $\mathsf{add}(D) \neq \mathsf{add}(E)$. $D = \omega_1$ and $E = \mathcal{P}_{\omega}(\omega_1)$ is a counterexample.

Corollary 5.7 ([8]) If D has the tree property, then add(D) has the tree property in the classical sense.

By Hechler's theorem (see [4]), the eventual dominance order on the reals $\langle \omega_{\omega}, \leq^* \rangle$ can be consistently cofinally similar with any directed set which has $\mathsf{add}(D) \geq \aleph_1$. Hence to obtain the following result we apply Hechler's theorem by taking $\langle D, \leq_D \rangle = \langle \kappa, \in \rangle$. For (1), we let $\kappa = \omega_1$, and for (2), we let κ be weakly compact.

Theorem 5.8

- (1) ZFC and ZFC + " $\langle \omega \omega, \leq^* \rangle$ does not have the tree property" are equiconsistent.
- (2) $\mathsf{ZFC} + \exists weakly\ compact\ and\ \mathsf{ZFC} + "\langle \omega \omega, \leq^* \rangle\ has\ the\ tree\ property"\ are\ equiconsistent.$

Since Hechler's theorem holds with $\langle \omega_{\omega}, \leq^* \rangle$ replaced by \mathcal{M} [2] or \mathcal{N} [5], we have analogous results for \mathcal{M} and \mathcal{N} .

6 Mild ineffability

Mild ineffability was introduced by DiPrisco and Zwicker, and studied by Carr [6] in detail. It can be viewed as a kind of tree property for $\mathcal{P}_{\kappa}\lambda$. We give the definition and an overview on the basic facts. In all the statements of section 6 and 7, the possibility of taking $\kappa = \omega$ is not excluded.

Definition 6.1 (mild ineffability) ([6]) $\mathcal{P}_{\kappa}\lambda$ is said to be *mildly ineffable* (or κ is *mildly* λ -ineffable) iff for any given $\langle A_x \mid x \in \mathcal{P}_{\kappa}\lambda \rangle$ with $A_x \subseteq x$ for all x, there exists some $A \subseteq \lambda$ such that

$$\forall x \in \mathcal{P}_{\kappa} \lambda \exists y \in \mathcal{P}_{\kappa} \lambda \ [x \subseteq y \land A_y \cap x = A \cap x].$$

Proposition 6.2 ([6]) For a cardinal κ , the following are equivalent:

- (a) κ is mildly κ -ineffable.
- (b) κ is strongly inaccessible and has the tree property.
- (c) κ is weakly compact.

Proposition 6.3 ([6]) If κ is mildly λ -ineffable and $\kappa \leq \lambda' \leq \lambda$, then κ is mildly λ' -ineffable.

The relation between mild ineffability and strong compactness for pairs of cardinals κ, λ is as follows.

Proposition 6.4 ([6]) For cardinals $\kappa \leq \lambda$,

- (1) If κ is mildly $2^{\lambda^{<\kappa}}$ -ineffable then κ is λ -strongly compact.
- (2) If κ is λ -strongly compact—then— κ is mildly λ -ineffable.

Proof (1) Let
$$\mathcal{P}(\mathcal{P}_{\kappa}\lambda) = \{X_{\alpha} \mid \alpha < 2^{\lambda^{<\kappa}}\}$$
. For each $x \in \mathcal{P}_{\kappa}(2^{\lambda^{<\kappa}})$, we put $A_x := \{\alpha \in x \mid x \cap \lambda \in X_{\alpha}\}.$

By the mild $2^{\lambda^{<\kappa}}$ -ineffability of κ , there exists an $A\subseteq 2^{\lambda^{<\kappa}}$ such that

$$\forall x \in \mathcal{P}_{\kappa}(2^{\lambda^{<\kappa}}) \exists y \in \mathcal{P}_{\kappa}(2^{\lambda^{<\kappa}}) \ [x \subseteq y \land A_y \cap x = A \cap x].$$

If we let $\mathcal{U} := \{X_{\alpha} \mid \alpha \in A\}$, then one can check (by applying the above formula to suitable x's) that \mathcal{U} is a κ -complete fine ultrafilter on $\mathcal{P}_{\kappa}\lambda$.

