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A square principle in the context of P

Greg Piper *

February 10, 2005

Abstract

We introduce a combinatorial principle for P.A based upon 0.
Although we cannot transfer one of the clauses of O, to this con-
text, we can replicate some of the desired consequences of that clause.
We discuss this situation and its implications along with proving the
relative consistency of some P versions of O.

1 Introduction

In this paper, we discuss the problem of generalising the square principle to
the context of P, A. The research presented below is discussed in the author’s
thesis, [9]. (In fact, the principles presented there are slight variations on
those defined below.) This combinatorial research follows a well-established
tradition and is guided by the idea of transferring interesting notions from
the theory of the combinatorics of ordinal numbers. For example, Jensen’s
diamond principle (see [5]) has been usefully generalised to this context (orig-
inally by Jech in [4], but also by Matet in [8] and by Dzamonja in [3]).

The square principle cannot be directly transferred to the context of P, for
various reasons, as discussed below. The general approach that we follow is
to establish a basic nontrivial square principle for P,\ then explicitly add
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further properties of square in more complex forcings. In this paper, following
the basic principle, we define a second principle in which the square principle’s
non-reflection property is added.

Throughout this paper, & is a regular infinite cardinal and A is a cardinal
with k¥ < A. We now give some basic definitions and clarify the notation used
in this paper.

Let P = {z C X\ : |z| < }. PaX is typically ordered by & and will be
throughout this paper. Combinatorial ideas such as clubs and stationarity
can be defined in this context, as described in [6]. Note that x and A are
arguments and may be replaced by specified cardinals or sets respectively.
In this paper, we will frequently consider Py () where z is & set. Note that
P\ is also commonly written as [A]<*.

The notation used in this paper is mostly standard. By  C y we mean (z C y
and z # y). We write lim(a) as an abbreviation for “a is a limit ordinal”;
otp(X) denotes the ordertype of a wellordered set X and for an ordinal «,
cf(c) denotes the cofinality. For a function f, dom(f) denotes the domain of
£ and im(f) denotes image of f, while f[X denotes the restriction of f to
X where X C dom(f). In forcing proofs, we follow the convention that for
two conditions p, ¢, p < g means p is a weaker condition than ¢. Lastly, we
use reg(X) to derote the set of elements of X of regular cardinality.

Before we develop a version of the square principle in the context of P, we
introduce the standard principle. This principle, denoted O, was developed
by Jensen and has proved a useful tool in various areas of mathematical logic.
It is defined as follows (although it should be noted that other equivalent
formulations exist).

Definition 1.1 O, is the statement that there is a sequence (Cy: @ € KT,
lim{c)) with the following properties:

(i) Cy is a club subset of &

(i) if cfla) < k then otp(Co) < &

(i4) (Coherence:) if B € Cy and lim(83) then Cg = Cy N G.

Forcing can be used to produce a model of set theory in which O, holds.

This approach uses a partial order whose elements are initial segments of
potential square sequences. It is also known that O, holds in L, the universe
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of constructible sets. The best-known proof uses fine structure theory and is
due to Jensen; a good account of this proof is given in [2].

The square principle encapsulates various interesting properties. Coherence
and anticoherence are discussed in the next section. Another property, non-
reflection, is discussed further in the final section of this paper.

2 A square principle in the context of P.A

We will define a square-like principle that asserts the existence of a coherent
set of subsets of P\ indexed by the elements of P, A. Note that in considering
Cy C Pyi(z) for z € PX we require |z] to be regular and hence no club of
P () will have cardinality < |z|. Thus, the cardinalities of the clubs cannot
be limited as they are for those corresponding to singular ordinals in O,. It
is necessary, therefore, to introduce alternative non-triviality conditions that
add some of the basic properties of O,. Also, note that if x is a successor
cardinal, coherence is trivial for a club of P, that is for the elements of
[AJ®. Thus, while O, actually asserts a property of x*, the principle defined
below does not “look ahead” at P+ A.

