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Abstract

Generalizing a result of Todoréevié, we prove the existence of directed sets D, E
such that D # Pe and E 2 P but D x E > PgA in the Tukey ordering. As an
application, we show that the tree property for directed sets introduced by Hinnion
is not preserved under products. Most of the results appear in [14].

1 Introduction

Any notion of convergence, described in terms of sequences, nets or filters, involves
directed sets, or at least a particular kind of them. In general, directed sets are considered
to express the type of convergence. Tukey defined an ordering on the class of all directed
sets [17]. This ordering, now called Tukey ordering, was studied by Schmidt [15], Isbell
[11],[12], Todorgevié [16] and others. In particular, the directed sets of the form PcA
are of interest, because they possess some nice properties. In section 4 we generalize the
directed sets D(S) introduced by Todoréevié to D,(S), where £ is an arbitrary infinite
regular cardinal. With these directed sets, we show (Theorem 4.8) that there exist
directed sets D, E such that D # P.X and E 2 PeA but D x E > P\ in the Tukey
ordering.

The notion of tree property for infinite cardinals (the nonexistence of an Aronszajn
tree) is well known, and is related to a large variety of set theoretic statements. The
tree property for directed sets was invented by Hinnion [10], and studied by Esser and
Hinnion [8],[9]. It is a generalization of the usual tree property for infinite cardinals
and especially, for P, it is closely related with the mild ineffability if x is strongly
inaccessible (see Corollary 7.5). By an application of the result mentioned above, we
show (Theorem 8.1) that there exist two directed sets D, E for which add(D) = add(E)
is weakly compact, and both D and E have the tree property but D x E does not. It
was an open problem whether such D, E exist [8].
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2 Directed sets and cofinal types

By classifying directed sets into isomorphism types, and further identifying a directed
set with its cofinal subset, we arrive at the notion of cofinal type. On the other hand, the
same equivalence relation is deduced from a guasi-ordering on the class of all directed

sets. First we state the definitions.

Definition 2.1 Let (D, <p), (£, <g) be directed sets. A function f: E — D which
satisfles

Vd € D3e € EVe >pe [f(e') >p d]

is called a convergent function. If such a function exists we write D < £ and say E is
cofinally finer than D. < is transitive and is called the Tukey ordering on the class of
directed sets. A function g: D — E which satisfies

Vec E3de DVd € D [g{d) <g e — d <pd]

is called a Tukey function.

If there exists a directed set C into which D and E can be embedded cofinally, we
say D is cofinally similar with E. In this case we write D = E. = is an equivalence
relation, and the eqivalence classes with respect to = are the cofinal types.

The following propositions give the connection between the definitions. For the
proofs, consult [16]

Proposition 2.2 For directed sets D and E, the follwing are equivalent.

(a) DL E.

(b) There exists a Tukey function g: D — E.

(c) There exist functions g: D — E and f: E — D such that
Vd € DVe € E [g(d) <ge — d <p fle)].

Proposition 2.3 For directed sets D and F, the follwing are equivalent.

(a) D=F.
(b) DS E and EX D.

So we can regard < as an ordering on the class of all cofinal types.
One should always keep in mind the distinction between the unbounded and the
cofinal subsets of a directed set.

Proposition 2.4 For directed sets D and E,

(i) f: E — D is convergent iff YC C E cofinal [f[C] cofinall.
(ii) g: D — E is Tukey iff YX C D unbounded [g[X]| unbounded,.

With two or more directed sets, we can form the product of these, to which we will
always give the product ordering.
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Proposition 2.5 For directed sets D and E, D x E is the least upper bouﬁd of {D, E}
in the Tukey ordering.

The next two cardinal functions are the most basic ones, being taken up in various
contexts (mostly on a paticular kind of directed sets).

Definition 2.6 For a directed set D,

add(D) ¥ min{|X|| X C D unbounded},

cof(D) € min{|C| | C € D cofinal}.

These are the additivity and the cofinality of a directed set. add(D) is only well-defined
for D without maximum. In the sequel, any statement referring to add(D) presupposes
that D has no maximum.

Proposition 2.7 For a directed set D (without mazimum,),
Ny < add(D) < cof(D) < |DJ.

