A square principle in the context of $\mathcal{P}_{\kappa}\lambda$

Greg Piper *

February 10, 2005

Abstract

We introduce a combinatorial principle for $\mathcal{P}_{\kappa}\lambda$ based upon \Box_{κ} . Although we cannot transfer one of the clauses of \Box_{κ} to this context, we can replicate some of the desired consequences of that clause. We discuss this situation and its implications along with proving the relative consistency of some $\mathcal{P}_{\kappa}\lambda$ versions of \Box_{κ} .

1 Introduction

In this paper, we discuss the problem of generalising the square principle to the context of $\mathcal{P}_{\kappa}\lambda$. The research presented below is discussed in the author's thesis, [9]. (In fact, the principles presented there are slight variations on those defined below.) This combinatorial research follows a well-established tradition and is guided by the idea of transferring interesting notions from the theory of the combinatorics of ordinal numbers. For example, Jensen's diamond principle (see [5]) has been usefully generalised to this context (originally by Jech in [4], but also by Matet in [8] and by Džamonja in [3]).

The square principle cannot be directly transferred to the context of $\mathcal{P}_{\kappa}\lambda$ for various reasons, as discussed below. The general approach that we follow is to establish a basic nontrivial square principle for $\mathcal{P}_{\kappa}\lambda$ then explicitly add

^{*}Research conducted as part of a PhD thesis and supported by an EPSRC grant. Paper prepared under the support of a JSPS Postdoctoral Fellowship for Foreign Researchers(ID P04048).

further properties of square in more complex forcings. In this paper, following the basic principle, we define a second principle in which the square principle's non-reflection property is added.

Throughout this paper, κ is a regular infinite cardinal and λ is a cardinal with $\kappa \leq \lambda$. We now give some basic definitions and clarify the notation used in this paper.

Let $\mathcal{P}_{\kappa}\lambda = \{x \subseteq \lambda : |x| < \kappa\}$. $\mathcal{P}_{\kappa}\lambda$ is typically ordered by \subseteq and will be throughout this paper. Combinatorial ideas such as clubs and stationarity can be defined in this context, as described in [6]. Note that κ and λ are arguments and may be replaced by specified cardinals or sets respectively. In this paper, we will frequently consider $\mathcal{P}_{|x|}(x)$ where x is a set. Note that $\mathcal{P}_{\kappa}\lambda$ is also commonly written as $[\lambda]^{<\kappa}$.

The notation used in this paper is mostly standard. By $x \,\subset y$ we mean $(x \subseteq y)$ and $x \neq y$. We write $\lim(\alpha)$ as an abbreviation for " α is a limit ordinal"; $\operatorname{otp}(X)$ denotes the ordertype of a wellordered set X and for an ordinal α , $\operatorname{cf}(\alpha)$ denotes the cofinality. For a function f, $\operatorname{dom}(f)$ denotes the domain of f and $\operatorname{im}(f)$ denotes image of f, while $f \upharpoonright X$ denotes the restriction of f to X where $X \subseteq \operatorname{dom}(f)$. In forcing proofs, we follow the convention that for two conditions $p, q, p \leq q$ means p is a *weaker* condition than q. Lastly, we use $\operatorname{reg}(X)$ to denote the set of elements of X of regular cardinality.

Before we develop a version of the square principle in the context of $\mathcal{P}_{\kappa}\lambda$, we introduce the standard principle. This principle, denoted \Box_{κ} , was developed by Jensen and has proved a useful tool in various areas of mathematical logic. It is defined as follows (although it should be noted that other equivalent formulations exist).

Definition 1.1 \Box_{κ} is the statement that there is a sequence $\langle C_{\alpha} : \alpha \in \kappa^+, lim(\alpha) \rangle$ with the following properties:

- (i) C_{α} is a club subset of α
- (ii) if $cf(\alpha) < \kappa$ then $otp(C_{\alpha}) < \kappa$
- (iii) (Coherence:) if $\beta \in C_{\alpha}$ and $\lim(\beta)$ then $C_{\beta} = C_{\alpha} \cap \beta$.

Forcing can be used to produce a model of set theory in which \Box_{κ} holds. This approach uses a partial order whose elements are initial segments of potential square sequences. It is also known that \Box_{κ} holds in L, the universe of constructible sets. The best-known proof uses fine structure theory and is due to Jensen; a good account of this proof is given in [2].

The square principle encapsulates various interesting properties. Coherence and anticoherence are discussed in the next section. Another property, nonreflection, is discussed further in the final section of this paper.

2 A square principle in the context of $\mathcal{P}_{\kappa}\lambda$

We will define a square-like principle that asserts the existence of a coherent set of subsets of $\mathcal{P}_{\kappa}\lambda$ indexed by the elements of $\mathcal{P}_{\kappa}\lambda$. Note that in considering $C_x \subseteq \mathcal{P}_{|x|}(x)$ for $x \in \mathcal{P}_{\kappa}\lambda$ we require |x| to be regular and hence no club of $\mathcal{P}_{|x|}(x)$ will have cardinality $\langle |x|$. Thus, the cardinalities of the clubs cannot be limited as they are for those corresponding to singular ordinals in \Box_{κ} . It is necessary, therefore, to introduce alternative non-triviality conditions that add some of the basic properties of \Box_{κ} . Also, note that if κ is a successor cardinal, coherence is trivial for a club of $\mathcal{P}_{\kappa}\lambda$, that is for the elements of $[\lambda]^{\kappa}$. Thus, while \Box_{κ} actually asserts a property of κ^+ , the principle defined below does not "look ahead" at $\mathcal{P}_{\kappa^+}\lambda$.

For the reasons mentioned above, we must assume that κ is a regular limit cardinal. In fact, since we require stationary-many regular cardinals below κ , for the remainder of this paper we assume that κ is a Mahlo cardinal.

Definition 2.1 Suppose κ is a Mahlo cardinal and λ is an infinite cardinal with $\kappa \leq \lambda$. Suppose also that S is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $\Box_{\mathcal{P}_{\kappa}\lambda}(S)$ is the statement that there is a family of sets $\{C_x : x \in S\}$ with the following properties:

(i) C_x is a club subset of $\mathcal{P}_{|x|}(x)$ for all $x \in S$

(ii) (Coherence:) if $x \in S$ and $y \in C_x \cap S$ then $C_y = C_x \cap \mathcal{P}_{|y|}(y)$

(iii) (Anticoherence:) the set $\{x \in S : \text{there is a cofinal set of } y \in S \cap \mathcal{P}_{|x|}(x) \text{ such that } C_y \neq C_x \cap \mathcal{P}_{|y|}(y)\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

We write $\Box_{\mathcal{P}_{\kappa}\lambda}$ to mean that there is a stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$ such that $\Box_{\mathcal{P}_{\kappa}\lambda}(S)$ holds.