For the reasons mentioned above, we must assume that £ is a regular limit
cardinal. In fact, since we require stationary-many regular cardinals below
k, for the remainder of this paper we assume that x is a Mahlo cardinal.

Definition 2.1 Suppose k is a Mahlo cardinal and X is an infinite cardinal
with k < X. Suppose also that S is a stationary subset of P A. Then Op 2 (S)
is the statement that there is a family of sets {C, : x € S} with the following
properties:

(1) Cy is a club subset of Py(x) for allz € S
(it) (Coherence:) if c € S andy € C; NS then Cy = C, NPy (y)

(iii) (Anticoherence:) the set {x € S: there is a cofinal set of y € SNPyy(z)
such that Cy # Cy NPy (y)} is stationary in PeA.

We write Op,_5 to mean that there is a stationary S C Py such that Op »(S)
holds.

Note that the restriction to a stationary subset is not as serious a restriction



as it may appear since in this context we can at best have C, defined for all
z € reg(P,)), which is stationary if Mahlo is &, but cannot be club. Note
that stronger forms of stationarity could be substituted with appropriate
adjustments to the forcing below. ' '

The anticoherence property is implicit in the definition of O, but must be ex-
plicitly required for Op, 5. This ensures that the principle cannot be satisfied
trivially, e.g. by setting C, = Py (z) for all z € reg(P.A).

The Op,_y principle is consistent with ZFC+ “x is Mahlo”, as we assert in
the following theorem. Important questions remain unanswered, however.
Noteably, it is not known whether the principle holds in ZFC + “V=L"or
even in ZFC.

Before we proceed with the consistency proof, note that we could also develop
a principle based on clubs of Py, (z) for each z € S. Recall that k; =Nk
if this is an ordinal and is undefined otherwise. Here, we would insist that S
contains only elements x for which &, is a regular cardinal. Assuming that
% is Mahlo, the consistency of such a principle can be proved with a forcing
analogous to the one for OPA.

Theorem 2.2 Suppose M is a countable model of a sufficiently rich frag-
ment of ZFC in which k is Mahlo and A > k. Then there is a generic
extension of this model which preserves cofinalities and cardinalities and in
which k is Mahlo and Op_x holds.

This theorem is proved by forcing with the partial order defined below. Es-
sentially, the partial order is composed of fragments of possible witnesses to

Upen-

Definition 2.3 Let P be a set whose elements p are characterised as follows:
(i) p is a function with dom{p) € Px(reg(PxA))
(i) for all z € dom(p), p(x) is either club in Pygj(x) or the empty set

(i) if z € dom(p) and y € p(x)Nreg(P)) then y € dom(p) and either
p(y) = p(z) N Py(y) or ply) =0

(iv) if dom(p) N Py (y) is stationary in Py, (y) then y € dom(p).

For p,q € P, p < q (meaning q 1§ stronger than p) iff p € q. We will also
use the symbols <,> and > in the natural way.
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Note that if we let § be the function with empty domain then @ is the unique
minimal element of P. Clearly, P is non-empty. We must now establish
various properties of (P, <) to show that a suitable generic object exists and
that the resulting forcing preserves cofinalities and cardinalities.

Lemma 2.4 (P, <) is separative.

Proof. Let p € P and let & € reg(P.A) be such that J dom(p) € P(2),
which is possible because | U dom(p)| < k. We now define ¢ € P such that
p < g and z € dom(q) and ¢(z) # . For y € dom(p), let ¢(y) = p(y). Let
g(x) be any club of P, (z) that does not intersect dom(p). Such a club exists
because p satisfies (iv) of Definition 2.3. It is straightforward to check that
q € P, by checking against conditions (i)-(iv).

Now let 7 > p be defined as follows. Let r{y) = g(y) if y # z, let r(z) = 0 and
let 7(y) be undefined otherwise. Then r € P and ¢, are clearly incompatible
extensions of p.

.

Since P is separative, there is a generic object G in M|[G] that is not in the
ground model, M. We will see that this generic provides an example of a
Op,» set. First, however, we must show that the forcing preserves cofinalities
and cardinalities.

