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1. Introduction

We say that a nonlinear differential equation

$y”=R(x, y, y’)$ , $R(x, y, z)\in \mathrm{C}(x, y, z)$

has the quasi-Painleve’ property if, for each solution, every movable singular point

is an algebraic branch point. In the previous paper [3], we have shown that

$y”= \frac{10}{9}y^{4}+x$

admits the quasi-Painleve’ property. In this paper, we treat a more general non-
linear equation of the form

(E) $y”= \frac{10}{9}y^{4}+P(x)$ ,

where $P(x)$ is a polynomial with complex coefficients satisfying $\deg P\geq 1$ .

Our main results are stated as follows:

Theorem 1. Let $y(x)$ be an arbitrary solution of (E). Suppose that x $=x_{0}$ is an
algebraic branch point of $y(x)$ . Then, around it,

(1) $y(x)= \xi^{-2/3}-\frac{9}{22}P(x_{0})\xi^{2}+c\xi^{8/3}+\frac{9P’(x_{0})}{14}\xi^{3}+\sum_{j\geq 10}c_{j}\xi^{j/3}$ ,

$\xi=x-x_{0}$ , where $c$ is an integration constant, $c_{j}(j\geq 10)$ are uniquely determined
potynomials of $(x_{0}, c)$ , and $\xi^{1/3}$ is an arbitrary branch of $\phi$ such that $\phi^{3}=\xi$ .

Theorem 2. if $\deg$ P $\not\in 4\mathrm{N}$ , then (E) adraits no meromorphic solutions.
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Theorem 3. if $\deg$ P $\in 4\mathrm{N}$ , then (E) adrnits no meromorphic solutions except at
most four polynomial solutions.

For an arbitrary polynomial $p(x)$ , equation (E) with $P(x)=p”(x)-10p(x)^{4}/9$

admits the polynomial solution $y=p(x)$ . In particular, if $P(x)=-10(\alpha x+\beta)^{4}/9$ ,
then there exist four solutions $\pm(\alpha x+\beta),$ $\pm \mathrm{i}(\alpha x+\beta)$ .

Theorem 4. Equation (E) has the quasi-Painleve property. For each solution,
around every movable singularity $x=x_{0}$ , it is eqressible by a Puiseux series
expansion of the form (1).

2. Lemmas

We review some lemmas which will be used in the proofs of our results.
Suppose that $F(x, u, v)$ and $G(x, u, v)$ are analytic functions in a neighbourhood

of $(a_{0}, b_{0}, c_{0})\in \mathrm{C}^{3}$ . For a system of differential equations

(2) $u’=F(x, u, v)$ , $v’=G(x, u, v)$ ,

we have the following lemma due to Painleve.

Lemma 5. Let $\Gamma(\subset \mathrm{C})$ be a curve with finite length terminating in $x=a_{0}$ .

Suppose that a solution $(u, v)=(\varphi(x), \psi(x))$ of (2) has the properiies below:
(i) for every point $\xi\in\Gamma\backslash \{a_{0}\},$ $\varphi(x)$ and $\psi(x)$ are analytic at $x=\xi$ ;
(ii) there exists a sequence $\{a_{n}\}\subset\Gamma\backslash \{a_{0}\}_{f}a_{n}arrow a_{0}(narrow\infty)$ such that

$(\varphi(a_{n}), \psi(a_{n}))arrow(b_{0}, c_{0})\in \mathrm{C}^{2}$ .
Then, $\varphi(x)$ and $\psi(x)$ are analytic at $x=a_{0}$ .

Let $f(z)$ be a meromorphic function in the vhole complex plane. For $r>0$ ,
consider the functions defined by

$m(r, f):= \frac{1}{2\pi}\oint_{0}^{2\pi}\log^{+}|f(re^{i\phi})|d\phi$,

$N(r, f):=l^{r}(n(t, f)-n(0, f)) \frac{dt}{t}+n(0, f)\log r$ ,

$T(r, f):=m(r, f)+N(r, f)$ ,

which are called, respectively, the proximity function, the counting function and
the characteristic function ([1]). Here $\log^{+}s:=\max\{\log s, 0\}(s>0)$ , and $n(r, f)$

denotes the number of poles in the disc $|z|\leq r$, each counted according to its
multiplicity. Clearly, if $f(x)$ is entire, then $T(r, f)=m(r, f)$ . It is known that
$T(r, f)$ is monotone increasing with respect to $r$ , and is a convex function of $\log r$ .