Furthermore, add(D) is regular and add(D) < cf(cof(D)). Here cf is the cofinality of a
cardinal, which is the same as the additivity of it.

Proposition 2.8 For directed sets D and E, D < E implies
add(D) > add(E) and cof(D) < cof(E).

From the above proposition we see that these cardinal functions are invariant under
cofinal similarity.

Example 2.9 (see [1, chapter 2]) Let M, N be respectively the meager ideal and the
null ideal, each ordered by inclusion. (“w,<*) is the eventual dominance order on the
reals. We have (“w, <) <M < N in the Tukey ordering, and thus

R, < add(N) < add(M) < b < ? < cof(M) < cof (V) < 2%,
Proposition 2.10 For directed sets D and E,

add(D x E) = min{add(D), add(E)},
cof(Dx Ey = max{cof(D),cof (E)}.

3 The width of a directed set

In the following, & is always an infinite regular cardinal. If P is partially ordered set, we
use the notation X<, = {z € X | z < a} for X a subset of P and a € P.

The cofinal type of P, is an interesting topic by itself (see [16]). As usual, PeA =
{z € M| |z| < &} is ordered by inclusion.
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Lemma 3.1 add(PcA) = k, and X < cof (P A) < A%, In particular, if k is strongly
inaccessible, then cof(Pe)\) = A<F.

Proof For the last statement, notice that in general for a cofinal C C PeA, P =
Uzec Pz, and thus A<% < 2<% [C]. O

Lemma 3.2 For a directed set D, if add(D) > k and cof (D) < A, then D < PeA.

It turns out that the following cardinal function, which seems to be a natural one,
gives a suitable formulation of Theorem 7.1.

Definition 3.3 The width of a directed set D is defined by
wid(D) % sup{|X|* | X is a thin subset of D},
where ’a thin subset of D’ means
Vd € D[|X<4| < add(D)].

Example 3.4 Let &, A, 4 be regular with A<* = X and A < . Then for the directed set
i X PgA ordered by

(a,2) < (B,y) <= a<fAzCy
we have

add(u x PA) = &,
wid(p X PeA) AT,
cof (i X PeA) .

il

The second equation can be verified using Proposition 4.1.
Fix D and put & := add(D).
Lemma 3.5 For any cardinal X\ > Kk, the follwing are equivalent.

(a) D has a thin subset of size .
(b) D> P.A.
(c) There exists an order-preserving function f: D — P\ with f[D] cofinal in P

Proof (a) = (b) Let X C D be a thin subset of size . Define
f:D — PX
w w

d*_)ng

Then f is (order-preserving and) convergent.
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(b) = (c) If f: D — Py is convergent, define

g: D — P.A
W W

d — ﬂd'zd f(d')

Then g is convergent and also order-preserving. :
(c) = (a) For such g as above, pick for each x € A a ds € D such that g(d,).3 o,
and put X := {d, | @ € A}. It is readily seen that X is thin. Furthermore | X| = A since

Ugex 9(d) = A. O
Corollary 3.6

wid(D) = sup{AT | D> PA}
= sup{A\* | 3f: D — P\ order-preserving with FID] cofinal in PcA}.

‘The next inequality is checked easily.
Lemma 3.7
add(D)* < wid(D) < cof(D)*.
Lemma 3.8 wid(D) is never singular.

Proof Assume A := wid(D) > cf()) for a directed set D with add(D) = k. Fix a
sequence of ordinals {0, | & < cf (A)) converging up to A. Then there are convergent
order-preserving mappings f, : D — Puby for all @ < cf()\). Fix also a convergent
order-preserving g : D — Pycf(A). Consider

h:D — PeA
v W

d ﬂaeg(d]fa(d)‘

h is order-preserving and convergent. Hence we have a contradiction. O

However, the next proposition will show that wid(D) can be a limit cardinal. For
example, that for any strongly inaccessible A there is a directed set D such that wid(D) =
A ‘

Proposition 3.9 Let x be regular and let A be strongly k¥ -inaccesible (i.e. A is regular
and Yp < X [ < X)). Then there exists a directed set D such that add(D) = x and
wid(D) = A.