Note that the restriction to a stationary subset is not as serious a restriction

as it may appear since in this context we can at best have C_x defined for all $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$, which is stationary if Mahlo is κ , but cannot be club. Note that stronger forms of stationarity could be substituted with appropriate adjustments to the forcing below.

The anticoherence property is implicit in the definition of \Box_{κ} but must be explicitly required for $\Box_{\mathcal{P}_{\kappa}\lambda}$. This ensures that the principle cannot be satisfied trivially, e.g. by setting $C_x = \mathcal{P}_{|x|}(x)$ for all $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$.

The $\Box_{\mathcal{P}_{\kappa\lambda}}$ principle is consistent with ZFC+ " κ is Mahlo", as we assert in the following theorem. Important questions remain unanswered, however. Noteably, it is not known whether the principle holds in ZFC + "V=L" or even in ZFC.

Before we proceed with the consistency proof, note that we could also develop a principle based on clubs of $\mathcal{P}_{\kappa_x}(x)$ for each $x \in S$. Recall that $\kappa_x = x \cap \kappa$ if this is an ordinal and is undefined otherwise. Here, we would insist that Scontains only elements x for which κ_x is a regular cardinal. Assuming that κ is Mahlo, the consistency of such a principle can be proved with a forcing analogous to the one for $\Box \mathcal{P}_{\kappa} \lambda$.

Theorem 2.2 Suppose M is a countable model of a sufficiently rich fragment of ZFC in which κ is Mahlo and $\lambda \geq \kappa$. Then there is a generic extension of this model which preserves cofinalities and cardinalities and in which κ is Mahlo and $\Box_{\mathcal{P}_{\kappa}\lambda}$ holds.

This theorem is proved by forcing with the partial order defined below. Essentially, the partial order is composed of fragments of possible witnesses to $\Box_{\mathcal{P}_s\lambda}$.

Definition 2.3 Let P be a set whose elements p are characterised as follows:

(i) p is a function with $dom(p) \in \mathcal{P}_{\kappa}(reg(\mathcal{P}_{\kappa}\lambda))$

(ii) for all $x \in dom(p)$, p(x) is either club in $\mathcal{P}_{|x|}(x)$ or the empty set

(iii) if $x \in dom(p)$ and $y \in p(x) \cap reg(\mathcal{P}_{\kappa}\lambda)$ then $y \in dom(p)$ and either $p(y) = p(x) \cap \mathcal{P}_{|y|}(y)$ or $p(y) = \emptyset$

(iv) if $dom(p) \cap \mathcal{P}_{|y|}(y)$ is stationary in $\mathcal{P}_{|y|}(y)$ then $y \in dom(p)$.

For $p, q \in P$, $p \leq q$ (meaning q is stronger than p) iff $p \subseteq q$. We will also use the symbols $\langle \rangle \geq and \rangle$ in the natural way.

Note that if we let \emptyset be the function with empty domain then \emptyset is the unique minimal element of P. Clearly, P is non-empty. We must now establish various properties of (P, \leq) to show that a suitable generic object exists and that the resulting forcing preserves cofinalities and cardinalities.

Lemma 2.4 (P, \leq) is separative.

Proof. Let $p \in P$ and let $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$ be such that $\bigcup \operatorname{dom}(p) \in \mathcal{P}_{|x|}(x)$, which is possible because $|\bigcup \operatorname{dom}(p)| < \kappa$. We now define $q \in P$ such that $p \leq q$ and $x \in \operatorname{dom}(q)$ and $q(x) \neq \emptyset$. For $y \in \operatorname{dom}(p)$, let q(y) = p(y). Let q(x) be any club of $\mathcal{P}_{|x|}(x)$ that does not intersect dom(p). Such a club exists because p satisfies (iv) of Definition 2.3. It is straightforward to check that $q \in P$, by checking against conditions (i)-(iv).

Now let $r \ge p$ be defined as follows. Let r(y) = q(y) if $y \ne x$, let $r(x) = \emptyset$ and let r(y) be undefined otherwise. Then $r \in P$ and q, r are clearly incompatible extensions of p.

Н.

Since P is separative, there is a generic object G in M[G] that is not in the ground model, M. We will see that this generic provides an example of a $\Box_{\mathcal{P}_{\kappa\lambda}}$ set. First, however, we must show that the forcing preserves cofinalities and cardinalities.

Lemma 2.5 *P* satisfies the κ^+ -chain condition.

Proof. Suppose $X \subseteq P$ and $|X| = \kappa^+$. We show that X is not an antichain. Let $\mathcal{A} = \{ \operatorname{dom}(p) : p \in X \}$. By a Δ -system argument, using the fact that κ is strongly inaccessible, we can find $\mathcal{B} \subseteq \mathcal{A}$ such that $|\mathcal{B}| = \kappa^+$ and \mathcal{B} is a Δ -system with root R. That is, for all $X, Y \in \mathcal{B}, X \cap Y = R$.

Consider the numbers of functions with domain R such that for each function f and each $x \in R$, $f(x) \subseteq \mathcal{P}_{|x|}(x)$. Clearly, if we impose no further conditions on the value of f(x), the number of distinct functions is equal to $\prod_{x \in R} |\mathcal{P}(\mathcal{P}_{|x|}(x))|$. Now for all $x \in R$, $|\mathcal{P}_{|x|}(x)| < \kappa$ and since $\kappa^{<\kappa} = \kappa$, it follows that $\mathcal{P}(\mathcal{P}_{|x|}(x))| \leq \kappa$. Furthermore, since $|R| < \kappa$, it follows that $\prod_{x \in R} |\mathcal{P}(\mathcal{P}_{|x|}(x))| \leq \kappa$. In other words there are only κ -many suitable functions defined on R. But $\mathcal{B} = \kappa^+$ so by the pigeonhole principle there must be some function f defined on R such that $p \lceil R = f$ for κ^+ many $p \in X$ with $\operatorname{dom}(p) \in \mathcal{B}$.

