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Asquare principle in the context of $P_{\kappa}\lambda$
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Abstract

We introduce a combinatorial principle for $P_{\kappa}\lambda$ based upon $\square _{\kappa}$ .
Although we cannot transfer one of the clauses of $\square _{\kappa}$ to this con-
text, we can replicate some of the desired consequences of that clause.
We discuss this situation and its implications along with proving the
relative consistency of some $P_{\mathit{1}\mathrm{t}}\lambda$ versions of $\coprod_{t\sigma}$ .

1 Introduction

In this paper, we discuss the problem of generalising the square principle to
the context of $P_{\kappa}\lambda$ . The research presented below is discussed in the author’s
thesis, [9]. (In fact, the principles presented there are slight variations on
those defined below.) This combinatorial research follows a well-establish$\mathrm{e}\mathrm{d}$

tradition and is guided by the idea of transferring interesting notions from
the theory of the combinatorics of ordinal numbers. For example, Jensen’s
diamond principle (see [5]) has been usefully generalised to this context (orig-
inally by Jech in [4], but also by Matet in [8] and by Dzamonja in [3] $)$ .

The sq uare principle cannot be directly transferred to the context of $P_{\kappa}\lambda$ for
various reasons, as discussed below. The general approach that we follow is
to establish a basic nontrivial square principle for $P_{\kappa}\lambda$ then explicitly add
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further properties of square in more complex forcings. In this paper, following
the basic principle, we define a second principle in which the square principle’s
non-reflection property is added.

Throughout this paper, $\kappa$ is a regular infinite cardinal and A is a cardinal
with $\kappa$ $\leq\lambda$ . We now give some basic definitions and clarify the notation used
in this paper.

Let $P_{\kappa}\lambda=\{x\underline{\subseteq}\lambda : |x|<\kappa\}$ . $P_{\kappa}\lambda$ is typically ordered by $\subseteq$ and will be
throughout this paper. Combinatorial ideas such as clubs and stationarity

can be defined in this context, as described in [6]. Note that $\kappa$ and A are
arguments and may be replaced by specified cardinals or sets respectively.
In this paper, we will frequently consider $P_{|x|}(x)$ where $x$ is a set. Note that
$P_{\kappa}\lambda$ is also commonly written as [A] $”’$ .

The notation used in this paper is mostly standard. By $x\subseteq y$ we mean $(x\subseteq y$

and $x\neq y$ ). We write $\lim(\alpha)$ as an abbreviation for “a is a limit ordinal” ;
$\mathrm{o}\mathrm{t}\mathrm{p}(X)$ denotes the ordertype of a wellordered set $X$ and for an ordinal $\alpha$ ,
$\mathrm{c}\mathrm{f}(\alpha)$ denotes the cofinality. For a function $f$ , dom(f) denotes the domain of
$f$ and $\mathrm{i}\mathrm{m}(f)$ denotes image of $f$ , while $f$ $\lceil X$ denotes the restriction of $f$ to
$X$ where $X\underline{\subseteq}$ dom(f). In forcing proofs, we follow the convention that for
two conditions $p$ , $q$ )

$p\leq q$ means $p$ is a weaker condition than $q$ . Lastly, we
use $\mathrm{r}\mathrm{e}\mathrm{g}(X)$ to denote the set of elements of $X$ of regular cardinality.

Before we develop a version of the square principle in the context of $P_{\kappa}\lambda$ , we
introduce the standard principle. This principle, denoted $\Pi_{\kappa}$ , was developed

by Jensen and has proved a useful tool in various areas of mathematical logic.

It is defined as follows (although it should be noted that other equivalent

formulations exist).

Definition 1.1 $\square _{\kappa}$ is the statement that there is a sequence $\langle$ $C_{\alpha}$ : $\alpha\in\kappa^{+}$ ,

$\lim(\alpha))$ with the following properties:

(i) $C_{\alpha}$ is a club subset of $\alpha$

(ii) if $\mathrm{c}\mathrm{f}(\mathrm{a})<\kappa$ then $otp(C_{\alpha})<\kappa$

(Hi) (Coherence:) if $\mathit{7}\mathit{3}\in C_{\alpha}$ and $l\dot{x}m(\beta)$ then $C_{\beta}=C_{\alpha}\cap\beta$ .

Forcing can be used to produce a model of set theory in which $\square _{\kappa}$ holds.

This approach uses a partial order whose elements are initial segments of

potential square sequences. It is also known that $\square _{\kappa}$ holds in $L$ , the univers$\mathrm{e}$
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of constructible sets. The best-known proof uses fine structure theory and is
due to Jensen; a good account of this proof is given in [2].

The square principle encapsulates various interesting properties. Coherence
and anticoherence are discussed in the next section. Another property, non-
reflection, is discussed further in the final section of this paper.

2 A square principle in the context of $P_{\kappa}\lambda$

We will define a square-like principle that asserts the existence of a coherent
set of subsets of $P_{\kappa}$ A indexed by the elements of $P_{\kappa}\lambda$ . Note that in considering
$C_{x}\subseteq P_{|x|}(x)$ for $x\in P_{\kappa}\lambda$ we require $|x|$ to be regular and hence no club of
$P_{|x|}(x)$ will have cardinality $<|x|$ . Thus, the cardinalities of the clubs cannot
be limited as they are for those corresponding to singular ordinals in $\square _{\kappa}$ . It
is necessary, therefore, to introduce alternative non-triviality conditions that
add some of the basic properties of $\square _{\hslash}$ . Also, note that if $\kappa$ is a successor
cardinal, coherence is trivial for a club of $P_{\kappa}\lambda$ , that is for the elements of
[A]’, Thus, while $\square _{\kappa}$ actually asserts a property of $\kappa^{+}$ , the principle defined
below does not “look ahead” at $P_{\kappa}+$ A.

For the reasons mentioned above, we must assume that $\kappa$ is a regular limit
cardinal. In fact, since we require stationary-many regular card inals below
$\kappa$ , for the remainder of this paper we assume that $\kappa$ is a Mahlo cardinal.

Definition 2.1 Suppose $\kappa$ is a Mahlo cardinal and A is an infinite cardinal
with $\kappa\leq\lambda$ . Suppose also that $S$ is a stationary subset of $P_{\kappa}\lambda$ . Then $\square _{\mathcal{P}_{\aleph}\lambda}(S)$

is the statement that there is a family of sets $\{C_{x} : x\in S\}$ with the following
properties:

(i) $C_{x}$ is a club subset of $P_{|x|}(x)$ for all $x\in S$

(it) (Coherence:) if $x\in S$ and $y\in C_{x}\cap S$ then $C_{y}=C_{x}\cap P_{|y|}(y)$

(iii) (Anticoherence:) the set { $x\in S$ : there is a cofinal set of $y\in S\cap P|x|(x)$

such that $C_{y}\neq C_{x}\cap P_{|y|}(y)\}$ is stationary in $P_{\kappa}\lambda$ .