Proof Consider

ot
D= H;(c_<_L3<A Pra.
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Le. D is the set of functions f such that dom(f) € A\ &, |dom(f)| < &, and for all
a € dom(f), f(a) € Pea. The order is given by

f <pg <= dom(f) C dom(g) A Ve € dom(f) [f(a) € g{a)].

Since add(D) = x and Py < D for each a € A\, wid(D) > A. To show that equality
holds, let (f, | @ < ) be a sequence of distinct elements in D. By the A-system lemma
there are d C A\ x and A C X such that |[4] = X and dom(f,) Ndom(fz) = d for distinct

a, 8 € A. Then by noting that | Hff;) Pl < A, there is & g € D which bounds x-many
fao's. O

4 The directed sets D(5)

One notices at once that if add(D) = add(E), then wid(D x E) > max{wid(D), wid(E)}.
But unlike add and cof, the width of finite products cannot be computed easily. In
this section we show that there are directed sets D, E such that add(D) = add(E) and
wid(D x E) > max{wid{D}, wid(E)}.

Before that, we will take a look at the case add(D) # add(E).

Proposition 4.1 If add(D) < add(E), then wid(D x E) = wid(D).
This is proved by the next lemma.
Lemma 4.2 Let := add(D) < add(E). Then
PALDXE <= PAL<D
for any cardinal A > k.

Proof (<) Let X C D x E be a thin subset of size A, and let p : D x E — D be
the projection. Put Y := p[X]. Then Y is thin and |Y| = A, since for each d € Y,
[P V<]l < 5.

(=) Trivial, using transitivity of <. O

Now we turn to our main results on cofinal types.

Definition 4.3 Let «, A be both regular with kK < A\. We define the following directed
set, where the ordering is given by inclusion. For § C E} = {a € A | cfa = &},

D.(S) & {xCS||z|]<kand Vy C z [otpy =k — supy € z]}.
Here, otp denotes the order type of a set of ordinals.

Todorgevié [16] defined and studied these directed sets for £ = w. Note that by letting
S :={a € E} | o is not a limit point of elements of E}}, we have D(S) = P.S = P ).

The following statements mimic Lemmas 1,2,3 and Theorems 4,6 in [16], but because
of the assumption on cardinal arithmetic, they are not full generalizations.
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Lemma 4.4 Let w < k < \, where & is reqular and X is strongly k" -inaccessible, and
let S,8' C E} with S unbounded in X. Then

Do(S) < D.(S") implies S\ S is nonstationary in A.

Proof Let f: D.(S) — D.(S") be a Tukey function. Without loss of generality, f
depends only on its values for singletons, ie. f(z) = Uye, f({a}) for all nonempty
z € D(S). By the A-system lemma we obtain an A C S of size Xand ad C 5 such
that

Vo, € Ala#f— f{ah) N fH{B}) =d],
Va € A [min(f({a})\ d) > supd],
and  Va,0 € A o< — sup(f({a}) \ d) <min(f({5}) \ d)]

Next, put

Cy = {a € X | there exists a strictly increasing sequence (ag | € < k) such that

o = sup{ag | € <k} =sup | J f{ee})}

E<K

and let C be the topological closure of Cp in A (with respect to the order topology). Cy
is closed for x-sequences and also unbounded in A, and thus C becomes a club. For our
aim, we demonstrate that C N (S \ ) = @. Suppose there were a v € Cn(s\S).
Then v € Co, so fix a sequence {ag | £ < &) witnessing it. But v € S'\ S implies that
{ae | € < k} is unbounded in D.(S) and that {y} U U£<K‘f({0{5}) is an upper bound of
{f(c) | € < &} in D(S'). This contradicts the assumption that f is Tukey. O

Theorem 4.5 Let w < k < X\, where k is regular and A is strongly kT -inaccessible.
Denote by D(k, \) the set of cofinal types with additivity s and cofinality . Then there
are 2 many pairwise incomparable elements of D(k, A).

Proof Forie A x 2let A; C E be pairwise disjoint stationary sets. For each f €22,
put Sy = {J;cs Ai- Now (Du(Sy) | f €*2) is a family of pairwise incomparable elements
of D(k, A). O

Lemma 4.6 ([14]) Let w < & < X, where & is regular and X is strongly kT -inaccessible,
and let S, 8" C E) be unbounded in \. Then

D.(S) x D(S") 2 Per iff SN S is nonstationary in .