Furthermore, $f(z)$ is a rational function, if and only if $T(r, f)$ $=O(\log r)$ as $rarrow\infty$ ;
and $f(z)$ is a transcendental function, if and only if $\log r/T(r, f)$ $=o(1)$ as $rarrow$

$\infty$ . The following lemma is concerning the proximity function of a meromorphic
solution of a differential equation ([1, Lemma 2.4.2]).
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Lemma 6. Suppose that the lifferential $equat?.onw^{p+1}=\Phi(z, w),$ $p\in \mathrm{N}$ almits $a$

meromomphic solution $w=f(z)$ , where $\Phi(z, w)$ is a polynomial of $(z, w, w’, ..., w^{(q)})$ .
If the total legree of $\Phi(z, w)$ with respect to $w$ and its derivatives does not exceed
$p$, then

$m(r, f)=O(\log T(r, f)+\log r)$

as $rarrow\infty,$ $r\not\in E$, where $E$ is an exceptional interval ttiith finite length.

3. Proof of Theorem 1

For an algebraic branch point $x_{0}$ of $y(x)$ , we have $|y(x_{0})|=+\infty$ . Indeed, if
$|y(x_{0})|<+\infty$ , then, for some $x_{1}\in \mathrm{C}$ ,

$|y’(x)| \leq|y’(x_{1})|+|\oint_{x_{1}}^{x}(\frac{10}{9}y(t)^{4}+P(t))dt|<+\infty$

along a curve tending to $x_{0}$ . By Lemma 5, $y(x)$ is analytic at $x=x_{0}$ , which is a
contradiction. Putting

$y(x)=c_{0}\xi^{\alpha}(1+o(1))$ , $\xi=x-x_{0}$ , $\mathrm{a}\in \mathrm{Q}$ , $\alpha<0$ , $c_{0}\neq 0$ ,

and substituting into (E), we have $(10/9)c_{0}^{3}\xi^{3\alpha}=\alpha(\alpha-1)\xi^{-2}$ . Hence

$y(x)= \xi^{-2/3}+\sum_{j=l}^{\infty}c_{j}\xi^{j/(3p\}}$ , $p\in \mathrm{N}$ , $l\in \mathrm{Z}$ , $l\geq-2p+1$ ,

where $\xi^{1/3}$ is an arbitrary branch of $\phi$ such that $\phi^{3}=\xi$ . Substituting this into (E)

again, we have

$\frac{10}{9}\xi^{-\mathrm{S}/}\mathrm{a}+\frac{l(l-3p)}{9p^{2}}c_{l}\xi^{l/(3p)-2}+\cdot$ . .

$= \frac{10}{9}(\xi^{-8/3}+4c_{l}\xi^{l/(3p)-2}+\cdots+P(x_{0})+P’(x_{0})\xi+\cdots)$ .

From this it follows that $l=6p$ and that $c_{6p}=-9P(x_{0})/22$ . In general, the

coefficients $c_{j}$ are determined by

(3) $( \frac{j}{p}+5)(\frac{j}{p}-\mathrm{S})c_{j}=Q_{f}(x_{0}, c_{k}; k\leq j-1)$ , $c_{-2p}=1$ ,

where $Q_{j}$ are polynomials of $x_{0}$ and $c_{k}$ . Suppose that $c_{j}\neq 0$ for some $j$ satisfying
$j/p\not\in \mathrm{Z}$ , and let $j_{0}$ be the minimal one among such numbers. Then $Q_{j\mathrm{o}}=0$ , and

hence $c_{j_{0}}=0$ , which is a contradiction. This implies $p=1$ . Using (3), we have

$c_{6}=- \frac{9}{22}P(x_{0})$ , $c_{7}=0$ , $c_{8}=c$ , $c_{9}= \frac{9}{14}P’(x_{0})$ ,
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where $c$ is an arbitrary constant. Thus we obtain the desired series expansion.