We write $\square _{\mathcal{P}_{\kappa}\lambda}$ to mean that there is a stationary $S\underline{\subseteq}P_{l\mathrm{t}}\lambda$ such that $\square _{\mathcal{P}_{\kappa}\lambda}(S)$

holds.

Note that the restriction to a stationary subset is not as serious a restriction
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as it may appear since in this context we can at best have $C_{x}$ defined for all
$x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ , which is stationary if Mahlo is $\kappa$ , but cannot be club. Note
that stronger forms of stationarity could be substituted with appropriate
adjustments to the forcing below.

The anticoherence property is implicit in the definition of $\square _{\kappa}$ but must be ex-
plicitly required for $\Pi_{\mathcal{P}_{\kappa}\lambda}$ . This ensures that the principle cannot be satisfied
trivially, e.g. by setting $C_{x}=P|x|(x)$ for all $x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa \mathrm{i}}\lambda)$.

The $\coprod_{\mathcal{P}_{\kappa}\lambda}$ principle is consistent with $\mathrm{Z}\mathrm{F}\mathrm{C}+$
“

$\kappa$ is Mahlo”, as we assert in
the following theorem. Important questions remain unanswered, however.
Noteably, it is not known whether the principle holds in $\mathrm{Z}\mathrm{F}\mathrm{C}+$

“
$\mathrm{V}=\mathrm{L}$”or

even in ZFC.

Before we proceed with the consistency proof, note that we could also develop

a principle based on clubs$\mathrm{b}\mathrm{s}$ of $P_{\kappa_{x}}(x)$ for each $x\in S$ . Recall that $\kappa_{x}=x\cap\kappa$

if this is an ordinal and is undefined otherwise. Here, we would insist that $S$

contains only elements $x$ for which $\kappa_{x}$ is a regular cardinal. Assuming that
$\kappa$ is Mahlo, the consistency of such a principle can be proved with a forcing

analogous to the one for $\square P_{\kappa}\lambda$ .

Theorem 2.2 Suppose $M$ is a countable model of a sufficiently rich frag-

ment of $ZFC$ in which $\kappa$ is Mahlo and $\lambda\geq$ is. Then there is a generic
extension of this model which preserves cofinalities and cardinalities and in

which $\kappa$ is Mahlo and $\square _{\mathcal{P}_{\kappa}\lambda}$ holds.

This theorem is proved by forcing with the partial order defined below. Es-

sentially, the partial order is composed of fragments of possible witnesses to
$\coprod_{\mathcal{P}_{\kappa}\lambda}$ .

Definition 2,3 Let P be a set whose elements p are characterised as follows:

(i) $p$ is a function with $dom(p)\in P_{\kappa}(reg(P_{\kappa}\lambda))$

(ii) for all $x\in dom(p)$ , $p(x)$ is either club in $P|x|(x)$ or the empty set

(ii) if $x\in dom(p)$ and $y\in p(x)\cap reg(P_{\kappa}\lambda)$ then $y\in dom(p)$ and either
$p(y)=p(x)\cap P_{|y|}(y)$ or $p(y)=\emptyset$

(iv) if $dom(p)\cap P_{|y|}(y)$ is stationary in $P_{|y|}(y)$ then $y\in dom(p)$ .

For $p$ , $q\in P_{f}p\leq q$ (meaning $q$ is stronger than $p$) iff.
$p\subseteq q$ . We will also

use the symbols $<,$ $\geq and$ $>\mathrm{i}n$ the natural way
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Note that if we let $\langle)$ be the function with empty domain then $\emptyset$ is the unique
minimal element of $P$ . Clearly, $P$ is non-empty. We must now establish
various properties of $(P, \leq)$ to show that a suitable generic object exists and
that the resulting forcing preserves cofinalities and cardinalities.

Lemma 2.4 (P,$\leq)$ is separative.

Proof. Let $p\in P$ and let $x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ be such that LJ $\mathrm{d}\mathrm{o}\mathrm{m}(p)\in P_{|x|}(x)$ ,
which is possible because $|\cup \mathrm{d}\mathrm{o}\mathrm{m}(p)|<\kappa$ . We now define $q\in P$ such that
$p\leq q$ and $x\in \mathrm{d}\mathrm{o}\mathrm{m}(q)$ and $\mathrm{q}(\mathrm{x})$ $\neq\emptyset$ . For $y\in \mathrm{d}\mathrm{o}\mathrm{m}(\mathrm{p})$ , let $q(y)=p(y)$ . Let
$q(x)$ be any club of $P|x|(x)$ that does not intersect $\mathrm{d}\mathrm{o}\mathrm{m}(p)$ . Such a club exists
because $p$ satisfies (iv) of Definition 2.3. It is straightforward to check that
$q\in P$ , by checking against conditions $(\mathrm{i})-(\mathrm{i}\mathrm{v})$ .

Now Let $r\geq p$ be defined as follows. Let $r(y)=q(y)$ if $y\neq x$ , let $r(x)=\emptyset$ and
let $r(y)$ be undefined otherwise. Then $r\in P$ and $q$ , $r$ are clearly incompatible
extensions of $p$ .

H.

Since $P$ is separative, there is a generic object $G$ in $M[G]$ that is not in the
ground model, $M$ . We will see that this generic provides an example of a

$\coprod_{\mathcal{P}_{\kappa}\lambda}$ set. First, however, we must show that the forcing preserves cofinalities
and cardinalities.

Lemma 2.5 P satisfies the $\kappa^{+}$ -chain condition.

Proof. Suppose $X\underline{\subseteq}P$ and $|X|=\kappa^{+}$ . We show that $X$ is not an antichain.
Let $A=\{\mathrm{d}\mathrm{o}\mathrm{m}(p) : p\in X\}$ . By a $\triangle$-system argument, using the fact that
$\kappa$ is strongly inaccessible, we can find $B\underline{\subseteq}$ $A$ such that $|B|=\kappa^{+}$ and $B$ is a
$\triangle$-system with root $R$ . That is, for all $X$ , $Y\in B$ , $X\cap Y=R$ .

Consider the numbers of functions with domain $R$ such that for each fume-
tion $f$ and each $x\in R$ , $f(x)\subseteq P_{|x|}(x)$ . Clearly, if we impose no further
conditions on the value of $f(x)$ , the number of distinct functions is equal
to $\Pi_{x\in R}|P(P_{|x|}(x))|$ . Now for all $x\in R$ , $|P|x|(x)|<\kappa$ and since $\kappa^{<\kappa}=\kappa$ ,
it follows that $P(P|x|(x))|\leq\kappa$ . Furthermore, since $|R|<\kappa$ , it follows that
$\Pi_{x\in R}|P(P_{|x|}(x))|\leq\kappa$ . In other words there are only $\kappa$-many suitable func-
tions defined on $R$ . But $B$ $=\kappa^{+}$ so by the pigeonhole principle there must
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be some function $f$ defined on $R$ such that $p\lceil R$ $=f$ for $\kappa^{+}$ many $p\in X$ with
$\mathrm{d}\mathrm{o}\mathrm{m}(p)\in B$ .