(2) Assume that there exists a κ -complete fine ultrafilter \mathcal{U} on $\mathcal{P}_{\kappa}\lambda$. We are given $\langle A_x \mid x \in \mathcal{P}_{\kappa}\lambda \rangle$ such that $A_x \subseteq x$ for all x. For each $\alpha < \lambda$, put $X_{\alpha} := \{x \in \mathcal{P}_{\kappa}\lambda \mid \alpha \in A_x\}$. Let $A := \{\alpha < \lambda \mid X_{\alpha} \in \mathcal{U}\}$. We check that this is the required set. Let $x \in \mathcal{P}_{\kappa}\lambda$ be arbitrary. Then $X_{\alpha} \in \mathcal{U}$ for $\alpha \in x \cap A$, and $\mathcal{P}_{\kappa}\lambda \setminus X_{\alpha} \in \mathcal{U}$ for $\alpha \in x \setminus A$. Put

$$X := \bigcap \{X_{\alpha} \mid \alpha \in x \cap A\} \cap \bigcap \{\mathcal{P}_{\kappa} \lambda \setminus X_{\alpha} \mid \alpha \in x \setminus A\} \in \mathcal{U}.$$

X is cofinal in $\mathcal{P}_{\kappa}\lambda$ since \mathcal{U} is fine, so we can pick $y \in X$ with $y \supseteq x$, and thus $A_y \cap x = A \cap x$.

Corollary 6.5 (GCH) Assume κ is not strongly compact. Let λ be the least cardinal such that κ is not λ -strongly compact, and let μ be the least cardinal such that κ is not mildly μ -ineffable. Assume that λ is regular. Then $\mu = \lambda$ or $\mu = \lambda^+$.

Corollary 6.6 ([6]) For a cardinal κ , κ is mildly λ -ineffable for all $\lambda \geq \kappa$ iff κ is strongly compact.

7 Characterization of the tree property by mild ineffability

The next theorem is stated in [9, Theorem 3.3] with a different formulation. Using the cardinal width, we can state the theorem in a more convenient way.

Theorem 7.1 ([14], cf [9]) Let D be a directed set and let $\kappa := \operatorname{add}(D)$ be strongly inaccessible. The following are equivalent:

- (a) D has the tree property.
- (b) For all $\lambda < \text{wid}(D)$, $\mathcal{P}_{\kappa}\lambda$ has the tree property.
- (c) For all $\lambda < \text{wid}(D)$, $\mathcal{P}_{\kappa}\lambda$ is mildly ineffable.

The proof we give here is a combination of the proofs in [14] and [7]. It enabled a good deal of simplification.

Definition 7.2 ([7]) Let $\langle T, \leq_T, s \rangle$ be an arbor on a directed set D. We define an equivalence relation on D. For $d_1, d_2 \in D$,

$$d_1 \sim d_2 \iff \forall d' \in D \ [d' \ge d_1, d_2 \to \forall t_1 \in s^{-1} \{d_1\} \exists ! t_2 \in s^{-1} \{d_2\} \forall u \in s^{-1} \{d'\} \\ [t_1 \le_T u \longleftrightarrow t_2 \le_T u]].$$

In the above formula, we say that the $t_1 \in s^{-1}\{d_1\}$ and the corresponding $t_2 \in s^{-1}\{d_2\}$ are linked. Equivalent levels give the same partial information on how to take the faithful embedding. Notice that $d_1 \sim d_2$ does not imply that they are comparable.

Lemma 7.3 For the relation defined above,

$$d_1 \sim d_2 \iff \exists d' \in D \ [d' \ge d_1, d_2 \land \forall t_1 \in s^{-1} \{d_1\} \exists ! t_2 \in s^{-1} \{d_2\} \forall u \in s^{-1} \{d'\} \\ [t_1 \le_T u \longleftrightarrow t_2 \le_T u]].$$

Thus \sim is in fact an equivalence relation on D.

Proof (\Rightarrow) Trivial, since D is directed. (\Leftarrow) Use upwards access and downwards uniqueness.

Lemma 7.4 Assume that $\kappa := \operatorname{add}(D)$ is strongly inaccessible, and let $\langle T, \leq_T, s \rangle$ be a κ -arbor on D. If $F \subseteq D$ is a set of representatives with respect to \sim , then F is thin.

Proof Fix an arbitrary $d_0 \in D$. For each element $d \in D_{\leq d_0}$,

$$P_d := \left\{ \left\{ u \in s^{-1} \{ d_0 \} \mid u \ge_T t \right\} \mid t \in s^{-1} \{ d \} \right\}$$

provides a partition of $s^{-1}\{d_0\}$. By Lemma 7.3, we see that $P_{d_1} = P_{d_2}$ iff $d_1 \sim d_2$ for $d_1, d_2 \in D_{\leq d_0}$. Since κ is strongly inaccessible, the number of partitions of $s^{-1}\{d_0\}$ is less than κ .