Now let $Y = \{p \in X : \operatorname{dom}(p) \in \mathcal{B} \text{ and } p \mid R = f\}$. For $p, q \in P$, if p(x) = q(x) for all $x \in \operatorname{dom}(p) \cap \operatorname{dom}(q)$, it is easily proved that $p \cup q$ is a common extension of p, q and hence that p, q are compatible. Thus, the elements of Y are pairwise compatible because they agree on R, which is the intersection of their domains, by the definition of \mathcal{B} . Hence, X is not an antichain.

Н.

We can now conclude that the forcing preserves cofinalities and cardinalities $> \kappa$. We now prove that P is $< \kappa$ -directed closed. It will then follow that the forcing preserves cofinalities and cardinalities $\leq \kappa$.

Lemma 2.6 P is $< \kappa$ -directed closed.

Proof. Suppose $\mu < \kappa$ and $\{p_{\alpha} : \alpha < \mu\}$ is a set of pairwise compatible conditions from P. We define $p_{\mu}^* = \bigcup_{\alpha < \mu} p_{\alpha}$. This is a function since the conditions are pairwise compatible. It is easily checked that p_{μ}^* satisfies (i)-(iii) of Definition 2.3. However, there may be $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda) \setminus \operatorname{dom}(p_{\mu}^*)$ such that $\operatorname{dom}(p_{\mu}^*)$ is stationary in $\mathcal{P}_{|x|}(x)$ so condition (iv) may not hold. We now make a small adjustment to p_{μ}^* to obtain p_{μ} still satisfying (i)-(iii) but also satisfying (iv). Let $p_{\mu}(x) = p_{\mu}^*(x)$ for all $x \in \operatorname{dom}(p_{\alpha}^*)$. For $x \in (\mathcal{P}(\bigcup \operatorname{dom}(p_{\mu}^*)) \setminus \operatorname{dom}(p_{\mu}^*)$, let $p_{\mu}(x) = \emptyset$. Then p_{μ} is as required since (i)-(iv) hold and for all $\alpha < \mu$, $p_{\alpha} < p_{\mu}$.

Note that since the forcing is $< \kappa$ -closed, no new sets of ordinals of size $< \kappa$ are introduced. Hence, $(\mathcal{P}_{\kappa}\lambda)^{M[G]} = (\mathcal{P}_{\kappa}\lambda)^{M}$ and we can write $\mathcal{P}_{\kappa}\lambda$ for the name $\mathcal{P}_{\kappa}\lambda$.

We must now ensure that for any generic G of P, the set $\{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G) (x \in \operatorname{dom}(p) \text{ and } p(x) \neq \emptyset)\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$ in the generic extension. Before we do this we give a lemma that will be needed several times in the proof.

Lemma 2.7 Suppose $p \in P$ and $p \parallel -(\underline{C} \text{ is a club of } \mathcal{P}_{\kappa}\lambda)$ and suppose $y \in \mathcal{P}_{\kappa}\lambda$. Then there is $x \in \mathcal{P}_{\kappa}\lambda$ and $q \in P$ such that $q \geq p$ and $q \parallel -(y \subset x \text{ and } x \in \underline{C})$.

٦,

Proof. Let x be a name such that $p \models (y \subseteq x \text{ and } x \in C)$. This is possible because $p \models (C \text{ is club})$. Also, $p \models ((\exists \mu < \kappa)(|x| < \mu))$ because κ is a limit cardinal.

Let $p_0 \ge p$ and ν a cardinal such that $p_0 \parallel -(\mu = \nu)$. So $p_0 \parallel -(|\underline{x}| < \nu$ and $\nu < \kappa$). Thus we can find a condition $p_1 \ge p_0$ and a name for an enumeration of \underline{x} in an ordertype $< \alpha$ so that: $p_1 \parallel -(\underline{i}^* < \nu \text{ and } \underline{x} = \{\underline{\gamma}_i : i < i^*\})$ and we can extend again to obtain β and p_2 such that $p_2 \parallel -(\underline{x} = \{\underline{\gamma}_i : i < \beta\})$.

Now let $q_0 \ge p_2$ be such that $q_0 \models (\gamma_0 = \delta_0)$. That is, q_0 identifies the value of the name γ_i . By induction on $i < \beta$ we construct an increasing sequence $\langle q_\alpha : \alpha < \beta \rangle$ and a sequence $\langle \delta_\alpha : \alpha < \beta \rangle$ such that $q_\alpha \models (\forall \xi < \alpha)(\gamma_{\xi} = \delta_x i))$. This is possible because P is $< \kappa$ -closed.

Again, by the $< \kappa$ -closure of P, it is possible to find $q \in P$ that identifies all the elements of x. That is, there is $z \in \mathcal{P}_{\kappa}\lambda$ and $q \ge p$ such that $q \models (y \subseteq z$ and $z \in Q)$, as required.

Ч.

Lemma 2.8 Let G be a generic of P. Then $M[G] \models \{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G) (x \in dom(p) \text{ and } p(x) \neq \emptyset)\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

Proof. Let S be a name of the set $\{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G) (x \in \operatorname{dom}(p) \text{ and } p(x) \neq \emptyset)\}$.

Suppose $p_0 \in G$ is such that $p_0 \models (\mathcal{C} \text{ is club in } \mathcal{P}_{\kappa}\lambda \text{ and } \mathcal{C} \cap \mathcal{S} = \emptyset \text{ and } x_0 \in \mathcal{C} \cap \mathcal{P}_{\kappa}\lambda)$. Note that we use the previous lemma to obtain $p_0 \models (x_0 \in \mathcal{C} \cap \mathcal{P}_{\kappa}\lambda)$. We derive a contradiction by finding $p \geq p_0$ such that $p \models (\mathcal{C} \cap \mathcal{S} \neq \emptyset)$. The strategy is to fix a chain of elements of \mathcal{C} and \mathcal{S} up to a regular limit where the two chains intersect.

Let $y_0 \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$ be such that $(\bigcup \operatorname{dom}(p_0) \cup x_0) \in \mathcal{P}_{|y_0|}(y_0)$. We now identify $p_0^* \ge p_0$ such that $y_0 \in \operatorname{dom}(p_0^*)$.

Let D_0 be a linearly ordered club of $\mathcal{P}_{|y_0|}(y_0)$ that does not intersect dom (p_0) . Such a club exists by definition of P (in particular, clause (iv) of Definition 2.3). Note that having D_0 linearly ordered is convenient but not strictly necessary; it is possible because $|y_0|$ is regular.