Now let $Y=$ {$p$ $\in X$ : $\mathrm{d}\mathrm{o}\mathrm{m}(p)\in B$ and $p\lceil R=f$ }. For $p$ , $q\in P$ , if
$\mathrm{p}(\mathrm{x})=q(x)$ for all $x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)\cap \mathrm{d}\mathrm{o}\mathrm{m}(q)$, it is easily proved that $p\cup q$ is
a common extension of $p$ , $q$ and hence that $p$ , $q$ are compatible. Thus, the
elements of $Y$ are pairwise compatible because they agree on $R$ , which is
the intersection of their domains, by the definition of S. Hence, $X$ is not an
antichain.

$\dashv$ .

We can now conclude that the forcing preserves cofinalities and cardinalities
$>\kappa$ . We now prove that $P$ is $<\kappa$-directed closed. It will then follow that
the forcing preserves cofinalities and cardinalities $\leq\kappa$ .

Lemma 2.6 P is $<\kappa$-lirectei closed.

Proof. Suppose $\mu<\kappa$ and { $p_{\alpha}$ : a $<\mu$} is a set of pairwise compatible condi-

tions from $P$ . We define $p_{\mu}^{*}= \bigcup_{\alpha<\mu}p_{\alpha}$ . This is a function since the conditions
are pairwise compatible. It is easily checked that $p_{\mu}^{*}$ satisfies $(i)-(\mathrm{i}\mathrm{i}\mathrm{i})$ of Defi-

nition 2.3. However, there may be $x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)\backslash \mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu}^{*})$ such that $\mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu}^{*})$

is stationary in $P_{|x|}(x)$ so condition (iv) may not hold. We now make a small
adjustment to $p_{\mu}^{*}$ to obtain $p_{\mu}$ still satisfying $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ but also satisfying (iv).

Let $p_{\mu}(x)=p_{\mu}^{*}(x)$ for all $x\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha}^{*})$ . For $x\in(P(\cup \mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu}^{*}))\backslash \mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu}^{*})$ ,

let $p_{\mu}(x)=\emptyset\backslash$ Then $p_{\mu}$ is as required since $(\mathrm{i})\backslash -(\mathrm{i}\mathrm{v})$ hold and for all a $<\mu$ ,

$p_{\alpha}<p_{\mu}$ .

$\dashv$ .

Note that since the forcing is $<\kappa$-closed, no new sets of ordinals of size $<\kappa$

are introduced. Hence, $(P_{\kappa}\lambda)^{M[G]}=(P_{\kappa}\lambda)^{M}$ and we can write $P_{\kappa}\lambda$ for the

name $P_{\sim^{\kappa}}\lambda$ .

We must now ensure that for any generic $G$ of $P$ , the set { $x\in P_{\kappa}\lambda$ : $(\exists p\in$

G) ($x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ and $p(x)$ $\neq\emptyset$ ) $\}$ is stationary in $P_{\kappa}\lambda$ in the generic extension.
Before we do this we give a lemma that will be needed several times in the

proof.

Lemma 2.7 Suppose $p\in P$ and $p||-$ ( $C\sim$ is a club of $P_{\kappa}\lambda$) and suppose
$y\in P_{\kappa}\lambda$ . Then there is $x\in P_{\kappa}\lambda$ and $q\in P$ such that $q\geq p$ and $q|\vdash(y\subseteq x$

ancl $x\in(;)$ .
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Proof. Let ; be a name such that $p|\vdash$ ( $y\subseteq\sim x$ and $;\in C$ )
$\sim$

. This is possible
because $p|\vdash$ ( $C\sim$ is club). Also, $p|\vdash((\exists\mu<\kappa)(|\sim x|<\mu))$ because $\kappa$ is a limit
cardinal.

Let $p_{0}\geq p$ and $\iota/$ a cardinal such that $p_{0}||-(\mu=lJ)$ . So $p_{0}||-(|\sim x|<\nu$ and
$lJ$ $<\kappa)$ . Thus we can find a condition $p_{1}\geq p_{0}$ and a name for an enumeration
of $x\sim$ in an ordertype $<\alpha$ so that: $p_{1}|\vdash$ ( $\mathrm{i}_{\sim}^{*}<t/$ and $\sim x=\{\gamma_{i}\sim$ : $\mathrm{i}<\mathrm{i}^{*}\}$ ) and we
can extend again to obtain $\beta$ and $p_{2}$ such that $p_{2}|\vdash$ $(\sim x=\{\gamma_{i}=\mathrm{i}<\beta\})\wedge\cdot$

Now let $q_{0}\geq p_{2}$ be such that $q_{0}|\vdash(\gamma_{0}=\delta_{0})$ . That is, $q_{0}$ identifies the value
of the name \gamma \tilde $. By induction on $\mathrm{i}<\beta$ we construct an increasing sequence

$\langle$

$q_{\alpha}$ : a $<\beta\rangle$ and a sequence $\langle\delta_{\alpha} : \alpha<\beta\rangle$ such that $q_{\alpha}|\vdash(\forall\xi<\alpha)(\gamma_{\xi}=\delta_{x}\mathrm{i}))\sim$ .
This is possible because $P$ is $<$ x-closed.

Again, by the $<\kappa$-closure of $P$ , it is possible to find $q\in P$ that identifies all
the elements of $\sim x$ . That is, there is $z$ $\in P_{\kappa}\lambda$ and $q\geq p$ such that $q|\vdash(y\subseteq z$

and $z\in C$)
$\sim$ ’ as required.

H.

Lemma 2.8 Let G be a generic of P. Then $M[G]\models$ {x $\in P_{\kappa}\lambda$ : $(\exists p\in$

G)(x $\in dom(p)$ and $p(x)\neq\emptyset$)} is stationary in $P_{\kappa}\lambda$ .

Proof. Let $S\sim$ be a name of the set { $x\in P_{\kappa}\lambda$ : (Ep $\in G$)( $x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ and
$p(x)\neq\emptyset)\}$ .

Suppose $p_{0}\in G$ is such that $p_{0}|\vdash(\sim C$ is club in $P_{\kappa}\lambda$ and $C\sim\cap S=\emptyset\sim$ and $x_{0}\in$

$C\cap P_{\kappa}\lambda)\sim$ . Note that we use the previous lemma to obtain $p_{0}|\vdash(x_{0} ; C\cap P_{\kappa}\lambda)\sim$ .
We derive a contradiction by finding $p\geq p_{0}$ such that $p|\vdash(\sim C\cap S\sim\neq\emptyset)$ . The
strategy is to fix a chain of elements of $C\sim$ and $S\sim$ up to a regular limit where
the two chains intersect.

