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ON SECOND ORDER NONLINEAR DIFFERENTIAL
EQUATIONS WITH THE QUASI—PAINLEVE PROPERTY 1II

Shun Shimomura
Department of Mathematics, Keio University

TH #®-BEERET

1. Introduction

We say that a nonlinear differential equation
y' = R(z,y,y), Rlz,y,2) € Cz,y,2)

has the quasi-Painlevé property if, for each solution, every movable singular point
is an algebraic branch point. In the previous paper [3], we have shown that

1
y/r___ 303144—:3

admits the quasi-Painlevé property. In this paper, we treat a more general non-
linear equation of the form

10
(E> y” = —9_y4 + P(m)a

where P(z) is a polynomial with complex coefficients satisfying deg P > 1.
Our main results are stated as follows:

Theorem 1. Let y(z) be an arbitrary solution of (E). Suppose that T = Zo is an
algebraic branch point of y(x). Then, around it,

0y =6 - Lo+ e 1 Y el

14 51

¢ = x— xq, where c is an integration constant, ¢; (j > 10) are uniquely determined
polynomials of (zo,¢), and £*/3 is an arbitrary branch of ¢ such that ¢3 = &.

Theorem 2. If deg P € 4N, then (E) admits no meromorphic solutions.
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Theorem 3. Ifdeg P € 4N, then (E) admits no meromorphic solutions except at
most four polynomial solutions.

For an arbitrary polynomial p(z), equation (E) with P(z) = p”(z) — 10p(x)*/9
admits the polynomial solution y = p(z). In particular, if P(z) = ~10(az -+ B)*/9,
then there exist four solutions +({az + ), +i(az + 3).

Theorem 4. Equation (E) has the quasi-Painlevé property. For each solution,
around every movable singularity £ = xo, it is expressible by a Puiseux series
expansion of the form (1).

2. Lemmas

We review some lemmas which will be used in the proofs of our results.
Suppose that F(z,u,v) and G(z, u,v) are analytic functions in a neighbourhood
of (ag, by, o) € C3. For a system of differential equations

(2) o = F(z,u,v), v =G(z,u,v),

we have the following lemma due to Painlevé.

Lemma 5. Let I' (C C) be a curve with finite length terminating i = = ao.
Suppose that a solution (u,v) = (p(z),¥(z)) of (2) has the properties below:

(i) for every point £ € '\ {ao}, ¢(z) and Y(zx) are analytic at x = &;

(ii) there ezists a sequence {a,} C T'\ {ao}, an — ao (n — 00) such that
(@(an)vw(an)) - (bOaCO) S C2.
Then, o(x) and Y(x) are analytic at z = ao.

Let f(z) be a meromorphic function in the whole complex plane. For r > 0,
consider the functions defined by

27
mir,f) = = [ log" If(re')lde,

N )= [ (06t £) = n(0, 1) F +n(0. 1) ogr
T(r, £) = mir, /) + NGr. ),

which are called, respectively, the proximity function, the counting function and
the characteristic function ([1]). Here log™ s := max{logs,0} (s > 0), and n(r, f)
denotes the number of poles in the disc |z| < r, each counted according to its
multiplicity. Clearly, if f(z) is entire, then T'(r, f) = m(r, f). It is known that
T(r, f) is monotone increasing with respect to r, and is a convex function of logr.
Furthermore, f(z) is a rational function, if and only if T'(r, f) = O(logr) as r — oo;
and f(z) is a transcendental function, if and only if logr/T(r, f) = o(1) as r —
00. The following lemma is concerning the proximity function of a meromorphic
solution of a differential equation ([1, Lemma 2.4.2]).
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Lemma 6. Suppose that the differential equation wPt! = ®(z,w), p € N admits a
meromorphic solution w = f(z), where ®(z,w) is a polynomial of (z,w,w', ..., wi®),
If the total degree of ®(z,w) with respect to w and its derivatives does not exceed
p, then

m(r, f) = O(log T(r, f) + logr)

as v — 0o, r & E, where E is an exceptional interval with finite length.