4. Proofs of Theorems 2 and 3

Suppose that $\deg P\not\in 4\mathrm{N}$ , and that (E) admits a meromorphic solution $Y(x)$ .

Then $Y(x)$ is entire, because $Y(x)$ has no poles. If $Y(x)$ is a polynomial, then
$Y(x)=C_{0}x^{m}+O(x^{n-1}),$ $m\in \mathrm{N}\cup\{0\},$ $C_{0}\neq 0$ around $x=\infty$ . Substitution
of this into (E) yields that $\deg P=4m$ , which is a contradiction. Hence $Y(x)$

is transcendental and entire. Applying Lemma 6 to the equality $10Y(x)^{4}/9=$

$Y”(x)-P(x)$ , we have $T(r, Y)=m(r, Y)=O(\log T(r, Y)+\log r)$ as $rarrow\infty$ ,
$r\not\in E_{0},$ $\mu(E_{0})<\infty$ . Hence $T(r, Y)\leq K_{0}\log r$ for $r\not\in E_{0}$ , where $K_{0}$ is some
positive number. For each $r>0$ , there exists a number $r’(r)\geq r$ such that
$r’(r)-r\leq 2\mu(E_{0})$ and that $r’(r)\not\in E_{0}$ . Since $T(r, Y)$ is monotone increasing,

$T(r, Y)\leq T(r’(r), Y)\leq K_{0}\log r’(r)\leq K_{0}\log(r+2\mu(E_{0}))=O(\log r)$,

which contradicts the transcendency of $Y(x)$ . Thus Theorem 2 has been proved.
Next suppose that $\deg P=4m,$ $m\in \mathrm{N}$ , namely $P(x)=P_{0}x^{4m}+\cdots+P_{4n}$ , and
that $Y_{0}(x)=C_{0}x^{d}+C_{1}x^{d-1}+\cdots+C_{0}$ is a polynomial solution of (E). Then
$4d=4m$ and $10C_{0}^{4}/9+P_{0}=0$ . Hence the number of polynomial solutions does
not exceed four. Thus we obtain Theorem 3.

5. Proof of Theorem 4

Let $y(x)$ be an arbitrary solution of (E).

5.1. Equivalent system of equations. Suppose that x $=x_{0}$ is an algebraic
branch point of $y(x)$ . Since $P(x_{0})=P(x)-P’(x_{0})\xi+O(\xi^{2})$ , \langle $=x-x_{0}$ , series
(1) is written in the form

$y(x)= \xi^{-2/3}(1-\frac{9}{22}P(x)\xi^{8/3}+c\xi^{10/3}+\frac{\mathrm{S}1}{77}P’(x)\xi^{11/\mathrm{s}}+\cdots)$ .

Putting y $=u^{-2}$ , we have

$\xi^{1/3}=\pm u(1-\frac{9}{44}P(x)u^{8}+\frac{c}{2}u^{10}\pm\frac{\mathrm{S}1}{154}P’(x)u^{11}+\cdots)$ ,

and

$y’(x)=- \frac{2}{3}\xi^{-5/3}-\frac{9}{11}P(x)\xi+\frac{\mathrm{S}}{3}c\xi^{5/3}+\frac{9\cdot 47}{154}P’(x)\xi^{2}+\cdot.$ .

$= \pm u^{-5}(-\frac{2}{3}-\frac{3}{2}P(x)u^{8}+\frac{13}{3}cu^{10}+\cdots)+\frac{9}{2}P’(x)u^{6}$.

Observing these facts, we define new unknown variables u, v by

y $=u^{-2}$ ,
(4)

$y’= \mp\frac{2}{3}u^{-5}(1+\frac{9}{4}P(x)u^{8}+u^{10}v)+\frac{9}{2}P’(x)u^{6}$ .
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Then, we have a system of equations with respect to $u,$ $v$ . Now regarding $x,$ $v$ as
unknown functions of $u$ , we get

(5) $\frac{dx}{lu}=\pm 3u^{2}U(x, u, v)^{-1}$ , $\frac{dv}{du}=3u^{3}V(x, u,v)U(x, u, v)^{-1}$ ,

with

$U(x, u, v)=1+ \frac{9}{4}P(x)u^{8}+u^{10}v\mp\frac{27}{4}P’(x)u^{11}$ ,

$V(x, u, v)=- \frac{5}{3}u^{6}v^{2}+\frac{3}{4}u^{4}(-\mathrm{S}P(x)\pm 33P’(x)u^{3})v$

$- \frac{\mathrm{S}1}{16}u^{2}(P(x)\mp 3P’(x)u^{3})(P(x)\mp 6P’(x)u^{3})+\frac{27}{4}P’’(x)$ .