Let $y_{0}\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ be such that $(\cup \mathrm{d}\mathrm{o}\mathrm{m}(p_{0})\cup x_{0})\in P_{|y\mathrm{o}|}(y_{0})$ . We now identify
$p_{0}^{*}\geq p_{0}$ such that $y_{0}\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{0}^{*})$ .

Let $D_{0}$ be a linearly ordered club of $P|y\mathrm{o}|(y_{0})$ that does not intersect $\mathrm{d}\mathrm{o}\mathrm{m}(p_{0})$ .
Such a club exists by definition of $P$ (in particular, clause (iv) of Definition
2.3). Note that having $D_{0}$ linearly ordered is convenient but not strictly
necessary; it is possible because $|y_{0}|$ is regular
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Let $p_{0}^{*}(u)=\{$

$p0(u)$ if $u\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{0})$

$\emptyset D_{0}$

if $u=y_{0}$

if $u\in \mathrm{r}\mathrm{e}\mathrm{g}(P(y_{0})\backslash (\mathrm{d}\mathrm{o}\mathrm{m}(p_{0})\cup\{y\mathrm{o}\})$

undefined otherw ise

Then by checking against Definition 2.3, it is apparent that $p_{0}^{*}\in$ P. Note
also that $p_{0}^{*}\geq p_{0}$ .

Now using the preceding lemma, let $p_{1}\geq p_{0}^{*}$ be such that for some $x_{1}\in P_{\kappa}\lambda$ ,
$p_{1}|\vdash$ ( $x_{1}\in C\cap P_{\kappa}\lambda\sim$ and $y_{0}\subseteq x_{1}$ ).

We now proceed inductively to define $p_{\alpha}$ , $x_{\alpha}$ , $y_{\alpha},p_{\alpha}^{*}$ so that for all $\beta<\alpha$ ,

y\beta \in p%{ya) and $p_{\beta}\leq p_{\alpha}\leq p_{\alpha}^{*}$ . In the case when $\alpha$ is a limit ordinal, we
describe the condition under which the induction will stop. We will then
observe that this condition will be met at some stage a $<\kappa$ .

Case 1: $\alpha$ $=\beta+1$

By the inductive definition, $p_{\alpha}$ and $x_{\alpha}$ are already defined. We now define
$p_{\alpha}^{*}$ and $y_{\alpha}$ then also define $p_{\alpha+1}$ and $x_{\alpha+1}$ . Let $y_{\alpha}\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ be such that
$\cup \mathrm{d}\mathrm{o}\mathrm{m}(p_{\beta}1\cup x_{\alpha}\in P_{|y_{\alpha}|}(y_{\alpha})$ . We now identify $p_{\alpha}^{*}\geq p_{\alpha}$ such that $y_{\alpha}\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha}^{*})$.
Unlike in the case $\alpha=0$ , we will define $p_{\alpha}^{*}(y_{\alpha})$ so that it has non-trivial
coherence. In particular, for all $\beta<\alpha$ , we will have $y\beta\in p_{\alpha}^{*}(y_{\alpha})$ .

The inductive hypothesis implies that $y_{\beta}\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})$ so we can find a linearly

ordered club $D_{\alpha}$ of $P_{|y_{\alpha}|}(y_{\alpha})$ that does not intersect $\mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})$ and satisfies $u\in$

$D_{\alpha}\Rightarrow y_{\beta}\subseteq u$. Such a club exists by (iv) of Definition 2.3 and by intersecting

with the club $\{u\in P_{\kappa}\lambda : y\beta\subseteq u\}$ . Now let $D_{\alpha}^{*}=p_{\alpha}(y\beta)\cup\{y\beta\}\cup D_{\alpha}$ .

Let $p_{\alpha}^{*}(u)=$

’
$p_{\alpha}(u)$ if $u\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})$

$D_{\alpha}^{*}\emptyset$

if $u=y_{\alpha}$

if $u\in \mathrm{r}\mathrm{e}\mathrm{g}(\mathrm{P}(y_{\alpha})\backslash (\mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})\cup\{y_{\alpha}\})$

$\backslash$

undefined otherwise

It is easily checked that $p_{\alpha}^{*}$ satisfies (i) to (iv) of Definition 2.3 and that
$p_{\alpha}^{*}\geq p_{\alpha}$ . Note also that $y_{\beta}\in p_{\alpha}^{*}(y_{\alpha})$ .

Now using the previous lemma, let $p_{\alpha+1}\geq p_{\alpha}^{*}$ be such that for some $x_{\alpha+1}\in$

$P_{\kappa}\lambda$ , $p_{\alpha}|\vdash$ ( $x_{\alpha}\in C\sim\cap P_{\kappa}\lambda$ and $y_{\alpha}\subseteq x_{\alpha}$ ).

Case 2: $\alpha$ is a limit ordinal $<\kappa$

Note that $x_{\alpha}$ and $p_{\alpha}$ are not yet defined . Let $p_{\alpha}\in P$ be such that $p_{\alpha}\geq p\beta$ for

all $\beta<\alpha$ . This is possible because $P$ is $<\kappa$-closed. Let $s_{\alpha}=\cup\{y\beta : \beta<\alpha\}$ .
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If $|s_{\alpha}|$ is regular then this will be the final stage of the induction. We then
proceed to define $y$ and $p$ as described below. So suppose now that $|s_{\alpha}|$ is
singular. Note in particular that $s_{\alpha}\not\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ so $s_{\alpha}\not\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha}^{*})$ .

By the inductive definitions of $y_{\beta}$ , $s_{\alpha}=$ IJ $\cup\{\mathrm{d}\mathrm{o}\mathrm{m}(p_{\beta}) : \beta<\alpha\}$ , that is $s_{\alpha}$ is
the set of ordinals that are in at least one element of the domain of at least
one $p_{\beta}$ . Let $y_{\alpha}\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ be such that $s_{\alpha}\in P|y_{\alpha}|(y_{\alpha})$ . Thus, for any $\beta<\alpha$ ,
if $u\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\beta})$ then $u\in P_{|y_{\alpha}|}(y_{\alpha})$ .

Let $D_{\alpha}$ be a linearly ordered club of $P_{|y_{\alpha}|}(y_{\alpha})$ that does not intersect $\mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})$

and such that if $u\in D_{\alpha}$ then $s_{\alpha}\subseteq u$ . Let $D_{\alpha}^{*}=\cup\{p\beta(y\beta) : \beta<\alpha\}\cup\{s_{\alpha}\}\cup$

$D_{\alpha}$ .