Proof (=) Thisis proved by a similar argument as in Lemma 4.4.

(<) Suppose that SN S’ is nonstationary in X, Pick a club C C A disjoint from
S8 For £ < A pick recursively o € S and B¢ € S’ so that for all £ < ¢ < A thereis
a v € C such that

Otg,ﬁg << Otc,ﬁc.
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Consider

FiPA — Di(S) x Da(S")
w W

z = ({ag|&eat, {B|Eca}).

We show that this function is Tukey. First note that X C P\ is unbounded iff || X| >
x. If X is such, then

fIX]={{ec | €€ ch {Bc | £ €a}) [z € X}

is also unbounded, since there exists a v € C which is a limit of two strictly increasing
k-sequences consisting of ¢ (€ € |JX) and B¢ (£ € |J X) respectively. O

Corollary 4.7 ([14]) Under the same notations and assumptions as above,
D.(S) > P.A iff S is nonstationary in .
Proof Just take S =5 in Lemma 4.6. O

Theorem 4.8 ([14]) Let k, A be infinite regular cardinals with k¥ < X and A strongly
kT -inaccessible. Then there ezist directed sets Dy and Do such that

D; 2 P fori=1,2
but
D1 X Dz = P

Proof To prove the Theorem, let A be any unbounded nonstationary subset of E,.
Split E2 \ A into two disjoint stationary sets S} and Sj. Then apply Lemma 4.6 to
D.(S]UA) X D(S;UA). That D; < PcA (i = 1,2) is clear from Lemma 3.2. O

We will call such a pair Dy, Dy of directed sets a Tukey decomposition of PgA.

Remark 4.9 We note that, in view of Lemma 4.2, the above Dy and D; must satisfy
add(D;) = add(D;). Besides, D; and D, must have different cofinal types, because
D x D = D for any directed set D. (This follows from Proposition 2.5, or from the fact
that the diagonal {(d,d) | d € D} is cofinal in D x D.)

5 The tree property for directed sets

Definition 5.1 (k-tree) ([8]) Let D denote a directed set. A triple (T, <g,s) is said
to be a k-tree on D if the following holds.

1) (T, <r) is a partially ordered set.
2) s: T — D is an order preserving surjection.
3) Forallte T, s Tg: Tx; — D<g( (order isomorphism).



4) For all d € D, |s7{d}| < k. We call s7*{d} the leveld of T.
Note that under conditions 1)2)4), condition 3) is equivalent to 3’):
3"} (downwards uniqueness principle) V¢ € TVd' <p s(t)3! ' <rt [s(t) =d].

We write t | d for this unique t'.
If a k-tree (T, <z, s) satisfies in addition

5) (upwards access principle) Vt € TVd' >p s(t)3t' 27t [s(') = d'l,
then it is called a s-arbor on D.

If D is an infinite regular cardinal x, a ‘k-tree on &’ coincides with the classical
‘x-tree’. Moreover, an ‘arbor’ is a generalization of a ‘well pruned tree’.

Definition 5.2 (tree property) ([8]) Let {D,<p) be a directed set and (T,<7,8) a
k-tree on D. f: D — T is said to be a faithful embedding if f is an order embedding
and satisfies so f = idp. If for each s-tree T' on D there is a faithful embedding from D
to T, we say that D has the s-tree property. If D has the add(D)-tree property, we say
simply D has the tree property.

We note that in [8] the tree property in our definition is called ‘weakly ramifiable’,
and a k-arbor is called k-arborescence.

Classically, < has the tree property (as a cardinal) if k carries no Aronszajn tree,
which is, in our words, a s-tree on  into which there is no faithful embedding.

Proposition 5.3 ([8]) Let D be directed set and let & = add(D). D has the tree property
iff for any k-arbor on D there is a faithful embedding into .

In [8], Esser and Hinnion posed the question whether the tree property for directed
sets with the same additivity is preserved under products. In fact, for the case add(D) #
add(E), a positive result was given.

Proposition 5.4 ([8]) Let D, E be directed sets and add(D) < add(E). If D has the
tree property, then D x E also has the tree property.