Note that (5) is equivalent to (E), and that $(x(u), v(u))$ is a solution of (5) analytic
at $u=0$ and satisfying $x(0)=x_{0},$ $v(0)=-13c/2$ .

5.2. Lyapunov function. The second equation of (4) is written in the form

$(y’- \frac{9}{2}P’(x)y^{-3})^{2}=\frac{4}{9}u^{-10}(1+\frac{9}{4}P(x)y^{-4}+y^{-5}v)^{2}$ ,

which implies that

(6) $V=(y’)^{2}-9P’(x)y^{-3}y’- \frac{4}{9}y^{5}-2P(x)y$

satisfies

(7) $V=- \frac{\mathrm{S}1}{4}P’(x)^{2}y^{-6}+\frac{9}{4}P(x)^{2}y^{-3}+(\frac{\mathrm{s}}{9}+2P(x)y^{-4})v+\frac{4}{9}y^{-5}v^{2}$.

Furthermore, $V(x)$ satisfies the first order equation

$V’-27P’(x)y^{-4}V=243P’(x)^{2}y^{-7}y’-9P’’(x)y^{-3}y’+45P(x)P’(x)y^{-3}$ .

Using this equation, we have

Lemma 7. if $y(x\}^{-1}$ is bounlel along a path $\Gamma$ rnith finite length, then $V(x)$ is

also bounded along $\Gamma$ .

5.3. Derivation of Theorem 4. Suppose that x $=a$ is a singular point of $y(x)$ .

Let F be a segment terminating in a such that each 46 $\Gamma\backslash \{a\}$ is at most an
algebraic branch point of $y(x)$ . Modifying $\Gamma$ if necessary, we may suppose that $\Gamma$

is a curve terminating in a, and that $y(x)$ is analytic along $\Gamma\backslash \{a\}.$ Put

A $= \lim_{xarrow a},\inf_{x\in\Gamma}|y(x)|$ .

We divide into three cases (i) $0<A<+\infty,$ (ii)A $=+\infty,$ (iii)A $=0$ .
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Case (i) $0<A<+\infty$ : By Lemma 7, $V(x)$ is bounded on $\Gamma$ near $a$ . Then, by
(6), there exists a sequence $\{a_{n}\}\subset\Gamma$ such that $y(a_{n})arrow y0(\neq 0, \infty),$ $y’(a_{n})arrow y_{1}$

$(\neq\infty),$ $a_{n}arrow a$ . This fact together with Lemma 5 implies that $y(x)$ is analytic at
$x=a$ .

Case (ii) $A=+\infty$ : By supposition, $y(x)$ $arrow\infty$ as $xarrow a$ along $\Gamma$ , and $V(x)$ is
bounded along $\Gamma$ near $a$ . Then, regarding (7) as a quadratic equation with respect
to $v$ , we can choose a branch $v_{-}(x)$ of $v(x)$ which is bounded along $\Gamma$ . Let $u_{-}(x)$

be the corresponding branch of $u(x)$ such that $u_{-}(x)^{-2}=y(x)$ (cf. (4)). Denote
by $x=x(u)$ the inverse function of $u=u_{-}(x)$ . Then, $x=x(u)$ and $v=v_{-}(x(u))$

are analytic functions of $u$ along $\Gamma^{*}=u_{-}(\Gamma\backslash \{a\})$ satisfying
(a) $x(u)arrow a$ as $uarrow u_{-}(a)=0$ along $\Gamma^{*};$

(b) $v_{-}(x(u))$ is bounded along $\Gamma^{*}$ .
Take a sequence $\{b_{n}\}\subset\Gamma^{*}$ satisfying $b_{n}arrow u_{-}(a)=0,$ $x(b_{n})arrow a,$ $v_{-}(x(b_{n}))arrow$

$v_{0}\neq\infty$ . Observe that $(x(u), v_{-}(x(u)))$ is a solution of (5). By Lemma 5, $x(u)$ is
analytic at $u=0$, implying that $x=a$ is at most an algebraic branch point of
$y(x)=u(x)^{-2}$ .