Let $p_{\alpha}^{*}(u)=\{$

$p_{\alpha}(u)$ if $u\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})$

$\emptyset D_{\alpha}^{*}$

if $u=y_{\alpha}$

if $u\in \mathrm{r}\mathrm{e}\mathrm{g}(\mathrm{P}(y_{\alpha})\backslash (\mathrm{d}\mathrm{o}\mathrm{m}(p_{\alpha})\mathrm{U} \{y_{\alpha}\})$

undefined otherwise

Then $p_{\alpha}^{*}\in P$ and $(\forall\beta<\alpha)(p_{\alpha}^{*}\geq p\beta)$ .

As before, let $p_{\alpha+1}\geq p_{\alpha}^{*}$ be such that for some $x_{\alpha+1}\in P_{\kappa}\lambda$ , Pa $||-(x_{\alpha}\in$

$C\sim\cap P_{\kappa}\lambda$ and $y_{\alpha}\subseteq x_{\alpha}$ ).

We repeat this procedure until we reach a limit ordinal $\alpha=\mu<\kappa$ such that
$s_{\alpha}$ (as defined in Case 2) has inaccessible cardinality. There must be such
a $\mu$ because $\kappa$ is Mahlo. Otherwise the set { $s_{\alpha}$ : $\alpha<\kappa$ and $\lim(\mathrm{a})$ } would
be a club subset of is that does not intersect the set of regular cardinals,
contradicting the fact that $\kappa$ is Mahlo. So suppose $|s_{\alpha}|$ is regular. Then $|s_{\alpha}|$

is inaccessible because the sequence $\langle|y_{\beta}| : \beta<\alpha\rangle$ is strictly increasing by
the inductive definitions of $y_{\beta}$ for $\beta<\alpha$ .

Let $y=s_{\alpha}$ and let $E=\cup\{\mathrm{d}\mathrm{o}\mathrm{m}(p_{\beta}):\beta<\alpha\}$ . Now define $p$ as follows.

Let $p(u)=\{$

$p_{\beta}(u)$ if $(\exists\beta<\mu)(u\in \mathrm{d}\mathrm{o}\mathrm{m}(p\beta))$

$\emptyset\cup\{p_{\beta}(y_{\beta}) : \beta<\mu\}$
if $u=y$
if $u\in \mathrm{r}\mathrm{e}\mathrm{g}(\mathcal{P}(y)\backslash (E\cup\{y\})$

undefined otherw ise

As before, by checking against $(\mathrm{i})-(\mathrm{i}\mathrm{v})$ of Definition 2.3, we see that $p\in P$ .
We now show that $p|\vdash\sim C\cap S\sim\neq\emptyset$ .

Note that $\bigcup_{\beta<\mu}y_{\beta}=y=\bigcup_{\beta<\mu}x_{\beta}$ because for any $\beta<\mu$ , xp $\subseteq y\beta\subseteq$

$x\beta+1\subseteq y\beta+1$ . By the definition of $p$ , it is clear that $p(y)\neq\emptyset$ and hence that
$p||-y\in S\sim$ . Also, since $p||-$ ( $C\sim$ is club in PKA and $(\forall\beta<\mu)(x_{\beta}\in C)\sim$ ) it
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follows that $p||-y\in(;$ . Hence, $p||-y\in C\sim\cap\sim S$ , which is a contradiction
because $p\geq p_{0}$ and $p_{0}|\vdash\sim C\cap S=\emptyset\sim$ .

H.

We now establish that the proposed witness to $\square _{\mathcal{P}_{\kappa}\lambda}$ satisfies the anticoher-
ence condition.

Lemma 2.9 Let G be a generic of P. Then let
$5=$ { $x\in P_{\kappa}\lambda$ : $(\exists p\in \mathrm{G})(\mathrm{z}\in dom(p)$ and $p(x)\neq\emptyset)$ } and let
$T\sim=\{x\in S\sim$ : there is a cofinal set of $y\in S\sim\cap P_{|x|}(x)$ such that $(\exists p\in$

G) ( $\{x$ , $y\}\underline{\subseteq}dom(p)$ and $p(y)\neq p(x)\cap P|y|(y)$ ) $\}$ .

Then $M[G]\models T$ is stationary in $P_{\kappa}\lambda$ .

Proof (outline). We proceed as in Lemma 2.8, forming the sequence of
forcing conditions as before but at each stage, we interrupt the induction
after setting $p_{\alpha}^{*}$ but before setting $x_{\alpha+1}$ . We set $z_{\alpha}\supset y_{\alpha}$ and define $q\geq p_{\alpha}^{*}$

such that $z_{\alpha}\in \mathrm{d}\mathrm{o}\mathrm{m}(q)$ but $q(z_{\alpha})\cap q(y_{\alpha})=\emptyset$ . Now continue as before but
defining $x_{\alpha+1}$ so that $z_{\alpha}\subseteq x_{\alpha+1}$ and with $q\leq p$ .

$\dashv$ .

Finally, we need to verify that $\kappa$ is Mahlo in the generic extension $M[G]$ .

Lemma 2.10 ij G is a generic of P then $M[G]\models\kappa$ is Mahlo.

Proof. Working in $M[G]$ , suppose $C$ is a club in $\kappa$ . Then if $C^{*}=\{x\in$

$P_{\kappa}\lambda$ : $|x|\in C$}, it follows that C’ is club in $P_{\kappa}\lambda$ . By Lem ma 2.8, we can
find $y$ in $C’\cap$ { $x\in P_{\kappa}\lambda$ : (Ep $\in G$) $(x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ and $p(x)\neq\emptyset)$ }. Then $|y|$

is a regular cardinal in both $M$ and $M[G]$ , by the preservation of cofinalities
and cardinalities. Furthermore, $|y|\in C$ . Hence the set of regular cardinals is

stationary in $\kappa$ . To see that $\kappa$ remains a strong limit, note that for all $\mu<\kappa$ ,
$(2^{\mu})^{M[G]}=(2^{\mu})^{M}$ by $<\kappa$-closure so $\kappa$ remains a strong limit in the generic

extension. Hence $\kappa$ is Mahlo in $M[G]$ as required.

$\dashv$ .

Given generic $G$ of $P$ , let $S=\{x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)$ : $(\exists p\in G)(p(x)\neq\emptyset)$ and for
$x\in S$ , let $C_{x}=p(x)$ where $p$ is an element of $G$ with $x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ . The
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preceding series of lemmas together prove that this $S$ and $\{C_{x} : x\in S\}$

provides a witness to $\square _{P_{\kappa}\lambda}$ in $M[G]$ . Thus, Theorem 2.2 is proved.

We proved in Lemma 2.10 that this forcing preserves the fact that $\kappa$ is Mahlo.
In fact, we can do more than this and preserve supercompactness. Since
forcing with $P$ is $\kappa$-directed closed, if $\kappa$ is supercompact in the ground model
and we first force with a Laver preparation, then the supercompactness of $\kappa$

is preserved when we force with $P$ .

