ON SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH THE QUASI-PAINLEVÉ PROPERTY II

Shun Shimomura Department of Mathematics, Keio University 下村 俊·慶應大理工

1. Introduction

We say that a nonlinear differential equation

$$y'' = R(x, y, y'), \qquad R(x, y, z) \in \mathbf{C}(x, y, z)$$

has the quasi-Painlevé property if, for each solution, every movable singular point is an algebraic branch point. In the previous paper [3], we have shown that

$$y'' = \frac{10}{9}y^4 + x$$

admits the quasi-Painlevé property. In this paper, we treat a more general nonlinear equation of the form

(E)
$$y'' = \frac{10}{9}y^4 + P(x),$$

where P(x) is a polynomial with complex coefficients satisfying deg $P \ge 1$.

Our main results are stated as follows:

Theorem 1. Let y(x) be an arbitrary solution of (E). Suppose that $x = x_0$ is an algebraic branch point of y(x). Then, around it,

(1)
$$y(x) = \xi^{-2/3} - \frac{9}{22}P(x_0)\xi^2 + c\xi^{8/3} + \frac{9P'(x_0)}{14}\xi^3 + \sum_{j\geq 10} c_j\xi^{j/3},$$

 $\xi = x - x_0$, where c is an integration constant, c_j $(j \ge 10)$ are uniquely determined polynomials of (x_0, c) , and $\xi^{1/3}$ is an arbitrary branch of ϕ such that $\phi^3 = \xi$.

Theorem 2. If deg $P \notin 4\mathbf{N}$, then (E) admits no meromorphic solutions.

Typeset by $\mathcal{A}_{\mathcal{M}}S\text{-}T_{\mathrm{E}}X$

For an arbitrary polynomial p(x), equation (E) with $P(x) = p''(x) - 10p(x)^4/9$ admits the polynomial solution y = p(x). In particular, if $P(x) = -10(\alpha x + \beta)^4/9$, then there exist four solutions $\pm (\alpha x + \beta), \pm i(\alpha x + \beta)$.

Theorem 4. Equation (E) has the quasi-Painlevé property. For each solution, around every movable singularity $x = x_0$, it is expressible by a Puiseux series expansion of the form (1).

2. Lemmas

We review some lemmas which will be used in the proofs of our results.

Suppose that F(x, u, v) and G(x, u, v) are analytic functions in a neighbourhood of $(a_0, b_0, c_0) \in \mathbb{C}^3$. For a system of differential equations

(2)
$$u' = F(x, u, v), \quad v' = G(x, u, v),$$

we have the following lemma due to Painlevé.

Lemma 5. Let $\Gamma (\subset \mathbb{C})$ be a curve with finite length terminating in $x = a_0$. Suppose that a solution $(u, v) = (\varphi(x), \psi(x))$ of (2) has the properties below:

(i) for every point $\xi \in \Gamma \setminus \{a_0\}, \varphi(x) \text{ and } \psi(x) \text{ are analytic at } x = \xi;$

(ii) there exists a sequence $\{a_n\} \subset \Gamma \setminus \{a_0\}, a_n \to a_0 \ (n \to \infty)$ such that $(\varphi(a_n), \psi(a_n)) \to (b_0, c_0) \in \mathbb{C}^2$.

Then, $\varphi(x)$ and $\psi(x)$ are analytic at $x = a_0$.

Let f(z) be a meromorphic function in the whole complex plane. For r > 0, consider the functions defined by

$$\begin{split} m(r,f) &:= \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\phi})| d\phi, \\ N(r,f) &:= \int_0^r \left(n(t,f) - n(0,f) \right) \frac{dt}{t} + n(0,f) \log r, \\ T(r,f) &:= m(r,f) + N(r,f), \end{split}$$