Lemma 2.5 P satisfies the kt-chain condition.

Proof. Suppose X C P and |X| = x*. We show that X is not an antichain.
Let A = {dom(p) : p € X}. By a A-system argument, using the fact that
% is strongly inaccessible, we can find B C A such that [B| = x* and Bis a
A-system with root R. That is, for all X, Y € B, X NY = R.

Consider the numbers of functions with domain R such that for each func-
tion f and each z € R, f(z) C Pjy(z). Clearly, if we impose no further
conditions on the value of f(z), the number of distinct functions is equal
to yer|P(Py(z))|. Now for all z € R, |Py(z)] < & and since £ = &,
it follows that P(Pig(z))| < k. Furthermore, since |R| < &, it follows that
Myer|P(Ppi(z))] < k. In other words there are only k-many suitable func-
tions defined on R. But B = k™ so by the pigeonhole principle there must



be some function f defined on R such that p[R = f for s many p € X with
dom(p) € B.

Now let Y = {p € X : dom(p) € B and p[R = f}. Forpq € P, if
p(z) = gq(z) for all z € dom{p)Ndom(q), it is easily proved that p Ug is
a common extension of p,q and hence that p, g are compatible. Thus, the
elements of ¥ are pairwise compatible because they agree on R, which is
the intersection of their domains, by the definition of B. Hence, X is not an
antichain.

.

We can now conclude that the forcing preserves cofinalities and cardinalities
> k. We now prove that P is < k-directed closed. It will then follow that
the forcing preserves cofinalities and cardinalities < .

Lemma 2.6 P is < s-directed closed.

Proof. Suppose i < kand {p, : @ < p} is a set of pairwise compatible condi-
tions from P. We define p, = Us<, Po- This is a function since the conditions
are pairwise compatible. It is easily checked that pj, satisfies (i)-(iii) of Defi-
nition 2.3. However, there may be € reg(PA)\dom(p},) such that dom(p},)
is stationary in Pjz(z) so condition (iv) may not hold. We now make a small
adjustment to p}, to obtain p, still satisfying (i)-(iii) but also satisfying (iv).
Let p,(z) = pi(z) for all z € dom(p;). For z € (P(Udom(p};))\dom(p;,),
let p,(z) = 0. Then p, is as required since (1)-(iv) hold and for all & < 4,

Do < Dy

.

Note that since the forcing is < s-closed, no new sets of ordinals of size < «
are introduced. Hence, (P A)MC! = (P.A)M and we can write PeA for the
name PgA.

We must now ensure that for any generic G of P, the set {z € PA: (3Ip €
G)(z € dom(p) and p(z) # §)} is stationary in PA in the generic extension.
Before we do this we give a lemma that will be needed several times in the
proof.

Lemma 2.7 Suppose p € P and p ||—(C is a club of P.A) and suppose
y € P.X. Then there is z € P and g € P such thatg>p and g |-y C
and z € C).
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Proof. Let g be a name such that p |-(y C z and ¢ € ). This is possible
because p |-(C is club). Also, p [-((3p < £)(|z| < p)) because « is a limit
cardinal.

Let po > p and v a cardinal such that po ||—(¢ = v). So po [~ (jz| < » and
v < k). Thus we can find a condition p; > po and a name for an enumeration
of £ in an ordertype < @ so that: p; [F(¢* <v and z = {y;: i <4*}) and we
can extend again to obtain 3 and py such that py |-(z = {7y : 4 < 8}).

Now let go > po be such that go |-(7o = do). That is, go identifies the value
of the name 4;. By induction on ¢ < [ we construct an increasing sequence
(g : @ < B) and a sequence (8, : @ < () such that ¢, [-(V€ < a)(ye = &,1))-
This is possible because P is < k-closed. B

Again, by the < k-closure of P, it is possible to find ¢ € P that identifies all
the elements of z. That is, there is z € P, and ¢ > p such that ¢ |-(y C 2
and z € ), as required.

.