Let
$$p_0^*(u) = \begin{cases} p_0(u) & \text{if } u \in \operatorname{dom}(p_0) \\ D_0 & \text{if } u = y_0 \\ \emptyset & \text{if } u \in \operatorname{reg}(\mathcal{P}(y_0) \setminus (\operatorname{dom}(p_0) \cup \{y_0\}) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Then by checking against Definition 2.3, it is apparent that $p_0^* \in P$. Note also that $p_0^* \geq p_0$.

Now using the preceding lemma, let $p_1 \ge p_0^*$ be such that for some $x_1 \in \mathcal{P}_{\kappa}\lambda$, $p_1 \models (x_1 \in \mathcal{Q} \cap \mathcal{P}_{\kappa}\lambda \text{ and } y_0 \subseteq x_1)$.

We now proceed inductively to define $p_{\alpha}, x_{\alpha}, y_{\alpha}, p_{\alpha}^{*}$ so that for all $\beta < \alpha$, $y_{\beta} \in p_{\alpha}(y_{\alpha})$ and $p_{\beta} \leq p_{\alpha} \leq p_{\alpha}^{*}$. In the case when α is a limit ordinal, we describe the condition under which the induction will stop. We will then observe that this condition will be met at some stage $\alpha < \kappa$.

Case 1: $\alpha = \beta + 1$

By the inductive definition, p_{α} and x_{α} are already defined. We now define p_{α}^{*} and y_{α} then also define $p_{\alpha+1}$ and $x_{\alpha+1}$. Let $y_{\alpha} \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$ be such that $\bigcup \operatorname{dom}(p_{\beta}) \cup x_{\alpha} \in \mathcal{P}_{|y_{\alpha}|}(y_{\alpha})$. We now identify $p_{\alpha}^{*} \geq p_{\alpha}$ such that $y_{\alpha} \in \operatorname{dom}(p_{\alpha}^{*})$. Unlike in the case $\alpha = 0$, we will define $p_{\alpha}^{*}(y_{\alpha})$ so that it has non-trivial coherence. In particular, for all $\beta < \alpha$, we will have $y_{\beta} \in p_{\alpha}^{*}(y_{\alpha})$.

The inductive hypothesis implies that $y_{\beta} \in \text{dom}(p_{\alpha})$ so we can find a linearly ordered club D_{α} of $\mathcal{P}_{|y_{\alpha}|}(y_{\alpha})$ that does not intersect $\text{dom}(p_{\alpha})$ and satisfies $u \in D_{\alpha} \Rightarrow y_{\beta} \subseteq u$. Such a club exists by (iv) of Definition 2.3 and by intersecting with the club $\{u \in \mathcal{P}_{\kappa}\lambda : y_{\beta} \subseteq u\}$. Now let $D_{\alpha}^* = p_{\alpha}(y_{\beta}) \cup \{y_{\beta}\} \cup D_{\alpha}$.

Let $p_{\alpha}^{*}(u) = \begin{cases} p_{\alpha}(u) & \text{if } u \in \operatorname{dom}(p_{\alpha}) \\ D_{\alpha}^{*} & \text{if } u = y_{\alpha} \\ \emptyset & \text{if } u \in \operatorname{reg}(\mathcal{P}(y_{\alpha}) \setminus (\operatorname{dom}(p_{\alpha}) \cup \{y_{\alpha}\}) \\ \text{undefined} & \text{otherwise} \end{cases}$

It is easily checked that p_{α}^* satisfies (i) to (iv) of Definition 2.3 and that $p_{\alpha}^* \ge p_{\alpha}$. Note also that $y_{\beta} \in p_{\alpha}^*(y_{\alpha})$.

Now using the previous lemma, let $p_{\alpha+1} \ge p_{\alpha}^*$ be such that for some $x_{\alpha+1} \in \mathcal{P}_{\kappa}\lambda$, $p_{\alpha} \models (x_{\alpha} \in \mathcal{Q} \cap \mathcal{P}_{\kappa}\lambda \text{ and } y_{\alpha} \subseteq x_{\alpha})$.

Case 2: α is a limit ordinal $< \kappa$

Note that x_{α} and p_{α} are not yet defined. Let $p_{\alpha} \in P$ be such that $p_{\alpha} \ge p_{\beta}$ for all $\beta < \alpha$. This is possible because P is $< \kappa$ -closed. Let $s_{\alpha} = \bigcup \{y_{\beta} : \beta < \alpha\}$.

If $|s_{\alpha}|$ is regular then this will be the final stage of the induction. We then proceed to define y and p as described below. So suppose now that $|s_{\alpha}|$ is singular. Note in particular that $s_{\alpha} \notin \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$ so $s_{\alpha} \notin \operatorname{dom}(p_{\alpha}^{*})$.

By the inductive definitions of y_{β} , $s_{\alpha} = \bigcup \bigcup \{ \operatorname{dom}(p_{\beta}) : \beta < \alpha \}$, that is s_{α} is the set of ordinals that are in at least one element of the domain of at least one p_{β} . Let $y_{\alpha} \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda)$ be such that $s_{\alpha} \in \mathcal{P}_{|y_{\alpha}|}(y_{\alpha})$. Thus, for any $\beta < \alpha$, if $u \in \operatorname{dom}(p_{\beta})$ then $u \in \mathcal{P}_{|y_{\alpha}|}(y_{\alpha})$.

Let D_{α} be a linearly ordered club of $\mathcal{P}_{|y_{\alpha}|}(y_{\alpha})$ that does not intersect dom (p_{α}) and such that if $u \in D_{\alpha}$ then $s_{\alpha} \subseteq u$. Let $D_{\alpha}^* = \bigcup \{p_{\beta}(y_{\beta}) : \beta < \alpha\} \cup \{s_{\alpha}\} \cup D_{\alpha}$.

Let
$$p_{\alpha}^{*}(u) = \begin{cases} p_{\alpha}(u) & \text{if } u \in \operatorname{dom}(p_{\alpha}) \\ D_{\alpha}^{*} & \text{if } u = y_{\alpha} \\ \emptyset & \text{if } u \in \operatorname{reg}(\mathcal{P}(y_{\alpha}) \setminus (\operatorname{dom}(p_{\alpha}) \cup \{y_{\alpha}\}) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Then $p_{\alpha}^* \in P$ and $(\forall \beta < \alpha)(p_{\alpha}^* \ge p_{\beta})$.