Theorem 2.11 Suppose $M$ is a countable model of a sufficiently rich frag-
ment of $ZFC$ in which $\kappa$ is supercompact and A $\geq\kappa$ . Then there is a generic
extension of this model which preserves cofinalities and cardinalities and in
which $\kappa$ is supercompact and $\square _{\mathcal{P}_{\kappa}\lambda}$ holds.

Proof This follows by forcing with a Laver preparation followed by forcing
with $P$ . We use the fact that $P$ is $\kappa$-directed closed.

$\dashv$ .

3 A $P_{\kappa}$ A version of square with a non-reflection
property

One of the useful properties encapsulated by the square sequence is that of
stationary non-reflection. This is demonstrated in the theorem presented
below, which makes use of Fodor’s Lemma, which we present here without
proof.

Lemma 3.1 (Fodor’s Lemma) Suppose that $S$ is a stationary subset of $a$

regular cardinal $\mu$ . Suppose also that $f$ : $Sarrow\mu$ is such that $f(\alpha)<\alpha$ for all
$\alpha\in S$ . Then there is a stationary subset $T\subseteq S$ such that $f$ is constant on
$T$ .

The following well-known theorem is presented here with proof to motivate
the work towards a $P_{\kappa}\lambda$ version of the theorem discussed in the remainder
of this section.

Theorem 3.2 If $\square _{\kappa}$ holds then $\kappa^{+}$ has a non-refiecting stationary subset.
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Proof. Suppose $\langle$ $C_{\alpha}$ : a $<\kappa^{+}$ and $\lim(\alpha)\rangle$ is as specified in the definition of
$\coprod_{\kappa}$ . Let $T=\{\alpha<\kappa^{+} : \mathrm{c}\mathrm{f}(\alpha)<\kappa<\alpha\}$ . To see that this is stationary, let $C$

be an arbitrary club of $\kappa^{+}$ and let $C’=C\backslash \kappa$ . Then the uth element of $C^{*}$

is an element of $T$ .

Now define $F$ : $Tarrow$ ts by $F(\alpha)=\mathrm{o}\mathrm{t}\mathrm{p}(C_{\alpha})$ . By part (ii) of Definition 1.1
and the definition of $T$ , $F(\alpha)<\kappa<\mathrm{o}\mathrm{t}\mathrm{p}(\alpha)$ for all $\alpha\in T$ . Hence, by Podor’s
Lemma, we can select a stationary subset $R\underline{\subseteq}T$ such that $F$ is constant on
$R$ .

Now suppose $R$ reflects in $\alpha$ for some a $\in R$ . Let $\beta$ , $\gamma\in R\cap C_{\alpha}$ with
$\beta<\gamma$ . Then $C_{\beta}\cup\{\beta\}\subseteq C_{\gamma}$ as $\beta=\sup(C\beta)$ . Thus $F(\gamma)=\mathrm{o}\mathrm{t}\mathrm{p}(C)\gamma\geq$

$\mathrm{o}\mathrm{t}\mathrm{p}(C_{\beta})+1>\mathrm{F}(\mathrm{a})$ . But this is a contradiction because $F$ is constant on $R$ .

$\dashv$ .

We now extend $\square _{\mathcal{P}_{\kappa}\lambda}$ to produce a square principle that has a non-reflection
property explicitly built into the definition. We then give a non-reflection
theorem using this new principle.

Definition 3.3 $\square _{\mathcal{P}_{\mathrm{K}}\lambda}(S, f)$ holds if $f$ : $Sarrow\kappa$ and $S$ is stationary and there
is a witness $\{C_{x} : x\in S\}$ to $\square _{P_{\kappa}\lambda}(S)$ such that in addition to $(\dot{\iota})-(i\mathrm{i}i)$ from
Definition 2.1 we have:

(iv) $f(x)\in x$

(v) if $y\in C_{x}$ then $f(x)\neq f(y)$ .

We now prove the relative consistency of this principle by extending the
partial order $P$ used in the proof of Theorem 2,2.

Theorem 3.4 Suppose $M$ is a countable model of a sufficiently rich frag-

ment of $ZFC$ in which $\kappa$ is Mahlo and $\lambda\geq\kappa$ . Then there is a generic
extension of this model which preserves cofinalities and cardinalities and in

which $\kappa$ is Mahlo and for some $f$ , $S$ , $\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ holds.

We force with the poset $Q$ defined below.

Definition 3.5 p, q $\in Q$ iffp $\in P$ and q is as follows
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(i) $q$ is a function with domain $\{x\in dom(p) : p(x)\neq\emptyset\}$

(ii) $q(x)\in x$ for all $x\in dom(q)$

(ii) if $x\in dom(p)$ arul $y\in p(x)\cap dom(p)$ and $p(y)\neq\emptyset$ then $q(y)\neq q(x)$ .

If $(p, q)$ , $(\mathrm{p}’, q’)\in Q$ then $(p, q)\leq(\mathrm{p}, q’)$ $iffp\underline{\subseteq}p’$ and $q\underline{\subseteq}q’$ .

We do not present all of the details of the forcing proof. Instead we describe
how to upgrade the proof of Theorem 2,2 to include the new property.

Note that $(\emptyset, \emptyset)\in Q$ so $Q$ is non-empty and has a minimal element. We must
now establish various properties of $(Q)\leq)$ to show that a suitable generic
object exists and that the resulting forcing preserves cofinalities and cardi-
nalities.

Lemma 3.6 (Q,$\leq)$ is separa tive.

Proof. Let $(p, q)\in Q$ and let $x\in \mathrm{r}\mathrm{e}\mathrm{g}(\mathrm{P}_{\kappa}\lambda)\backslash \mathrm{d}\mathrm{o}\mathrm{m}(p)$ such that there is
$\gamma\in x\backslash \mathrm{i}\mathrm{m}(q)$ . Let $(\mathrm{p}, q_{0})\geq(p, q)$ be such that $p_{0}(x)$ is a club in $P_{|x|}(x)$

that does not intersect $\mathrm{d}\mathrm{o}\mathrm{m}(p)$ and let $q_{0}(x)=\gamma$ . Such a $p_{0}$ can be found
by Definition 2.3 (iv) and because $|\mathrm{d}\mathrm{o}\mathrm{m}(p)|<\kappa\leq|\mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)|$ so there must
be some $x\in \mathrm{r}\mathrm{e}\mathrm{g}(P_{\kappa}\lambda)\backslash \mathrm{d}\mathrm{o}\mathrm{m}(p)$ . Now let $(p_{1}, q_{1})\geq(p, q)$ be such that $x\in$

$\mathrm{d}\mathrm{o}\mathrm{m}(p_{1})$ and $p_{1}(x)=\emptyset$ and hence $x$ ( $\mathrm{d}\mathrm{o}\mathrm{m}(q_{1})$ . Clearly $(p_{0}, q\mathrm{o})$ and $(p_{1}, q_{1})$

are incompatible extensions of $(p, q)$ . Hence, $Q$ is separable.