Lemma 2.8 Let G be a generic of P. Then M[G] = {z € PA: (I €
GY(z € dom(p) and p(z) # 0)} is stationary in PcA.

Proof. Let S be a name of the set {z € P : (Ip € G)(z € dom(p) and
p(z) # 0)}-

Suppose py € G is such that po |[-(C is club in PA and CNS =0 and 2o €
CNP,A). Note that we use the previous lemma to obtain pg |-{zo € CNPLA).
We derive a contradiction by finding p > po such that p |F(C NS # 8). The
strategy is to fix a chain of elements of C' and S up to a regular limit where
the two chains intersect.

Let ys € reg(PyA) be such that (Udom(po) Uzo) € Py (y0). We now identify
P4 > po such that yo € dom(py).

Let Dy be a linearly ordered club of Py (yo) that does not intersect dom(po).
Such a club exists by definition of P (in particular, clause (iv) of Definition
2.3). Note that having Dy linearly ordered is convenient but not strictly
necessary; it is possible because |yo| is regular.



%(u) @g u € dom(po)
et pt(u) = 0 L=
Let pf(u) 0 if u € reg(P(yo)\(dom(po) U {%0})

undefined otherwise

Then by checking against Definition 2.3, it is apparent that pj € P. Note
also that p§ > pe.

Now using the preceding lemma, let p; > p§ be such that for some z; € P,
p1 | (z1 € C NP and yo C 1)

We now proceed inductively to define pu, Za, Yo, P, S0 that for all 8 < «a,
Ys € Da(Va) and pg < Do < ph In the case when « is a limit ordinal, we
describe the condition under which the induction will stop. We will then
observe that this condition will be met at some stage o < s.

Case l: a=0(+1

By the inductive definition, p, and z, are already defined. We now define
p: and y, then also define pay1 and Toi1- Let y, € reg(P.A) be such that
Udom(pg)UZs € Piya(¥a). We now identify pj, 2 pa such that y, € dom(p?).
Unlike in the case o = 0, we will define p(ys) so that it has non-trivial
coherence. In particular, for all § < «, we will have yg € 75 (Ya)-

The inductive hypothesis implies that ys € dom(p,) so we can find a linearly
ordered club D, of Pjy,|(¥«) that does not intersect dom(p,) and satisfles u €
Do = ys € u. Such a club exists by (iv) of Definition 2.3 and by intersecting
with the club {u € PeA : ys € u}. Now let D} = pa(ys) U {ys} U Do

;S(u) ii u € dom(py)
. _ :x if u=19q
Let pa(u) =1 if u € reg(P(yo)\(dom(pa) U {ya})

undefined otherwise

It is easily checked that p, satisfies (i) to (iv) of Definition 2.3 and that
pY > po. Note also that yg € i (Ya).

Now using the previous lemma, let pot1 > pj, be such that for some za41 €
Pﬁ',)\} Do H'—(xa c Q ﬂfP,i)\ &Ild Yo g Q’,‘a),

Case 2: « isg a limit ordinal < &

Note that z,, and p, are not yet defined . Let p, € P be such that p, > pg for
all § < a. This is possible because P is < x-closed. Let so = U{ys: B < o}
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If |5, is regular then this will be the final stage of the induction. We then
proceed to define y and p as described below. So suppose now that |ss| is
singular. Note in particular that s, ¢ reg(PcA) so s, ¢ dom(p}).

By the inductive definitions of yg, 8, = UU{dom(pg) : 8 < a}, that is s, is
the set of ordinals that are in at least one element of the domain of at least
one pg. Let y, € reg(PyA) be such that s, € Py, |(¥e). Thus, for any § < o,
if u € dom(pg) then u € Py, (Ya)-

Let D, be a linearly ordered club of P, |(ya) that does not intersect dom(ps)
and such that if © € Dq then s, C u. Let D} = U{ps(ys) : B < a} U {sa} U
D,.

Pa(u) if u € dom(py)
vy _ ) D5 ifu =y,
Let pa(w) = if u € reg(P(ya)\ (dom(pa) U {ya})

undefined otherwise
Then p?, € P and (V8 < a)(ph = pg).