As before, let $p_{\alpha+1} \ge p_{\alpha}^*$ be such that for some $x_{\alpha+1} \in \mathcal{P}_{\kappa}\lambda$, $p_{\alpha} \parallel -(x_{\alpha} \in Q \cap \mathcal{P}_{\kappa}\lambda \text{ and } y_{\alpha} \subseteq x_{\alpha})$.

We repeat this procedure until we reach a limit ordinal $\alpha = \mu < \kappa$ such that s_{α} (as defined in Case 2) has inaccessible cardinality. There must be such a μ because κ is Mahlo. Otherwise the set $\{s_{\alpha} : \alpha < \kappa \text{ and } \lim(\alpha)\}$ would be a club subset of κ that does not intersect the set of regular cardinals, contradicting the fact that κ is Mahlo. So suppose $|s_{\alpha}|$ is regular. Then $|s_{\alpha}|$ is inaccessible because the sequence $\langle |y_{\beta}| : \beta < \alpha \rangle$ is strictly increasing by the inductive definitions of y_{β} for $\beta < \alpha$.

Let $y = s_{\alpha}$ and let $E = \bigcup \{ \operatorname{dom}(p_{\beta}) : \beta < \alpha \}$. Now define p as follows.

$$\operatorname{Let} p(u) = \begin{cases} p_{\beta}(u) & \text{if } (\exists \beta < \mu)(u \in \operatorname{dom}(p_{\beta})) \\ \bigcup \{ p_{\beta}(y_{\beta}) : \beta < \mu \} & \text{if } u = y \\ \emptyset & \text{if } u \in \operatorname{reg}(\mathcal{P}(y) \setminus (E \cup \{y\}) \\ \text{undefined} & \text{otherwise} \end{cases}$$

As before, by checking against (i)-(iv) of Definition 2.3, we see that $p \in P$. We now show that $p \models C \cap S \neq \emptyset$.

Note that $\bigcup_{\beta < \mu} y_{\beta} = y = \bigcup_{\beta < \mu} x_{\beta}$ because for any $\beta < \mu, x_{\beta} \subset y_{\beta} \subseteq x_{\beta+1} \subset y_{\beta+1}$. By the definition of p, it is clear that $p(y) \neq \emptyset$ and hence that $p \parallel -y \in S$. Also, since $p \parallel -(C \text{ is club in } \mathcal{P}_{\kappa}\lambda \text{ and } (\forall \beta < \mu)(x_{\beta} \in C))$ it

follows that $p \parallel -y \in \overline{C}$. Hence, $p \parallel -y \in \overline{C} \cap S$, which is a contradiction because $p \geq p_0$ and $p_0 \parallel -\overline{C} \cap S = \emptyset$.

⊣.

We now establish that the proposed witness to $\Box_{\mathcal{P}_{\kappa}\lambda}$ satisfies the anticoherence condition.

Lemma 2.9 Let G be a generic of P. Then let $S = \{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G)(x \in dom(p) \text{ and } p(x) \neq \emptyset)\} \text{ and let}$ $\tilde{T} = \{x \in S : \text{ there is a cofinal set of } y \in S \cap \mathcal{P}_{|x|}(x) \text{ such that } (\exists p \in G)(\{x,y\} \subseteq dom(p) \text{ and } p(y) \neq p(x) \cap \mathcal{P}_{|y|}(y))\}.$

Then $M[G] \models T$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

Proof (outline). We proceed as in Lemma 2.8, forming the sequence of forcing conditions as before but at each stage, we interrupt the induction after setting p_{α}^* but before setting $x_{\alpha+1}$. We set $z_{\alpha} \supset y_{\alpha}$ and define $q \ge p_{\alpha}^*$ such that $z_{\alpha} \in \text{dom}(q)$ but $q(z_{\alpha}) \cap q(y_{\alpha}) = \emptyset$. Now continue as before but defining $x_{\alpha+1}$ so that $z_{\alpha} \subset x_{\alpha+1}$ and with $q \le p$.

⊣.

Finally, we need to verify that κ is Mahlo in the generic extension M[G].

Lemma 2.10 If G is a generic of P then $M[G] \models \kappa$ is Mahlo.

Proof. Working in M[G], suppose C is a club in κ . Then if $C^* = \{x \in \mathcal{P}_{\kappa}\lambda : |x| \in C\}$, it follows that C^* is club in $\mathcal{P}_{\kappa}\lambda$. By Lemma 2.8, we can find y in $C^* \cap \{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G)(x \in \operatorname{dom}(p) \text{ and } p(x) \neq \emptyset)\}$. Then |y| is a regular cardinal in both M and M[G], by the preservation of cofinalities and cardinalities. Furthermore, $|y| \in C$. Hence the set of regular cardinals is stationary in κ . To see that κ remains a strong limit, note that for all $\mu < \kappa$, $(2^{\mu})^{M[G]} = (2^{\mu})^{M}$ by $< \kappa$ -closure so κ remains a strong limit in the generic extension. Hence κ is Mahlo in M[G] as required.

⊣.

Given generic G of P, let $S = \{x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda) : (\exists p \in G)(p(x) \neq \emptyset) \text{ and for } x \in S, \text{ let } C_x = p(x) \text{ where } p \text{ is an element of } G \text{ with } x \in \operatorname{dom}(p).$

preceding series of lemmas together prove that this S and $\{C_x : x \in S\}$ provides a witness to $\Box_{\mathcal{P}_{\kappa\lambda}}$ in M[G]. Thus, Theorem 2.2 is proved.

We proved in Lemma 2.10 that this forcing preserves the fact that κ is Mahlo. In fact, we can do more than this and preserve supercompactness. Since forcing with P is κ -directed closed, if κ is supercompact in the ground model and we first force with a Laver preparation, then the supercompactness of κ is preserved when we force with P.

Theorem 2.11 Suppose M is a countable model of a sufficiently rich fragment of ZFC in which κ is supercompact and $\lambda \geq \kappa$. Then there is a generic extension of this model which preserves cofinalities and cardinalities and in which κ is supercompact and $\Box_{\mathcal{P}_{\kappa}\lambda}$ holds.

Proof. This follows by forcing with a Laver preparation followed by forcing with P. We use the fact that P is κ -directed closed.

3 A $\mathcal{P}_{\kappa}\lambda$ version of square with a non-reflection property

One of the useful properties encapsulated by the square sequence is that of stationary non-reflection. This is demonstrated in the theorem presented below, which makes use of Fodor's Lemma, which we present here without proof.