$\dashv$ .

We now prove that forcing with $Q$ preserves cofinalities and cardinalities by
showing that $Q$ has the $\kappa^{+}$-chain condition and is $<\kappa$-directed closed.

We now use the $\triangle$-System Lemma to show that $Q$ has the $\kappa^{+}$-chain condition.

Lemma 3.7 Q satisfies the $\kappa^{+}$ -chain condition.

Proof Let $A$ be a subset of $Q$ of size $\kappa^{+}$ . Now let $A=\{\mathrm{d}\mathrm{o}\mathrm{m}(p)$ : $\exists q(p, q)\in$

$A\}$ . By the A-System Lemma, using the fact that $\kappa$ is a strong limit, we can
find $B\subseteq A$ such that $|B|=\kappa^{+}$ and Z3 is a A-system with root $R$ .

Consid er the number of pairs of functions $(p, q)$ definable on $R$ such that for
each function $(p, q)$ and each $x\in R$ , $p(x)\in P(P|x|(x))$ and $q(x)\in x$ . By the
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argument in the proof of Lemma 2.5 the number of possible values that $p(x)$

can take is $<\kappa$ . The number of possible values that $q(x)$ can take is clearly
$|x|$ . Since $|x|<\kappa$ , the number of possible pairs $(p(x), q(x))$ is $<\kappa$ . But
$|B|=\kappa^{+}$ so by the pigeonhole principle there must be some pair of functions
$(g, h)$ defined on $R$ such that $p\lceil R=g$ and $q\lceil R=h$ for $\kappa^{+}$ many $(p, q)\in X$

with $\mathrm{d}\mathrm{o}\mathrm{m}(p)\in B$ .

Now let $Y=$ { $(p$ , $q)\in X:p\lceil R=g$ and $q\lceil R=h$ }. For any $(p_{0}, q_{0})$ , $(p_{1}, q_{1})\in$

$Y$ , using the fact that $p_{0},p_{1}$ and $q_{0}$ , $q_{1}$ agree $R$ , it is straightforward to verify
that $(p_{0}\cup p_{1}, q_{0}\cup q_{1})\in Q$ . Thus, $(p_{0}, q\mathrm{o})$ , $(p_{1}, q_{1})$ bave a com mon extension

in $Q$ and hence are com patible. Hence, $A$ is not an antichain,

$\dashv$ .

Lemma 3.8 Q is $<\kappa$-directel closed.

Proof. Suppose $\mu<\kappa$ and $\{(p_{\alpha}, q_{\alpha}) : \alpha<\mu\}$ is a set of pairwise compatible
conditions from $Q$ . We define $p_{\mu}^{*}= \bigcup_{\alpha<\mu}p_{\alpha}$ and $q_{\mu}^{*}= \bigcup_{\alpha<\mu}q_{\alpha}$ . Now extend

$p_{\mu}^{*}$ to $p_{\mu}$ as in the proof of the $<\kappa$-directed closure of $P$ . Note that we need
not add new elements to the domain of $q_{\mu}^{*}$ since $x\in \mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu})\backslash \mathrm{d}\mathrm{o}\mathrm{m}(p_{\mu}^{*})\Rightarrow$

$p_{\mu}(x)=\emptyset$ . That is, we may set $q_{\mu}=q_{\mu}^{*}$ . Now for any $x$ , $y\in \mathrm{d}\mathrm{o}\mathrm{m}(q_{\mu})$ ,

there is some $\alpha<\mu$ such that $x$ , $y\in \mathrm{d}\mathrm{o}\mathrm{m}(q_{\alpha})$ . Since $(p_{\gamma}, q_{\gamma})\in Q$ it follows
that $x\in p_{\mu}(x)\Rightarrow q_{\mu}(x)\neq q_{\mu}(y)$ and vice versa as required. It follows that
$(\mathrm{p}, q_{\alpha})\in Q$ and for all $\beta<\mu$ , $(p_{\alpha}, q_{\alpha})\leq(p_{\mu}, q_{\mu})$ .

$\dashv$ .

It follows from the preceding lemmas that forcing with $Q$ preserves cofinalities
and cardinalities. As with $P$ , this forcing is $<\kappa$-closed so for a generic $G$

of $Q$ , $(P_{\kappa}\lambda)^{M[G]}=(P_{\kappa}\lambda)^{M}$ and we can write $P_{\kappa}\lambda$ for the name $P_{\kappa}\lambda$ in

the following. We must now ensure that for any generic $G$ of $Q$ , $\mathrm{t}\tilde{\mathrm{h}}\mathrm{e}$ set

{ $x\in P_{\kappa}\lambda$ : ( $\exists$ ($p$ , $q)\in G$) $(x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ and $p(x)\neq\emptyset$ } is stationary in $P_{\kappa}\lambda$ .

Note that the following variation on Lemma 2.7 holds. The proof is almost
identical to the proof of Lem ma 2,7.

Lemma 3.9 Suppose $(p, q)\in Q$ and $(p, q)||-$ ( $-C$ is a club of $P_{\kappa}\lambda$ ). Then

there is $x\in P_{\kappa}\lambda$ and $(p’, q’)\in Q$ such that $(p’, q’)\geq(p, q)$ and $(p’, q’)|\vdash x\in$

$C\sim$ .

Lemma 3.10 Let G be a generic of Q. Then $M[G]\models$ {x $\in P_{\kappa}\lambda$ : $(\exists p\in$

G)(x $\in dom(p)$ and $p(x)\neq\emptyset$ ) } is stationary in $P_{\kappa}\lambda$ .
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Proof. We proceed as in the proof of Lemma 2.8 but define $(p_{\alpha}, q_{\alpha})$ and
$(p_{\alpha}^{*}, q_{\alpha}^{*})$ at each stage. We now describe how to set $q_{\alpha}$ . Let $\gamma\in y_{0}\backslash \{q(y_{0})\}$ .
We insist, without loss of generality, that for all $\alpha$ , $\gamma$ is not in the image of
$q_{\alpha}$ or $q_{\alpha}^{*}$ . For all $\alpha<\mu$ we set $q(y_{\alpha})= \gamma_{\alpha}\in y_{\alpha}\backslash \bigcup_{\beta<\alpha}y_{\beta}$ . By definition of $y_{\alpha}$ ,
such a $\gamma_{\alpha}$ wil always exist. At the final stage, when defining $(p, q)$ , we define
$p$ as before and set $q(y)=\gamma$ .

$\dashv$ .

The last two lemmas that we need follow by arguments exactly analogous to
the corresponding lemmas for $P$ .