As before, let pyy1 > pf, be such that for some z411 € Pel, o |[=(2a €
C NP and y, C Za).

We repeat this procedure until we reach a limit ordinal o = p < & such that
sq (as defined in Case 2) has inaccessible cardinality. There must be such
a 1 because # is Mahlo. Otherwise the set {s, : @ < k and lim(a)} would
be a club subset of x that does not intersect the set of regular cardinals,
contradicting the fact that x is Mahlo. So suppose |3,/ is regular. Then |s4]
is inaccessible because the sequence (Jys| : 8 < @) is strictly increasing by
the inductive definitions of ys for 8 < a.

Let y = s, and let E = J{dom(ps) : B < a}. Now define p as follows.

pﬁ{(”)( 5 iﬁ (36 < p)(u € dom(pg))

_ ) Wpslyp) : B<py itu=y

Letp(u) =y g " i u € reg(PII\(E U {1})
undefined otherwise

As before, by checking against (i)-(iv) of Definition 2.3, we see that p € P.
We now show that p [-C NS # 0.

Note that Ug<,¥s = ¥ = U<, Tp because for any 8 < u, z5 C yg C

Zgr1 C Ypy1- By the definition of p, it is clear that p(y) # @ and hence that
p |-y € S. Also, since p ||-(C is club in PA and (V8 < p)(zs € C)) it



follows that p |~y € C. Hence, p |-~y € €N S, which is a contradiction
because p > pg and po |FC NS = 0.

.

We now establish that the proposed witness to Op, ) satisfles the anticoher-
ence condition.

Lemma 2.9 Let G be a generic of P. Then let
S={zeP:(3pcG)(z< domp) and p(z) # )} and let

T = {& € S : there is a cofinal set of y € § NPy (x) such that (Tp €
G)({z,y} C dom(p) and p(y) # p(z) N Py (¥))}-

Then M|G] = T is stationary in PgA.

Proof (outline).  We proceed as in Lemma 2.8, forming the sequence of
forcing conditions as before but at each stage, we interrupt the induction
after setting p?, but before setting zo41. We set 2y O Yo and define g > pJ,
such that z, € dom(q) but g(za) N q(ys) = ¢. Now continue as before but
defining Zo41 80 that z4 C T4 and with ¢ < p.

.

Finally, we need to verify that « is Mahlo in the generic extension MIG).
Lemma 2.10 If G is a generic of P then M[G] = x 15 Mahlo.

Proof. Working in M|G], suppose C is a club in . Then if Ccr={z €
P |z] € C}, it follows that C* is club in P.)\. By Lemma 2.8, we can
find y in C* N {z € PA: (3p € G)(z € dom(p) and p(z) # 9)}. Then vl
is a regular cardinal in both M and M{G], by the preservation of cofinalities
and cardinalities. Furthermore, |y| € C. Hence the set of regular cardinals is
stationary in k. To see that x remains a strong limit, note that for all p < k,
(24)MIG) — (24)M by < r-closure so & remains a strong limit in the generic
extension. Hence & is Mahlo in M[G] as required.

.

Given generic G of P, let S = {z € reg(P:A) : (Ip € G)(p(z) # 0) and for
¢ € S, let Cp = p(z) where p is an element of G with & € dom(p). The
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preceding series of lemmas together prove that this S and {C; : z € S}
provides a witness to Op_y in M[G]. Thus, Theorem 2.2 is proved.

We proved in Lemma 2.10 that this forcing preserves the fact that « is Mahlo.
In fact, we can do more than this and preserve supercompactness. Since
forcing with P is s-directed closed, if x is supercompact in the ground model
and we first force with a Laver preparation, then the supercompactness of «
is preserved when we force with P.

Theorem 2.11 Suppose M is a countable model of a sufficiently rich frag-
ment of ZFC in which k is supercompact and X\ > k. Then there is a generic
extension of this model which preserves cofinalities and cerdinalities and in
which k 15 supercompact and Op_x holds.