Proof of 7.1 (a) \Rightarrow (b) Let $\mathsf{add}(D) \leq \lambda < \mathsf{wid}(D)$. Then $\mathcal{P}_{\kappa}\lambda \leq D$, so by Proposition 5.5 $\mathcal{P}_{\kappa}\lambda$ has the tree property.

(b) \Rightarrow (c) It suffices to show, for an arbitrary λ , that the tree property for $\mathcal{P}_{\kappa}\lambda$ implies its mild ineffability. Assume that $\mathcal{P}_{\kappa}\lambda$ has the tree property. Suppose we are given a family $\langle A_x \mid x \in \mathcal{P}_{\kappa}\lambda \rangle$ such that $A_x \in {}^x2$ for $x \in \mathcal{P}_{\kappa}\lambda$. Then

$$\langle \{A_y \upharpoonright x \mid y \supseteq x\} \mid x \in \mathcal{P}_{\kappa} \lambda \rangle$$

is a κ -tree on $\mathcal{P}_{\kappa}\lambda$ since κ is strongly inaccessible. Therefore we have a faithful embedding, which is the same as an $A \in {}^{\lambda}2$ such that

$$\forall x \in \mathcal{P}_{\kappa} \lambda \exists y \in \mathcal{P}_{\kappa} \lambda \ [x \subseteq y \land A_y \upharpoonright x = A \upharpoonright x].$$

(c) \Rightarrow (a) Let $\langle T, \leq_T, s \rangle$ be a κ -arbor on D. Our goal is to produce a faithful embedding $f: D \to T$. Fix a set of representatives $F \subseteq D$ with respect to the equivalence \sim defined above.

Put $\lambda := |F|$. Then $T^* := s^{-1}[F]$ also has size λ . As we have $\lambda < \mathsf{wid}(D)$, the assumption (c) says κ is mildly λ -ineffable.

We define a family $\langle A_x \mid x \in \mathcal{P}_{\kappa} T^* \rangle$ to which we will apply the mild ineffability. For each $x \in \mathcal{P}_{\kappa} T^*$, pick an upper bound $d \in D$ of s[x], and fix $t \in s^{-1}\{d\}$. For $v \in x$ we put $A_x(v) = 1$ if $v \leq_T t$, and $A_x(v) = 0$ otherwise. Then we get an $A \in T^*$ such that

$$\forall x \in \mathcal{P}_{\kappa} T^* \exists y \in \mathcal{P}_{\kappa} T^* \ [x \subseteq y \land A_y \upharpoonright x = A \upharpoonright x].$$

It remains to derive the faithful embedding f from A. For each $d \in F$, let v_d be the unique $v \in s^{-1}\{d\}$ such that A(v) = 1. Then $d \mapsto v_d$ is an embedding from F to T^* . To extend this map to all of D, let $d \in D$ be arbitrary and let $d \sim d^* \in F$ be the corresponding representative. Now v_{d^*} is defined, and we can put f(d) to be the unique $u \in s^{-1}\{d\}$ such that u and v_{d^*} are linked. One can verify that $f: D \to T$ is a faithful embedding.

Corollary 7.5 Let κ be strongly inaccessible and $\lambda \geq \kappa$. Then

 $\mathcal{P}_{\kappa}\lambda$ has the tree property iff κ is mildly $\lambda^{<\kappa}$ -ineffable.

8 Application of the Tukey decomposition

Theorem 8.1 Assume that κ is weakly compact but not strongly compact, and that $\lambda > \kappa^+$ is the least cardinal such that κ is not mildly λ -ineffable. Assume further that λ is strongly κ^+ -inaccessible. Then there exist directed sets D_1 and D_2 with $\mathsf{add}(D_1) = \mathsf{add}(D_2) = \kappa$ such that

 D_1 and D_2 have the tree property

but

 $D_1 \times D_2$ does not have the tree property.

Proof By the Theorem 4.8, we have directed sets D_1 and D_2 such that $D_i \not\geq \mathcal{P}_{\kappa} \lambda$ for i = 1, 2 but $D_1 \times D_2 \equiv \mathcal{P}_{\kappa} \lambda$. Recalling how D_1 and D_2 were defined (or by Remark 4.9), we see that $\mathsf{add}(D_1) = \mathsf{add}(D_2) = \kappa$. By Theorem 7.1, D_1 and D_2 have the tree property but $D_1 \times D_2$ does not have the tree property.