Proof Put & := add(D x E) = add(D). Let (T, <r, 5) be an arbitrary x-tree on DxE.
We have to find a faithful embedding f: D x £ —T.

First, for each d € D, Ty := s~ '[{d} x E] is a x-tree on {d} X E (= E). Now we
have r < add(E) and hence there exists a faithful embedding into Ty, and moreover the
number of faithful embeddings is less than & (see [8]). Let Fy be the set of all faithful
embeddings from {d} x E to Ty, and let § : D<g X E — Ua <, T denote the faithful
embedding which is generated by g € Fi. Define

T* = U{E‘QEFOE},
deD

7<.9 < 7¢¢,

s, Hd}={7g | g€ Fa}
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so that (T, <s, 8«) becomes a r-tree on D. Since we are assuming that D has the tree

property, we get a faithful embedding f.: D — T.. Define f(d,e) to be (f.(d))(e), and
this completes the proof. a
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So we may concentrate on the case add(D) = add(E).

The following proposition gives the connetcion between our problem and the Tukey
ordering. It is implicit in [10] but we give a direct proof. This has the advantage that
the related statements in [10] can now be obtained as corollaries.

Proposition 5.5 IfE has the tree property, D < E in the Tukey ordering and add(D) =
add(E), then D also has the tree property.

Proof Let & := add(D) = add(E), and let (7', <r, s) be an arbitrary s-arbor on D. We
have to construct a corresponding s-arbor on F.
Fix a pair of functions g: D — E and f: E — D such that

Vd € DVe € E [9(d) <z e — d <p f(e)]

(see Proposition 2.2). Define a k-arbor (1", <’,s) on E so that

g el = {( e, Te,Ns™ g7 Ece]) { te s”l{f(e)}} foree E,
and {eg, A <' {eq, B) e ¢, <gpes N ACB for {e1, A),{es, B) € T".

We check that T = |,z 8" '{e} is actually a x-arbor on E. It is straightforward that <’
is transitive, that s’ is order preserving, and that each level has size less than k. To prove
the upwards access property, fix eg, e € E with eg <p e and ¢, € s71{f(es)} arbitrarily.
Take some upper bound of {f(eg), f(e)} in D, say d*. By the upwards access property
of T, there is some #* € s71{d*} with t* >7 t;. Then by the downwards uniqueness
property of T,

< eo, T<to N 5_19~1[Eseo}> <! < e, T<p+ N Swlgml[ESeD € Sl—l{e}-

To prove downwards uniqueness, fix ey <z e and ¢ € s 1{f(e)} arbitrarily. Take an
upper bound d* of {f{eg), f(e)} in D. By the upwards access property of T, we have a
t* € s7H{d*} with t* >7 t. Put ¢o :=t*| f(eo). Then

(€0 Tty N9 [Beey]) = (€0, T N5 g [Ee])
= (e TtNs g [Bee]) = (& T<eNs g7 [Ee]) leo.

By assumption, there exists a faithful embedding ¢: F — T”. From it we can deduce
a faithful embedding from D into T, by choosing the image to be exactly |J{A | Je €

E [(e, A) = p(e)]}. _ =
Thus the tree property is a property applying to the cofinal type of a directed set.

Remark 5.6 We note that this proposition does not hold if add(D) # add(F). D = w;
and E = P,(w) is a counterexample.

Corollary 5.7 ([8]) If D has the tree property, then add(D) has the tree property in the
classical sense.
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By Hechler’s theorem (see [4]), the eventual dominance order on the reals (“w, <*)
can be consistently cofinally similar with any directed set which has add(D) > N;. Hence
to obtain the following result we apply Hechler’s theorem by taking (D,<p) = (K, €).
For (1), we let x = w;, and for (2), we let k be weakly compact.

Theorem 5.8

(1) ZFC and ZFC + "(“w, <*) does not have the tree property” are equiconsistent.
(2) ZFC + Jweakly compact and ZFC+ "Wy, <*} has the tree property” are equiconsis-
tent.

Since Hechler’s theorem holds with (“w,<*) replaced by M [2] or N [5], we have
analogous results for M and V.

6 Mild ineffability

Mild ineffability was introduced by DiPrisco and Zwicker, and studied by Carr [6] in
detail. It can be viewed as a kind of tree property for P.A. We give the definition and
an overview on the basic facts. In all the statements of section 6 and 7, the possibility
of taking k == w is not excluded.