Case (iii) $A=0$: For $y(x)$ , we note the following lemma, which is obtained
from [2, Lemma 2.2] with $R_{0}=$ A $=1/2,$ $K=1+|a|$ .

Lemma 8. Set $\theta_{0}=(1+|a|)^{-1}/42$ . Let $c$ be a point such that $|c-a|<1/4$ , and
suppose that $y(x)$ is analytic at $x=c$. If the inequalities $|y(c)|\leq\theta_{0}/6,$ $|y’(c)|\geq 2$

hofl, then $y(x)$ is analytic for $|y’(c)||x-c|<\theta_{0}$ and satisfies $|y(x)|\geq\theta_{0}/4$ on the
circle $|y^{J}(c)||x-c|=\theta_{0}/2$ .

Let us consider the set $\Gamma_{0}=\{x\in\Gamma||y(x)|\leq\theta_{0}/6\}$ . By the supposition $A=0$ ,
we have $\Gamma_{0}\cap\{x||x-a|<\epsilon\}\neq\emptyset$ for every $\epsilon>0$ . We may suppose that $|y’(x)|\geq 2$

for $x\in\Gamma_{0}$ . Indeed, if this is not the case, then there exists a sequence $\{a_{n}\}\subset\Gamma_{0}$ ,
$a_{n}arrow a$ such that $y(a_{n})$ and $y’(a_{n})$ are bounded, and hence $y(x)$ is analytic at
$x=a$ . Now we proceed along $\Gamma$ toward $x=a$ . Suppose that we meet the first point
$c_{1}\in\Gamma_{0}$ . By Lemma 8, there exists a disc $D_{1}$ : $|x-c_{1}|\leq|y’(c_{1})|^{-1}\theta_{0}/2$ such that
$|y(x)|\geq\theta_{0}/4$ on the boundary $\partial D_{1}$ . Note that $a\not\in D_{1}$ . Restarting from a point in
$\Gamma\cap\partial D_{1}$ , we proceed along $\Gamma$ until we meet the next point $c_{2}\in\Gamma_{0}$ . Take the disc
$D_{2}$ : $|x-c_{2}|\leq|y’(c_{2})|^{-1}\theta_{0}/2$ , and repeat the procedure above. In this way, we
get a sequence of discs $\{D_{j}\}$ such that $|y(x)|\geq\theta_{0}/4$ on the boundary $\partial D_{j}$ . Then,
$|y(x)|\geq\theta_{0}/6$ on the boundary of the set $\Gamma\cup(\bigcup_{i=1}^{\infty}D_{j})$ , which contains a curve

$\gamma$ with the properties: (i) $\gamma$ terminates in $a\mathrm{i}(\mathrm{i}\mathrm{i})|y(x)|\geq\theta_{0}/6;(\mathrm{i}\mathrm{i}\mathrm{i})y(x)$ is analytic
along $\gamma\backslash \{a\}$ . Hence this case is reduced to either (i) or (ii), which completes the
proof of Theorem 4.

6. A remark

As was shown in [3], the equation

10 4
$y”=\overline{9}y+x$
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has the quasi-Painleve property, and, the quadratic version of this is the first
Painleve equation

(I) $y”=6y^{2}+x$ .

For (E), the corresponding version is

(8) $y”=6y^{2}+P(x)$ .

In general, this equation does not always admit the quasi-Painleve property, In
fact, equation (8) with $P(x)=x^{2}$ possesses the solution of the form

$y= \xi^{-2}-\frac{x_{0}^{2}}{10}\xi^{2}-\frac{x_{0}}{3}\xi^{3}+(c+\frac{1}{7}\log\xi)\xi^{4}+\cdots$ , $\xi=x-x_{0}$ ,

which means that $x=x_{0}$ is a logarithmic branch point.
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