Lemma 3.1 (Fodor's Lemma) Suppose that S is a stationary subset of a regular cardinal μ . Suppose also that $f: S \to \mu$ is such that $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there is a stationary subset $T \subseteq S$ such that f is constant on T.

The following well-known theorem is presented here with proof to motivate the work towards a $\mathcal{P}_{\kappa}\lambda$ version of the theorem discussed in the remainder of this section.

Theorem 3.2 If \Box_{κ} holds then κ^+ has a non-reflecting stationary subset.

⊢.

Proof. Suppose $\langle C_{\alpha} : \alpha < \kappa^{+}$ and $\lim(\alpha) \rangle$ is as specified in the definition of \Box_{κ} . Let $T = \{\alpha < \kappa^{+} : \operatorname{cf}(\alpha) < \kappa < \alpha\}$. To see that this is stationary, let C be an arbitrary club of κ^{+} and let $C^{*} = C \setminus \kappa$. Then the ω th element of C^{*} is an element of T.

Now define $F: T \to \kappa$ by $F(\alpha) = \operatorname{otp}(C_{\alpha})$. By part (ii) of Definition 1.1 and the definition of T, $F(\alpha) < \kappa < \operatorname{otp}(\alpha)$ for all $\alpha \in T$. Hence, by Fodor's Lemma, we can select a stationary subset $R \subseteq T$ such that F is constant on R.

Now suppose R reflects in α for some $\alpha \in R$. Let $\beta, \gamma \in R \cap C_{\alpha}$ with $\beta < \gamma$. Then $C_{\beta} \cup \{\beta\} \subseteq C_{\gamma}$ as $\beta = \sup(C_{\beta})$. Thus $F(\gamma) = \operatorname{otp}(C_{\gamma}) \ge \operatorname{otp}(C_{\beta}) + 1 > F(\beta)$. But this is a contradiction because F is constant on R.

⊢.

We now extend $\Box_{\mathcal{P}_{\kappa\lambda}}$ to produce a square principle that has a non-reflection property explicitly built into the definition. We then give a non-reflection theorem using this new principle.

Definition 3.3 $\Box_{\mathcal{P}_{\kappa}\lambda}(S, f)$ holds if $f: S \to \kappa$ and S is stationary and there is a witness $\{C_x : x \in S\}$ to $\Box_{\mathcal{P}_{\kappa}\lambda}(S)$ such that in addition to (i)-(iii) from Definition 2.1 we have:

(iv) $f(x) \in x$

(v) if $y \in C_x$ then $f(x) \neq f(y)$.

We now prove the relative consistency of this principle by extending the partial order P used in the proof of Theorem 2.2.

Theorem 3.4 Suppose M is a countable model of a sufficiently rich fragment of ZFC in which κ is Mahlo and $\lambda \geq \kappa$. Then there is a generic extension of this model which preserves cofinalities and cardinalities and in which κ is Mahlo and for some $f, S, \Box_{\mathcal{P}\kappa\lambda}(S, f)$ holds.

We force with the poset Q defined below.

Definition 3.5 $p, q \in Q$ iff $p \in P$ and q is as follows:

(i) q is a function with domain {x ∈ dom(p) : p(x) ≠ ∅}
(ii) q(x) ∈ x for all x ∈ dom(q)
(iii) if x ∈ dom(p) and y ∈ p(x)∩dom(p) and p(y) ≠ ∅ then q(y) ≠ q(x).
If (p,q), (p',q') ∈ Q then (p,q) ≤ (p',q') iff p ⊆ p' and q ⊆ q'.

We do not present all of the details of the forcing proof. Instead we describe how to upgrade the proof of Theorem 2.2 to include the new property.

Note that $(\emptyset, \emptyset) \in Q$ so Q is non-empty and has a minimal element. We must now establish various properties of (Q, \leq) to show that a suitable generic object exists and that the resulting forcing preserves cofinalities and cardinalities.

Lemma 3.6 (Q, \leq) is separative.

Proof. Let $(p,q) \in Q$ and let $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda) \setminus \operatorname{dom}(p)$ such that there is $\gamma \in x \setminus \operatorname{in}(q)$. Let $(p_0, q_0) \geq (p, q)$ be such that $p_0(x)$ is a club in $\mathcal{P}_{|x|}(x)$ that does not intersect dom(p) and let $q_0(x) = \gamma$. Such a p_0 can be found by Definition 2.3 (iv) and because $|\operatorname{dom}(p)| < \kappa \leq |\operatorname{reg}(\mathcal{P}_{\kappa}\lambda)|$ so there must be some $x \in \operatorname{reg}(\mathcal{P}_{\kappa}\lambda) \setminus \operatorname{dom}(p)$. Now let $(p_1, q_1) \geq (p, q)$ be such that $x \in \operatorname{dom}(p_1)$ and $p_1(x) = \emptyset$ and hence $x \notin \operatorname{dom}(q_1)$. Clearly (p_0, q_0) and (p_1, q_1) are incompatible extensions of (p, q). Hence, Q is separable.

⊢.

We now prove that forcing with Q preserves cofinalities and cardinalities by showing that Q has the κ^+ -chain condition and is $< \kappa$ -directed closed.

We now use the Δ -System Lemma to show that Q has the κ^+ -chain condition.

Lemma 3.7 Q satisfies the κ^+ -chain condition.

Proof. Let A be a subset of Q of size κ^+ . Now let $\mathcal{A} = \{ \operatorname{dom}(p) : \exists q(p,q) \in A \}$. By the Δ -System Lemma, using the fact that κ is a strong limit, we can find $\mathcal{B} \subseteq \mathcal{A}$ such that $|\mathcal{B}| = \kappa^+$ and \mathcal{B} is a Δ -system with root R.

Consider the number of pairs of functions (p,q) definable on R such that for each function (p,q) and each $x \in R$, $p(x) \in \mathcal{P}(\mathcal{P}_{|x|}(x))$ and $q(x) \in x$. By the argument in the proof of Lemma 2.5, the number of possible values that p(x) can take is $< \kappa$. The number of possible values that q(x) can take is clearly |x|. Since $|x| < \kappa$, the number of possible pairs (p(x), q(x)) is $< \kappa$. But $|\mathcal{B}| = \kappa^+$ so by the pigeonhole principle there must be some pair of functions (g, h) defined on R such that $p \lceil R = g$ and $q \lceil R = h$ for κ^+ many $(p, q) \in X$ with dom $(p) \in \mathcal{B}$.