Definition 6.1 (mild ineffability) ([6]) P« is said to be maldly ineffable (or s is
mildly A-ineffable) iff for any given (A, | z € P with Ay C z for all z, there exists
some A C X such that

Vo€ P Ay € PA[xr CyAA,Na=ANz]

Proposition 6.2 ([6]) For a cardinal k, the following are equivalent:

(a) & is mildly s-ineffable.
(b) & s strongly inaccessible and has the tree property.
(c) k is weakly compact.

Proposition 6.3 ([6]) If & is mildly A-ineffable and £ < XN < X, then k is mildly
X -ineffable.

The relation between mild ineffability and strong compactness for pairs of cardinals
Kk, A is as follows.
Proposition 6.4 ([6]) For cardinals £ < A,

(1) If x is mildly A" _ineffable then & is A-strongly compact.
(2) If & is A-strongly compact then  k is mildly A-ineffable.
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Proof (1) Let P(P.A) ={X, | <2*"}. For each 7 € Pe(2*™"), we put
Ay = {d€$ [zNAe X}
By the mild 2**"-ineffability of «, there exists an A C 22" such that
Vo € P2 )3y e P2 [z CyAA, Nz =ANz]

If we let U := {X, | @ € A}, then one can check (by applying the above formula to
suitable z’s) that U is a k-complete fine ultrafilter on PeA.

(2)  Assume that there exists a x-complete fine ultrafilter U on P,A. We are given
(Ay | © € Pc)) such that A, C z for all z. For each o < A, put Xo:= {r € PA | a €
Az}, Let A:={a < A| X, € U}. We check that this is the required set. Let z € PyA
be arbitrary. Then X, € U for « € z N A, and P,A\ X, €U for a € 2\ A. Put

X=[XalacznAIn[ {PA\ Xo | @€ 2\ A} €U.

X is cofinal in P\ since I is fine, so we can pick y € X with y 2 z, and thus 4, Nz =
ANz 0

Corollary 6.5 (GCH) Assume & is not strongly compact. Let X be the least cardinal
such that k s not A\-strongly compact, and let u be the least cardinal such that k 4s not
mildly p-ineffable. Assume that X is reqular. Then p =X or p= A*.

Corollary 6.6 ([6]) For a cardinal k, & is mildly A-ineffable for all A > k iff & is
strongly compact.

7 Characterization of the tree property by mild in-
effability

The next theorem is stated in [9, Theorem 3.3] with a different formulation. Using the
cardinal width, we can state the theorem in a more convenient way.

Theorem 7.1 ([14], cf [9]) Let D be a directed set and let k = add(D) be strongly
inaccessible. The following are equivalent: :

(a) D has the tree property.
(b) For all A < wid(D), P has the tree property.
(c) For all A < wid(D), P is mildly ineffable.

The proof we give here is a combination of the proofs in [14] and [7]. It enabled a
good deal of simplification.



Definition 7.2 ([7]) Let (7, <r,s) be an arbor on a directed set D. We define an
equivalence relation on D. For dy,dz € D,

dy ~ dy <
Vd € D[d > dy,dy— Vi € s7Hd } 3, € s Hdx}Vu € s Hd'}
[ty <pu e by <g uf.
In the above formula, we say that the t; € s7'{d:} and the corresponding ts € s {ds}

are linked. Equivalent levels give the same partial information on how to take the faithful
embedding.. Notice that di ~ d» does not imply that they are comparable.

Lemma 7.3 For the relation defined above,

dl ~ dg =
3d' e D [d’ > dy, do AVt € 5_1{d1}3!t2 & s_l{dg}\fu < S_l{d’}
[tl ST U <> tg ST u]]

Thus ~ 1s in fact an equivalence relation on D.

Proof (=) Trivial, since D is directed.
(<) Use upwards access and downwards uniqueness. O

Lemma 7.4 Assume that k = add(D) 4s strongly inaccessible, and let (T, <r,s) be a
k-arbor on D. If F C D is a set of representatives with respect to ~, then F is thin.