Proof. This follows by forcing with a Laver preparation followed by forcing
with P. We use the fact that P is x-directed closed.

.

3 A P.)\ version of square with a non-reflection
property

One of the useful properties encapsulated by the square sequence is that of
stationary non-reflection. This is demonstrated in the theorem presented
below, which makes use of Fodor’'s Lemma, which we present here without
proof.

Lemma 3.1 (Fodor’s Lemma) Suppose that S is a stationary subset of a
reqular cardinal u. Suppose also that f : S — p is such that f(a) < «a for all
o € S. Then there is a stationary subset T C S such that [ is constant on
T.

The following well-known theorem is presented here with proof to motivate
the work towards a P.\ version of the theorem discussed in the remainder
of this section.

Theorem 3.2 If O, holds then k™ has a non-reflecting stationary subset.



Proof. Suppose (C, : o < x* and lim(a)) is as specified in the definition of
O, Let T = {a < w*: cf(a) < & < a}. To see that this is stationary, let C
be an arbitrary club of * and let C* = C\k. Then the wth element of C*
is an element of 7. ‘

Now define F : T — & by F{a) = otp(C,). By part (ii) of Definition 1.1
and the definition of T, Fi(a) < k < otp() for all o € T'. Hence, by Fodor’s
Lemma, we can select a stationary subset R C T such that F' is constant on
R.

Now suppose R reflects in « for some a € R. Let 8,7 € R0 C, with
B < ~. Then CsU{B} C C, as B = sup(Cp). Thus F(y) = otp(Cy) =
otp(Cp) + 1 > F(B). But this is a contradiction because F' is constant, on R.

.

We now extend Op_y to produce a square principle that has a non-reflection
property explicitly built into the definition. We then give 2 non-reflection
theorem using this new principle.

Definition 3.3 Tp (S, f) holds if f : S — k and S is stationary and there
is a witness {Cy : x € S} to Op x(S) such that in addition to (i)-(i13) from
Definition 2.1 we have: .

(iv) f(z) €z
(v) if y € Cy then f(x) # fy)-

We now prove the relative consistency of this principle by extending the
partial order P used in the proof of Theorem 2.2.

Theorem 3.4 Suppose M is a countable model of a sufficiently rich frog-
ment of ZFC in which K is Mahlo and A 2 k. Then there is a generic
extension of this model which preserves cofinalities and cardinalities and in
which k is Mahlo and for some f, S, Op (S, f) holds.

We force with the poset @ defined below.

Definition 3.5 p,q € Q iff p € P and q is as follows:
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(i) q is a function with domain {z € dom(p) : p(z) # 0}
(i1) g(z) € z for all z € dom{q)
(i) if z € dom(p) and y € p(z)Ndom(p) and p(y) # 0 then q(y) # q(z).

If (p,q), (¥, ¢) € Q then (p,q) < W', ¢) ff p Cp and g C ¢

We do not present all of the details of the forcing proof. Instead we describe
how to upgrade the proof of Theorem 2.2 to include the new property.

Note that (6,#) € @Q so Q is non-empty and has a minimal element. We must
now establish various properties of (@), <) to show that a suitable generic
object exists and that the resulting forcing preserves cofinalities and cardi-
nalities.

Lemma 3.6 (Q, <) is separative.

Proof. Let (p,q) € @ and let z € reg{P.A)\dom(p) such that there is
v € z\im(q). Let (po,q0) = (p,q) be such that po(z) is a club in Py ()
that does not intersect dom(p) and let go(z) = 7. Such a py can be found
by Definition 2.3 (iv) and because |dom(p)] < k < |reg(P,A)| so there must
be some z € reg(P.A)\dom(p). Now let (p1,¢1) > (p,q) be such that z €
dom(p,) and py(z) = § and hence z ¢ dom(g;). Clearly (po, o) and (p1,q1)
are incompatible extensions of (p, ¢). Hence, @ is separable.

.

We now prove that forcing with @) preserves cofinalities and cardinalities by
showing that ) has the x™-chain condition and is < x-directed closed.