Lemma 3.11 Let G be a generic of Q, Then let
$5=$ { $x\in P_{\kappa}\lambda$ : $(3(\mathrm{p}, q)\in \mathrm{G})$ { $\mathrm{x}\in dom(p)$ and $p(x)\neq\emptyset)$ } and let
$T\sim=\{x\in S\sim$ : there is a cofinal set of $y\in S\sim\cap P|x|(x)$ such that $(\exists(p, q)\in$

$G)$ ( $\{x$ , $y\}\subseteq dom(p)$ and $p(y)\neq p(x)\cap P|y|(y)$ ) $\}$ .

Then $M[G]\models T$ is stationary in $P_{\kappa}\lambda$ .

Lemma 3.12 If G is a generic of Q then $M[G]\models\kappa$ is Mahlo.

By forcing with the partial order $(Q, \leq)$ , Theorem 3.4 is proved. We set
$S=$ { $x\in P_{t\mathrm{t}}\lambda$ : ( $\exists$ ($p$ , $q$ ) c3 $G$) $(x\in \mathrm{d}\mathrm{o}\mathrm{m}(p)$ and $p(x)\neq\emptyset)$ } and set $f=$ Cl{q :
Ep $((p, q)\in G)\}$ . Then $f$ and $\{C_{x} : (\exists(p, q)\in G)(C_{x}=p(x)\neq\emptyset)\}$ , together
witness that $\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ holds, as required.

We now show how $\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ gives non-reflection in $P_{|x|}(x)$ for stationary
many $x\in P_{\kappa}\lambda$ . We then state without proof some related results proved by
Abe in [1] and by Koszmider in [7].

The following is proved by forcing and draws on Gitik’s method of shooting
clubs in $P_{\kappa}\lambda$ .

Theorem 3.13 (Abe) Let $V\subseteq W$ be two models of $ZFC$ with the same
ordinals, $(\kappa^{+})^{V}=(\kappa^{+})^{W}f$. let $C$ be a club subset of $\kappa$ of $V$ -inaccessibles; let

$\kappa$ be an inaccessible cardinal in $W$ and let $T=\{x\in P_{\kappa}\kappa^{+}$ : $V\models|x|$ is not
inaccessible}. Then there is a forcing notion in $W$ that preserves cofinalities
and cardinalities and such that there is a stationary $S\subseteq P_{\kappa}\kappa^{+}$ such that
$S\cap P_{\kappa_{x}}(x)$ is non-stationary for any $x\in T$ .
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Koszmider in [7] gives a different kind of non-reflection result, considering
reflection in $P_{\kappa}(X)$ where $X\subseteq\lambda$ .

Theorem 3.14 (Koszmider) It is consistent that there is a stationary set
$S\subseteq P_{\kappa}\lambda$ such that $S\cap P_{\kappa}X$ is non-stationary in $P_{\kappa}X$ for any $X\subseteq$ A with
$|X|\geq\kappa$ in the generic extension.

Finally we consider the following theorem of Abe which gives a form of non-
reflection when $\kappa$ is supercompact.

Theorem 3.15 (Abe) if it is consistent that there is a supercompact car-
dinal then it is consistent that there is a supercompact $\kappa$ , a cardinal $\lambda\geq\kappa$

and a stationary set $X\subseteq P_{\kappa}\lambda$ such that $X\cap P_{\kappa}\alpha$ is non-stationary in $P_{\kappa}\alpha$

for arvy $ce<$ A.

The following definition presents the form of non-reflection that we examine
with $\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ .

Definition 3.16 A stationary set S $\subseteq P_{\kappa}\lambda$ reflects in $P_{|x|}(x)$ if $S\cap P|x|(x)$

is stationary in $P_{|x|}(x)$ .

The non-reflection theorem follows easily from the $\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ principle. Note
that the proof is closely analogously to the proof of non-reflection from $\square _{\kappa}$

in the theory of cardinals. This theorem draws on the variation on Fodor’s
Lemma presented below. Lacking a suitable reference, we present a proof.

Lemma 3.17 Suppose that $S$ is a stationary subset of $P_{\kappa}\lambda$ . Suppose also

that $f$ : $Sarrow\lambda$ is such that $f(x)\in x$ for $atlx\in S$ . Then there is a stationary

subset $T\underline{\subseteq}S$ such that $f$ is constant on $T$ .

Proof. Suppose $f$ : $Sarrow\lambda$ is a counterexample. For each $\alpha<\lambda$ choose $C_{\alpha}$

club in $P_{\kappa}\lambda$ with $(f^{-1}(\alpha))\cap C_{\alpha}=\emptyset$. Now let $D$ be the diagonal intersection
of the $C_{\alpha}$ , $D=\triangle\langle C_{\alpha} : \alpha<\lambda\rangle$ and take $y\in S\cap D$ , guaranteed to exist

because $D$ is club. Then $f(y)\in y$ so since $y\in D$ we have $y\in$ $f(x)$ . Hence,
$y\in f^{-1}(f(y))\cap C_{f\langle y)}$ , contradicting the choice of $C_{f(y\}}$ .

$\dashv$ .
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Theorem 3.18 Suppose $\kappa$ is Mahlo and A $\geq\kappa$ . Then if $\square _{\mathcal{P}_{\hslash}\lambda}(S, f)$ holds
then there is a stationary set $T\subseteq S$ such that $T$ does not reflect in $P_{|x|}(x)$

for any $x\in S$ .

Proof Let $\{C_{x} : x\in S\}$ witness ロァ、$\lambda(S, f)$ . Note that since $f(x)\in x$ , by
the preceding lemma it follows that there is astationary set $T\subseteq S$ such that
$f(x)$ is constant on $T$ . Now suppose $T$ reflects in $P_{1}|x|,(x)$ for some $x\in S$ .
Let $y\in T\cap C_{x}$ . The set {$u\in P|x|(x)$ : $y\subseteq u$ and $|y|<|u|$ } is club in
$P_{|x|}(x)$ so we can find $z\in T\cap C_{x}$ such that $y\in P_{|z|}(z)$ . By the definition of
$\square _{\mathcal{P}_{\kappa}\lambda}(S, f)$ , we have that $C_{z}=C_{x}\cap P_{|z|}(z)$ so $y\in C_{z}$ . But then $f(y)\neq f(z)$ ,
contradicting the definition of $T$ . Thus $T$ cannot reflect in $P_{|x|}(x)$ .

$\dashv$ .

It should be noted that for some $\kappa$ , for example the first Mahlo cardinal, the
conclusion of this theorem holds in ZFC. (Simply let $S=T=reg(P_{\kappa}\lambda).$ )
The theorem becomes more relevant for cardinals higher in the Mahlo hier-
archy (i.e. those that are $\alpha-$ Mahlo for $\alpha>0$).

As with $\square _{\mathcal{P}_{\kappa}\lambda}(S)$ we may use a Laver preparation to prove that $\square _{\mathcal{P}_{n}\lambda}(S, f)$ is
consistent even for supercompact is. Thus, supercompactness of $\kappa$ does not
prevent this principle or the corresponding non-reflection theorem.
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