Proof Fix an arbitrary do € D. For each element d € D<a,,
Py:={{ue s {do} | uz=rt} | t€s{d}}

provides a partiton of s7H{dy}. By Lemma 7.3, we see that Py, = Py, iff dy ~ dy for
di,dy € D<g,- Since & is strongly inaccessible, the number of partitions of s~Hdp} is
less than . d

Proof of 7.1 (a) = (b) Let add(D) <A< wid(D). Then P < D, so by Proposi-
tion 5.5 P\ has the tree property.

(b) = (c) It suffices to show, for an arbitrary A, that the tree property for PeA
implies its mild ineffability. Assume that P.)\ has the tree property. Suppose we are
given a family (4, | = € PsA) such that A, € *2 for z € PcA. Then

{41z |y 22} |z €PA)

is & Kk-tree on P since & is strongly inaccessible. Therefore we have a faithful embedding,
which is the same as an A € *2 such that

Ve € P ATy € P [z CyAAy o= Al
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(¢c) = (a) Let (T,<r,s) be a k-arbor on D. Our goal is to produce a faithful
embedding f: D — T. Fix a set of representatives F' C D with respect to the equivalence

~ defined above.
Put ) := |F|. Then T* := s~'[F] also has size A. As we have A < wid(D), the

assumption (c) says & is mildly A-ineffable.

We define a family <Am FAS ’P,iT*> to which we will apply the mild ineffability. For
each 2 € P.T*, pick an upper bound d € D of s{z], and fix t € s7'{d}. Forv € 7 we
put A,(v) = 1if v <7 t, and A,(v) = 0 otherwise. Then we get an A € T2 such that

Ve P ePT [zt CynAylz=Alz]

It remains to derive the faithful embedding f from A. For each d € F, let vy be
the unique v € s~1{d} such that A(v) = 1. Then d + vy is an embedding from F to
T*. To extend this map to all of D, let d € D be arbitrary and let d ~ d* € F' be the
corresponding representative. Now vy is defined, and we can put f (d) to be the unique
u € s71{d} such that u and vy are linked. One can verify that f: D — T is a faithful
embedding. |

Corollary 7.5 Let & be strongly inaccessible and A > x. Then

P has the tree property iff k is mildly A<"-ineffable.

8 Application of the Tukey decomposition

Theorem 8.1 Assume that s is weakly compact but not strongly compact, and that
A > kT is the least cardinal such that k is not mildly A-ineffable. Assume further that
X is strongly k*-inaccessible. Then there ezist directed sets Dy and Do with add(D,) =
add(Dy) = & such that ‘

D, and D4y have the tree property
but

D; x Dy does not have the tree property.

Proof By the Theorem 4.8, we have directed sets Dy and Dj such that D; Z P for
i=1,2 but D; x Dy = P.\. Recalling how D; and D, were defined (or by Remark 4.9),
we see that add(D1) = add(Ds;) = k. By Theorem 7.1, D; and D; have the tree property
but Dy x Dy does not have the tree property. O

At last, we discuss the consistency of the assumption in the above theorem.
We quote the following theorem.

Theorem 8.2 ([13]) If A is regular and x is mildly A-ineffable, then for each regular
n < Kk, any stationary set S C Efv\ 18 reflecting. '



Here we call § C E;‘ reflecting iff there is a limit ordinal v < X such that SN is
stationary in v. Otherwise S is called nonreflecting.

Assuming a strongly compact cardinal s, we perform a forcing which destroies the
mild \*-ineffability of x and which at the same time preserves the mild A-ineffability.
By Theorem 8.2 the standard forcing which adds a nonreflecing stationary subset, (see
3, Definition 4.14}) serves our purpose. To be precise, define P to be the forcing which
consists of conditions p € <*"2 (i.e. p is a characteristic function for a subset of an
ordinal < A*) such that if we let S, := p~'{1}, then S, C EX" and for all limit ordinals
v < A*, S, N+~ is nonstationary in . For p,g € P, p extends ¢ iff p 2 ¢. It is known [3]
that P preserves cardinals, cofinalities, and GCH, and that P is A-strategically closed.

This completes the proof.

Theorem 8.3 If we assume the consistency of ZFC+3strongly compact, then ZFC+"the
tree property for directed sets is not always preserved under products” is consistent.
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