At last, we discuss the consistency of the assumption in the above theorem. We quote the following theorem.

Theorem 8.2 ([13]) If λ is regular and κ is mildly λ -ineffable, then for each regular $\eta < \kappa$, any stationary set $S \subseteq E_{\eta}^{\lambda}$ is reflecting.

Here we call $S \subseteq E_{\eta}^{\lambda}$ reflecting iff there is a limit ordinal $\gamma < \lambda$ such that $S \cap \gamma$ is stationary in γ . Otherwise S is called nonreflecting.

Assuming a strongly compact cardinal κ , we perform a forcing which destroies the mild λ^+ -ineffability of κ and which at the same time preserves the mild λ -ineffability. By Theorem 8.2 the standard forcing which adds a nonreflecing stationary subset (see [3, Definition 4.14]) serves our purpose. To be precise, define P to be the forcing which consists of conditions $p \in {}^{<\lambda^+}2$ (i.e. p is a characteristic function for a subset of an ordinal $<\lambda^+$) such that if we let $S_p := p^{-1}\{1\}$, then $S_p \subseteq E_\omega^{\lambda^+}$ and for all limit ordinals $\gamma < \lambda^+$, $S_p \cap \gamma$ is nonstationary in γ . For $p, q \in P$, p extends q iff $p \supseteq q$. It is known [3] that P preserves cardinals, cofinalities, and GCH, and that P is λ -strategically closed.

This completes the proof.

Theorem 8.3 If we assume the consistency of $ZFC+\exists strongly\ compact$, then ZFC+"the tree property for directed sets is not always preserved under products" is consistent.

Acknowledgement

The author is grateful to Prof. Katsuya Eda for giving advice.

References

- [1] T.Bartoszyński and H.Judah, Set Theory On the Structure of the Real Line, A K Peters, Wellesley, Massachusetts, 1995.
- [2] T.Bartoszyński and M.Kada, Hechler's theorem for the meager ideal, to appear in Topology Appl. http://front.math.ucdavis.edu/math.LO/0209086
- [3] J.Burgess, *Forcing*, in: J. Barwise, ed., Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 403–452.
- [4] M.R.Burke, A proof of Hechler's theorem on embedding \aleph_1 -directed sets cofinally into $(\omega^{\omega}, <^*)$, Arch. Math. Logic. (6) **36** (1997), 399–403.
- [5] M.R.Burke, M.Kada, Hechler's theorem for the null ideal, Arch. Math. Logic (5) 43 (2004), 703–722.
- [6] D.M.Carr, $P_{\varkappa}\lambda$ -Generalizations of Weak Compactness, Zeitschr. f. math. Logik und Grundlagen d. Math. **31** (1985), 393–401.
- [7] O.Esser, unpublished manuscript.
- [8] O.Esser and R.Hinnion, Large Cardinals and Ramifiability for Directed Sets, Math. Log. Quart. (1) 46 (2000), 25–34.
- [9] O.Esser and R.Hinnion, *Tree Properties for Orders : a survey*, A tribute to Maurice Boffa. Bull. Belg. Math. Soc. Simon Stevin (2001) suppl., 133–144.

- [10] R.Hinnion, Ramifiable Directed Sets, Math. Log. Quart. (1) 44 (1998), 216–228.
- [11] J.R.Isbell, The Category of cofinal types II, Trans. Amer. Math. Soc. 116 (1965), 394–416.
- [12] J.R.Isbell, Seven cofinal types, J. London Math. Soc. (2) 4 (1972), 651–654.
- [13] C.A.Johnson, On Ideals and Stationary Reflection, J. Symbolic Logic (2) **54** (1989), 568–575.
- [14] M.Karato, A Tukey decomposition of $\mathcal{P}_{\kappa}\lambda$ and the tree property for directed sets, to appear in Math. Log. Quart.
- [15] J.Schmidt, Konfinalität, Z. Math. Logik Grundlag. Math. 1 (1955), 271–303.
- [16] S.Todorčević, Directed Sets and Cofinal Types, Trans. Amer. Math. Soc. (2) 290 (1985), 711–723.
- [17] J.W.Tukey, Convergence and uniformity in topology, Ann. of Math. Studies, no.2, Princeton Univ. Press, 1940.