3. Proof of Theorem 1

For an algebraic branch point zo of y(z), we have |y(zg)] = -+oo. Indeed, if
ly(zo)| < +o0, then, for some z1 € C,

' (@) < 1y (@) +

/: (%)-y(tyi + P(t)) dtl < 400

1

along a curve tending to zg. By Lemma 5, y(z) is analytic at = zo, which is a
contradiction. Putting

y(z) = cof*(1+0(1)), €=z—z0, @€Q, a<0, oo # 0,

and substituting into (E), we have (10/9)c3&** = a(a — 1)6~2. Hence

y(m)=§_2/3+2cj§j/(3p), peN, leZ, 1>-2p+1,
=l

where £1/2 is an arbitrary branch of ¢ such that #3 = £. Substituting this into (E)
again, we have

3
9p? ) g/ P2 4

(€—3/3 + 4q§l/(3p)—2 + -+ P(zo) + P(xo)é+- - )

1_996—8/3 4 l(l -

_10
9

From this it follows that [ = 6p and that cs, = —9P(x0)/22. In general, the
coefficients ¢; are determined by :

(3) (%+5> (%_8) cj=Qjlxo,crk <j—1), c2p=1,

where Q; are polynomials of zg and ¢k, Suppose that ¢; # 0 for some j satisfying
i/p ¢ Z, and let jo be the minimal one among such numbers. Then Q;, = 0, and
hence ¢;j, = 0, which is a contradiction. This implies p = 1. Using (3), we have

9 9
66=—§‘2‘P($0), =0, cg=¢ CQZEP'(CEOL
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where ¢ is an arbitrary constant. Thus we obtain the desired series expansion.

4. Proofs of Theorems 2 and 3

Suppose that deg P ¢ 4N, and that (E) admits a meromorphic solution Y'(z).
Then Y(z) is entire, because Y (z) has no poles. If Y(z) is a polynomial, then
Y(z) = Coz™ 4 O(z™ 1), m € NU {0}, Cy # 0 around z = oo. Substitution
of this into (E) yields that deg P = 4m, which is a contradiction. Hence Y (z)
is transcendental and entire. Applying Lemma 6 to the equality 10V (z)*/9 =
Y"(z) — P(z), we have T(r,Y) = m(r,Y) = O(logT(n,Y) +logr) as r — oo,
r & Eq, p{Eo) < oo. Hence T(r,Y) < Kologr for r ¢ Ey, where Kg is some
positive number. For each r > 0, there exists a number 7/(r) > 7 such that
r'(r) — r < 2u(Eo) and that r'(r) € Ep. Since T'(r,Y’) is monotone increasing,

T(r,Y) < T((r),Y) < Kologr'(r) < Kolog(r + 2u(Eg)) = O(logr),

which contradicts the transcendency of Y (z). Thus Theorem 2 has been proved.
Next suppose that deg P = 4m, m € N, namely P(z) = Poa*™ + - -+ + Pgm, and
that Yp(z) = Coz? 4+ C12%7! + --- + C; is a polynomial solution of (E). Then
4d = 4m and 10C$/9 + Py = 0. Hence the number of polynomial solutions does
not exceed four. Thus we obtain Theorem 3.

5. Proof of Theorem 4

Let y(z) be an arbitrary solution of (E).

5.1. Equivalent system of equations. Suppose that z = z is an algebraic
branch point of y(x). Since P(zg) = P(x) — P'(zg)¢ + O(£?), £ = & — xo, series
(1) is written in the form

y(@) = ¢ (1 — P+ e + %P’(w)éﬂﬁ’ +-- ) .

Putting y = u ™2, we have
3 = 4y (1 _ %P(m)us + _;_um + %P'(w}uu + ) ’
and
y'(z) =~ %5_5/3 - lg—lP(;c)g + 2(;55/3 + %p'(x)g L.
=+u™ (“% - %P(x)us + };cum + - ) + gP'(m)uG‘

Observing these facts, we define new unknown variables u, v by

4) 2
Y =7F gu“ﬁ' (1 + %P(m)ug - ulov) + %P’(m)uﬁ.
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Then, we have a system of equations with respect to u, v. Now regarding z, v as
unknown functious of u, we get

dr 9 -1
(5) - = +3u?U (z,u,v) ",

dv

v _ g3 -1
7 3uV(z,u,v)U(z,u,v)”",

with
9 8, 10, _ 20 py v 11
U(z,u,v) =1+ ZP(:c)u +utv F _ZP (z)u"",

Viz,u,v) = — -5-u6v2 + §u4(~8P(:c) + 33P'(z)u’)v

3 4
— 8L 2(P(a) % 3P (0)e)(Pla) 7 6P (2)u) + P (2).

Note that (5) is equivalent to (E), and that (z(u),v(u)) is a solution of (5) analytic
at u = 0 and satisfying 2(0) = zg, v(0) = —13¢/2.

5.2. Lyapunov function. The second equation of (4) is written in the form

/_gPl()—%z__éu—lO 1+9P()—4+ -5 :
Y 5 L)y ~ 9 4 Z)y ¥y v,
which implies that

— 4
(6) V=) - 9P @)y~ — 5v° - 2P(@)y

satisfies

81

9 8 _ 4 _
P’(:z:)2y"6 + ZP(w)2y“3 + (5 +2P(x)y 4) v+ §y 52,

Furthermore, V(z) satisfies the first order equation
V' — 27P (2)y 4V = 243P (z)%y Ty — 9P (x)y "y + 45P(z) P (z)y .