Now let $Y = \{(p,q) \in X : p \mid R = g \text{ and } q \mid R = h\}$. For any $(p_0,q_0), (p_1,q_1) \in Y$, using the fact that p_0, p_1 and q_0, q_1 agree R, it is straightforward to verify that $(p_0 \cup p_1, q_0 \cup q_1) \in Q$. Thus, $(p_0,q_0), (p_1,q_1)$ have a common extension in Q and hence are compatible. Hence, A is not an antichain.

⊢.

Lemma 3.8 Q is $< \kappa$ -directed closed.

Proof. Suppose $\mu < \kappa$ and $\{(p_{\alpha}, q_{\alpha}) : \alpha < \mu\}$ is a set of pairwise compatible conditions from Q. We define $p_{\mu}^* = \bigcup_{\alpha < \mu} p_{\alpha}$ and $q_{\mu}^* = \bigcup_{\alpha < \mu} q_{\alpha}$. Now extend p_{μ}^* to p_{μ} as in the proof of the $< \kappa$ -directed closure of P. Note that we need not add new elements to the domain of q_{μ}^* since $x \in \operatorname{dom}(p_{\mu}) \setminus \operatorname{dom}(p_{\mu}^*) \Rightarrow p_{\mu}(x) = \emptyset$. That is, we may set $q_{\mu} = q_{\mu}^*$. Now for any $x, y \in \operatorname{dom}(q_{\mu})$, there is some $\alpha < \mu$ such that $x, y \in \operatorname{dom}(q_{\alpha})$. Since $(p_{\gamma}, q_{\gamma}) \in Q$ it follows that $x \in p_{\mu}(x) \Rightarrow q_{\mu}(x) \neq q_{\mu}(y)$ and vice versa as required. It follows that $(p_{\alpha}, q_{\alpha}) \in Q$ and for all $\beta < \mu$, $(p_{\alpha}, q_{\alpha}) \leq (p_{\mu}, q_{\mu})$.

It follows from the preceding lemmas that forcing with Q preserves cofinalities and cardinalities. As with P, this forcing is $< \kappa$ -closed so for a generic Gof Q, $(\mathcal{P}_{\kappa}\lambda)^{M[G]} = (\mathcal{P}_{\kappa}\lambda)^{M}$ and we can write $\mathcal{P}_{\kappa}\lambda$ for the name $\mathcal{P}_{\kappa}\lambda$ in the following. We must now ensure that for any generic G of Q, the set $\{x \in \mathcal{P}_{\kappa}\lambda : (\exists (p,q) \in G) (x \in \operatorname{dom}(p) \text{ and } p(x) \neq \emptyset\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$. Note that the following variation on Lemma 2.7 holds. The proof is almost identical to the proof of Lemma 2.7.

Lemma 3.9 Suppose $(p,q) \in Q$ and $(p,q) \parallel -(\underline{C} \text{ is a club of } \mathcal{P}_{\kappa}\lambda)$. Then there is $x \in \mathcal{P}_{\kappa}\lambda$ and $(p',q') \in Q$ such that $(p',q') \geq (p,q)$ and $(p',q') \parallel -x \in \underline{C}$.

Lemma 3.10 Let G be a generic of Q. Then $M[G] \models \{x \in \mathcal{P}_{\kappa}\lambda : (\exists p \in G) (x \in dom(p) \text{ and } p(x) \neq \emptyset)\}$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

Proof. We proceed as in the proof of Lemma 2.8 but define (p_{α}, q_{α}) and $(p_{\alpha}^*, q_{\alpha}^*)$ at each stage. We now describe how to set q_{α} . Let $\gamma \in y_0 \setminus \{q(y_0)\}$. We insist, without loss of generality, that for all α, γ is not in the image of q_{α} or q_{α}^* . For all $\alpha < \mu$ we set $q(y_{\alpha}) = \gamma_{\alpha} \in y_{\alpha} \setminus \bigcup_{\beta < \alpha} y_{\beta}$. By definition of y_{α} , such a γ_{α} wil always exist. At the final stage, when defining (p, q), we define p as before and set $q(y) = \gamma$.

⊣.

The last two lemmas that we need follow by arguments exactly analogous to the corresponding lemmas for P.

Lemma 3.11 Let G be a generic of Q. Then let $S = \{x \in \mathcal{P}_{\kappa}\lambda : (\exists (p,q) \in G) (x \in dom(p) \text{ and } p(x) \neq \emptyset)\}$ and let $\tilde{T} = \{x \in S : \text{ there is a cofinal set of } y \in S \cap \mathcal{P}_{|x|}(x) \text{ such that } (\exists (p,q) \in G)(\{x,y\} \subseteq dom(p) \text{ and } p(y) \neq p(x) \cap \mathcal{P}_{|y|}(y))\}.$

Then $M[G] \models T$ is stationary in $\mathcal{P}_{\kappa}\lambda$.

Lemma 3.12 If G is a generic of Q then $M[G] \models \kappa$ is Mahlo.

By forcing with the partial order (Q, \leq) , Theorem 3.4 is proved. We set $S = \{x \in \mathcal{P}_{\kappa}\lambda : (\exists (p,q) \in G) | x \in \text{dom}(p) \text{ and } p(x) \neq \emptyset)\}$ and set $f = \bigcup \{q : \exists p((p,q) \in G)\}$. Then f and $\{C_x : (\exists (p,q) \in G) | C_x = p(x) \neq \emptyset)\}$, together witness that $\Box_{\mathcal{P}_{\kappa}\lambda}(S, f)$ holds, as required.

We now show how $\Box_{\mathcal{P}_{\kappa\lambda}}(S, f)$ gives non-reflection in $\mathcal{P}_{|x|}(x)$ for stationary many $x \in \mathcal{P}_{\kappa\lambda}$. We then state without proof some related results proved by Abe in [1] and by Koszmider in [7].

The following is proved by forcing and draws on Gitik's method of shooting clubs in $\mathcal{P}_{\kappa}\lambda$.