We now use the A-System Lemma to show that ) has the x*-chain condition.
Lemma 3.7 Q satisfies the s*-chain condition.

Proof. Let A be a subset of Q of size k¥. Now let A = {dom(p) : J¢(p,q) €
A}. By the A-System Lemma, using the fact that « is & strong limit, we can
find B C A such that |B| = k* and B is a A-system with root R.

Consider the number of pairs of functions (p, q) definable on R such that for
each function (p,q) and each x € R, p(z) € P(Py,(z)) and ¢q{z) € z. By the



argument in the proof of Lemma, 2.5, the number of possible values that p(zx)
can take is < k. The number of possible values that g(z) can take is clearly
|z|. Since |z] < &, the number of possible pairs (p(z),q(z)) is < k. But
|B| = k7 so by the pigeonhole principle there must be some pair of functions
(g, h) defined on R such that p[R = g and ¢[R = h for k" many (p,q) € X
with dom(p) € B. A

Now let Y = {(p,q) € X : p[R = g and ¢[R = h}. For any (po, 90), (P1,q1) €
Y, using the fact that po, p1 and go, g1 agree R, it is straightforward to verify
that (po Up1, g Uqi) € Q. Thus, (po, o), (p1,q1) have a common extension
in  and hence are compatible. Hence, A is not an antichain.

-
Lemma 3.8 Q is < x-directed closed.

Proof. Suppose p < & and {(Pa, ¢a) : @ < u} is a set of pairwise compatible
conditions from Q. We define p}, = Ua<yu Po a0d @) = Un<y Ga- Now extend
p;, to p, as in the proof of the < x-directed closure of P. Note that we need
not add new elements to the domain of ¢}, since z € dom(p,)\dom(p;) =
pu(z) = 0. That is, we may set g, = g,. Now for any z,y € dom(g,),
there is some o < p such that z,y € dom(g,). Since (py,gy) € @ it follows
that z € p,(z) = qu(z) # q.{y) and vice versa as required. It follows that

(Do o) € Q and for all B < pt, (Do Ga) < (Pus Gu)-
4,

Tt follows from the preceding lemmas that forcing with ¢ preserves cofinalities
and cardinalities. As with P, this forcing is < s-closed so for a generic G
of Q, (PAME = (PAM and we can write PeA for the name Pgh in
the following. We must now ensure that for any generic G of @, the set
{z € P.): (3(p,q) € G)(z € dom(p) and p(z) # 0} is stationary in PeA.
Note that the following variation on Lemma 2.7 holds. The proof is almost
identical to the proof of Lemma 2.7.

Lemma 3.9 Suppose (p,q) € Q and (p,q) |-(C is a club of P.A). Then
there is € P\ and (¢, ¢) € Q such that (', q) = (p,q) and (P, ¢) Iz e
C.

Lemma 3.10 Let G be a generic of Q. Then M[G] = {z € P.A: (3p €
G)(z € dom(p) and p(z) # 0)} is stationary in PeA.
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Proof. We proceed as in the proof of Lemma 2.8 but define (Pa» ¢a) and
(p%,q) at each stage. We now describe how to set go. Let v € vo\{q(%o)}-
We insist, without loss of generality, that for all «, v is not in the.image of
go or ¢¢. For all @ < p we set ¢(Ya) = Ya € Yo\ Upca Yp- By definition of yq,
such a 7y, wil always exist. At the final stage, when defining (p, ¢), we define
p as before and set g{y) = 7.

.

The last two lemmas that we need follow by arguments exactly analogous to
the corresponding lemmas for P.

Lemma 8.11 Let G be a generic of (). Then let
S ={zeP:(3p,q) € G)(z € dom{p) and p(z) # 1)} and let
T = {x € § : there is a cofinal set of y € SN Py(x) such that (Ip,q) €

G)({z,y} © dom(p) and p(y) # p(z) N Py (y))}-
Then M|G] =T is stationary in PgA.

Lemma 3.12 If G is a generic of Q then M[G] = k is Mahlo.