Using this equation, we have

Lemma 7. If y(z)~' is bounded along a path T with finite length, then V{(x) is
also bounded along T'.

5.3. Derivation of Theorem 4. Suppose that 2 = a is a singular point of y(z).
Let T be a segment terminating in a such that each £ € I'\ {a} is at most an
algebraic branch point of y(z). Modifying I if necessary, we may suppose that T
is a curve terminating in a, and that y(z) is analytic along I'\ {a}. Put

A= el

We divide into three cases (i) 0 < A < +o0, (ii) A4 = oo, (iil) A=0.
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Case (i) 0 < A < +00: By Lemma 7, V(z) is bounded on I" near a. Then, by
(6), there exists a sequence {a, } C T such that y(a,) — yo (# 0,00), ¥'{(an) = 01
(# ©0), an — a. This fact together with Lemma 5 implies that y(z) is analytic at
T =aq.

Case (ii) A= +o0: By supposition, y(z) — oo as ¢ — o along I, and V(z) is
bounded along I" near a. Then, regarding (7) as a quadratic equation with respect
to v, we can choose a branch v_(z) of v(z) which is bounded along T'. Let u_(x)
be the corresponding branch of u{z) such that u_{z)™? = y(z) (cf. (4)). Denote
by # = #(u) the inverse function of u = u_(z). Then, z = z(u) and v = v_(z(u})
are analytic functions of u along I'* = u_(T'\ {a}) satisfying

(a) z(u) — a as u — u_(a) = 0 along I'*;

{(b) v_(z(u)) is bounded along I'*.
Take a sequence {b,} C I'* satisfying b, — u_(a) = 0, z(bn) — a, v_(z(bn)) —
vy # 00. Observe that (z(u),v—(z(u))) is a solution of (5). By Lemma 5, z(u) is
analytic at v = 0, implying that z = a is at most an algebraic branch point of
y(x) = u(z) ™2 |

Case (iii) A = 0:  For y(z), we note the following lemma, which is obtained
from [2, Lemma 2.2] with Ry = A =1/2, K =1+ |al.

Lemma 8. Set 8y = (1 + |a|)~1/42. Let c be a point such that |c — a| < 1/4, and
suppose that y(z) is analytic at x = c. If the inequalities |y(c)| < 6o/6, |y'(c)| > 2
hold, then y(x) is analytic for |y (c)llz — ¢| < By and satisfies |y(z)| > 6p/4 on the
circle |y’ (¢)||z — | = Bo/2.

Let us consider the set Ty = {z € T'| |y(z)| < 05/6}. By the supposition A =0,
we have Do N{z ||z —a| < e} # 0 for every € > 0. We may suppose that |y’ (z)| > 2
for z € T'g. Indeed, if this is not the case, then there exists a sequence {a,} C I,
an — a such that y(a,) and y/(a,) are bounded, and hence y(x) is analytic at
z = a. Now we proceed along I" toward z = a. Suppose that we meet the first point
c; € Tg. By Lemma 8, there exists a disc Dy : |z — ¢;| < |¢'(c1)]7260/2 such that
ly(z)| > 65/4 on the boundary 8D;. Note that a ¢ D;. Restarting from a point in
T'NdD;, we proceed along I' until we meet the next point ¢ € I'g. Take the disc
Dy i |z — ca] < |y'(c2)|7160/2, and repeat the procedure above. In this way, we
get a sequence of discs {D;} such that |y(z)| > 6/4 on the boundary 0D;. Then,

ly{z)| > 8o/6 on the boundary of the set I' U (Uj‘;l Dj) , which contains a curve
v with the properties: (i) v terminates in a; (ii) Jy(z)| > 8o/6; (iii) y(z) is analytic
along v\ {a}. Hence this case is reduced to either (i) or (ii), which completes the
proof of Theorem 4.

6. A remark

As was shown in [3], the equation

10
i Y4
Yy 9 Y +z



has the quasi-Painlevé property, and, the quadratic version of this is the first
Painlevé equation

(1) Y =6y* + .
For (E), the corresponding version is
(8) y" = 6y° + P(z).

In general, this equation does not always admit the quasi-Painlevé property. In
fact, equation (8) with P(z) = z? possesses the solution of the form

_ =2 m% 2  To,3 1 4 .

which means that = = zg is a logarithmic branch point.
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