Theorem 3.13 (Abe) Let $V \subset W$ be two models of ZFC with the same ordinals, $(\kappa^+)^V = (\kappa^+)^W$; let C be a club subset of κ of V-inaccessibles; let κ be an inaccessible cardinal in W and let $T = \{x \in \mathcal{P}_{\kappa}\kappa^+ : V \models |x| \text{ is not} inaccessible}\}$. Then there is a forcing notion in W that preserves cofinalities and cardinalities and such that there is a stationary $S \subset \mathcal{P}_{\kappa}\kappa^+$ such that $S \cap \mathcal{P}_{\kappa_{\pi}}(x)$ is non-stationary for any $x \in T$. Koszmider in [7] gives a different kind of non-reflection result, considering reflection in $\mathcal{P}_{\kappa}(X)$ where $X \subset \lambda$.

Theorem 3.14 (Koszmider) It is consistent that there is a stationary set $S \subset \mathcal{P}_{\kappa}\lambda$ such that $S \cap \mathcal{P}_{\kappa}X$ is non-stationary in $\mathcal{P}_{\kappa}X$ for any $X \subset \lambda$ with $|X| \geq \kappa$ in the generic extension.

Finally we consider the following theorem of Abe which gives a form of non-reflection when κ is supercompact.

Theorem 3.15 (Abe) If it is consistent that there is a supercompact cardinal then it is consistent that there is a supercompact κ , a cardinal $\lambda \geq \kappa$ and a stationary set $X \subset \mathcal{P}_{\kappa}\lambda$ such that $X \cap \mathcal{P}_{\kappa}\alpha$ is non-stationary in $\mathcal{P}_{\kappa}\alpha$ for any $\alpha < \lambda$.

The following definition presents the form of non-reflection that we examine with $\Box_{\mathcal{P}_{\kappa}\lambda}(S, f)$.

Definition 3.16 A stationary set $S \subseteq \mathcal{P}_{\kappa}\lambda$ reflects in $\mathcal{P}_{|x|}(x)$ if $S \cap \mathcal{P}_{|x|}(x)$ is stationary in $\mathcal{P}_{|x|}(x)$.

The non-reflection theorem follows easily from the $\Box_{\mathcal{P}_{\kappa}\lambda}(S, f)$ principle. Note that the proof is closely analogously to the proof of non-reflection from \Box_{κ} in the theory of cardinals. This theorem draws on the variation on Fodor's Lemma presented below. Lacking a suitable reference, we present a proof.

Lemma 3.17 Suppose that S is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Suppose also that $f: S \to \lambda$ is such that $f(x) \in x$ for all $x \in S$. Then there is a stationary subset $T \subseteq S$ such that f is constant on T.

Proof. Suppose $f: S \to \lambda$ is a counterexample. For each $\alpha < \lambda$ choose C_{α} club in $\mathcal{P}_{\kappa}\lambda$ with $(f^{-1}(\alpha)) \cap C_{\alpha} = \emptyset$. Now let D be the diagonal intersection of the C_{α} , $D = \Delta \langle C_{\alpha} : \alpha < \lambda \rangle$ and take $y \in S \cap D$, guaranteed to exist because D is club. Then $f(y) \in y$ so since $y \in D$ we have $y \in C_{f(y)}$. Hence, $y \in f^{-1}(f(y)) \cap C_{f(y)}$, contradicting the choice of $C_{f(y)}$.

Н.

Theorem 3.18 Suppose κ is Mahlo and $\lambda \geq \kappa$. Then if $\Box_{\mathcal{P}_{\kappa}\lambda}(S, f)$ holds then there is a stationary set $T \subseteq S$ such that T does not reflect in $\mathcal{P}_{|x|}(x)$ for any $x \in S$.

Proof. Let $\{C_x : x \in S\}$ witness $\Box_{\mathcal{P}_k\lambda}(S, f)$. Note that since $f(x) \in x$, by the preceding lemma it follows that there is a stationary set $T \subseteq S$ such that f(x) is constant on T. Now suppose T reflects in $\mathcal{P}_{|x|}(x)$ for some $x \in S$. Let $y \in T \cap C_x$. The set $\{u \in \mathcal{P}_{|x|}(x) : y \subseteq u \text{ and } |y| < |u|\}$ is club in $\mathcal{P}_{|x|}(x)$ so we can find $z \in T \cap C_x$ such that $y \in \mathcal{P}_{|z|}(z)$. By the definition of $\Box_{\mathcal{P}_k\lambda}(S, f)$, we have that $C_z = C_x \cap \mathcal{P}_{|z|}(z)$ so $y \in C_z$. But then $f(y) \neq f(z)$, contradicting the definition of T. Thus T cannot reflect in $\mathcal{P}_{|x|}(x)$.

⊣.

It should be noted that for some κ , for example the first Mahlo cardinal, the conclusion of this theorem holds in ZFC. (Simply let $S = T = reg(\mathcal{P}_{\kappa}\lambda)$.) The theorem becomes more relevant for cardinals higher in the Mahlo hierarchy (i.e. those that are $\alpha - Mahlo$ for $\alpha > 0$).

As with $\Box_{\mathcal{P}_{\kappa\lambda}}(S)$ we may use a Laver preparation to prove that $\Box_{\mathcal{P}_{\kappa\lambda}}(S, f)$ is consistent even for supercompact κ . Thus, supercompactness of κ does not prevent this principle or the corresponding non-reflection theorem.

References

- [1] Y. Abe, "Non-reflecting stationary subsets of $\mathcal{P}_{\kappa}\lambda$ ", Annals of Pure and Applied Logic 50 (1990), 207-254.
- [2] K. Devlin, "Constructibility". Springer-Verlag, 1st edition, 1980.
- [3] M. Džamonja, "On $\mathcal{P}_{\kappa}\lambda$ combinatorics using a third cardinal", Radovi Matematicki 9(2) (2000), 14-155.
- [4] T. Jech, "Some combinatorial problems concerning uncountable cardinals", Annals of Mathematical Logic 5 (1973), 165-198.
- [5] R. B. Jensen, "The fine structure of the constructible hierarchy", Annals of Mathematical Logic 4 (1972), 229-308.
- [6] A. Kanamori, "The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings". Perpectives in Mathematical Logic. Springer-Verlag, 1997.

- [7] P. Koszmider, "Semimorasses and nonreflection at singular cardinals", Annals of Pure and Applied Logic 72 (1995), 1-23.
- [8] P. Matet, "Partitions and diamond", Proceedings of the American Mathematical Society 97(1) (1986), 133-135.
- [9] G. Piper, On the combinatorics of $\mathcal{P}_{\kappa}\lambda$, PhD. Thesis, University of East Anglia, 2004.