By forcing with the partial order (@, <), Theorem 3.4 is proved. We set
S={zePX:{3pq) € G)z € dom(p) and p(z) # 0)} and set f = U{q:
Ip((p,q) € G)}. Then f and {C; : (3(p,q) € G)(C; = p(z) # 1)}, together
witness that Op_»(S, f) holds, as required.

We now show how Op_»(S, f) gives non-reflection in Py (x) for stationary
many z € P.A. We then state without proof some related results proved by
Abe in [1] and by Koszmider in [7].

The following is proved by forcing and draws on Gitik’s method of shooting
clubs in P.A.

Theorem 3.13 (Abe) Let V C W be two models of ZFC with the same
ordinals, (s7)V = (kT)W; let C be a club subset of k of V-inaccessibles; let
K be an inaccessible cardinal in W and let T = {z € Per™ : V = |z] is not
inaccessible}. Then there is a forcing notion in W that preserves cofinalities
and cardinalities and such that there is a stationary S C P.k™ such that
SNP.(z) is non-stationary for anyz € T.



Koszmider in [7] gives a different kind of non-reflection result, considering
reflection in P, (X) where X C A

Theorem 3.14 (Koszmider) It is consistent that there is o stationary set
S C P such that S N P.X is non-stationary in P.X for any X C A with
|X| > & in the generic extension.

Finally we consider the following theorem of Abe which gives a form of non-
reflection when & is supercompact.

Theorem 3.15 (Abe) If it is consistent that there is a supercompact car-
dinal then it is consistent that there is a supercompact k, a cardinal A 2> K
and a stationary set X C PeA such that X NPy is non-stationary in Prox
for any a < A.

The following definition presents the form of non-reflection that we examine
with Dpﬁ)\(S, f)

Definition 3.16 A stationary set S C P reflects in Pigy(z) if SN Py(z)
is stationary in Piz(T).

The non-reflection theorem follows easily from the Op_ (S, f) principle. Note
that the proof is closely analogously to the proof of non-reflection from O,
in the theory of cardinals. This theorem draws on the variation on Fodor’s
Lemma presented below. Lacking a suitable reference, we present 2 proof.

Lemma 3.17 Suppose that S is a stationary subset of PeA. Suppose also
that f: S — X is such that f(z) € z for allz € S. Then there is a stationary
subset T C S such that f is constant on T

Proof. Suppose f: S — Aisa counterexample. For each a < A choose Uy
club in P A with (f1{a)) NCy = 0. Now let D be the diagonal intersection
of the Cp, D = A{C, : @ < )\) and take y € SN D, guaranteed to exist
because D is club. Then f(y) € y so since y € D we have y € Cy,). Hence,
y € F~H{(f(y)) N Cyqy), contradicting the choice of Cy).

.

121



122

Theorem 3.18 Suppose & is Mahlo and X > k. Then if Op (S, f) holds
then there is a stationary set T C S such that T does not reflect in Py ()
foranyz € S.

Proof. Let {C, : z € S} witness Op_,(S, f). Note that since f(z) € z, by
the preceding lemma it follows that there is a stationary set T C S such that
f(z) is constant on T. Now suppose T reflects in Pi(z) for some z € S.
Let y € TNC,. The set {u € Py(z) : y € uand fy| < |ul} is club in
Py (z) so we can find z € T N C, such that y € P, (2). By the definition of
Opa(S, f), we have that C, = C, NP (2) so y € C,. But then f(y) # f(2),
contradicting the definition of 7. Thus 7' cannot reflect in Piz(x).

.

1t should be noted that for some k, for example the first Mahlo cardinal, the
conclusion of this theorem holds in ZFC. (Simply let S = T' = reg(P.A).)
The theorem becomes more relevant for cardinals higher in the Mahlo hier-
archy (i.e. those that are o — Mahlo for a > 0).

As with Op,_,(S) we may use a Laver preparation to prove that Op_»(S, f) is
consistent even for supercompact k. Thus, supercompactness of £ does not
prevent this principle or the corresponding non-reflection theorem.
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