which are called, respectively, the proximity function, the counting function and the characteristic function ([1]). Here $\log^+ s := \max\{\log s, 0\}$ (s > 0), and n(r, f)denotes the number of poles in the disc $|z| \leq r$, each counted according to its multiplicity. Clearly, if f(x) is entire, then T(r, f) = m(r, f). It is known that T(r, f) is monotone increasing with respect to r, and is a convex function of $\log r$. Furthermore, f(z) is a rational function, if and only if $T(r, f) = O(\log r)$ as $r \to \infty$; and f(z) is a transcendental function, if and only if $\log r/T(r, f) = o(1)$ as $r \to \infty$. The following lemma is concerning the proximity function of a meromorphic solution of a differential equation ([1, Lemma 2.4.2]). **Lemma 6.** Suppose that the differential equation $w^{p+1} = \Phi(z, w), p \in \mathbb{N}$ admits a meromorphic solution w = f(z), where $\Phi(z, w)$ is a polynomial of $(z, w, w', ..., w^{(q)})$. If the total degree of $\Phi(z, w)$ with respect to w and its derivatives does not exceed p, then

$$m(r, f) = O(\log T(r, f) + \log r)$$

as $r \to \infty$, $r \notin E$, where E is an exceptional interval with finite length.

3. Proof of Theorem 1

For an algebraic branch point x_0 of y(x), we have $|y(x_0)| = +\infty$. Indeed, if $|y(x_0)| < +\infty$, then, for some $x_1 \in \mathbb{C}$,

$$|y'(x)| \le |y'(x_1)| + \left| \int_{x_1}^x \left(\frac{10}{9} y(t)^4 + P(t) \right) dt \right| < +\infty$$

along a curve tending to x_0 . By Lemma 5, y(x) is analytic at $x = x_0$, which is a contradiction. Putting

$$y(x) = c_0 \xi^{\alpha}(1 + o(1)), \quad \xi = x - x_0, \quad \alpha \in \mathbf{Q}, \quad \alpha < 0, \quad c_0 \neq 0,$$

and substituting into (E), we have $(10/9)c_0^3\xi^{3\alpha} = \alpha(\alpha-1)\xi^{-2}$. Hence

$$y(x) = \xi^{-2/3} + \sum_{j=l}^{\infty} c_j \xi^{j/(3p)}, \quad p \in \mathbf{N}, \quad l \in \mathbf{Z}, \quad l \ge -2p+1,$$

where $\xi^{1/3}$ is an arbitrary branch of ϕ such that $\phi^3 = \xi$. Substituting this into (E) again, we have

$$\frac{10}{9}\xi^{-8/3} + \frac{l(l-3p)}{9p^2}c_l\xi^{l/(3p)-2} + \cdots$$

= $\frac{10}{9}(\xi^{-8/3} + 4c_l\xi^{l/(3p)-2} + \cdots + P(x_0) + P'(x_0)\xi + \cdots).$

From this it follows that l = 6p and that $c_{6p} = -9P(x_0)/22$. In general, the coefficients c_i are determined by

(3)
$$\left(\frac{j}{p}+5\right)\left(\frac{j}{p}-8\right)c_j = Q_j(x_0,c_k;k\leq j-1), \quad c_{-2p}=1,$$

where Q_j are polynomials of x_0 and c_k . Suppose that $c_j \neq 0$ for some j satisfying $j/p \notin \mathbb{Z}$, and let j_0 be the minimal one among such numbers. Then $Q_{j_0} = 0$, and hence $c_{j_0} = 0$, which is a contradiction. This implies p = 1. Using (3), we have

$$c_6 = -\frac{9}{22}P(x_0), \quad c_7 = 0, \quad c_8 = c, \quad c_9 = \frac{9}{14}P'(x_0),$$

where c is an arbitrary constant. Thus we obtain the desired series expansion.

4. Proofs of Theorems 2 and 3

Suppose that deg $P \notin 4\mathbf{N}$, and that (E) admits a meromorphic solution Y(x). Then Y(x) is entire, because Y(x) has no poles. If Y(x) is a polynomial, then $Y(x) = C_0 x^m + O(x^{m-1}), m \in \mathbf{N} \cup \{0\}, C_0 \neq 0$ around $x = \infty$. Substitution of this into (E) yields that deg P = 4m, which is a contradiction. Hence Y(x)is transcendental and entire. Applying Lemma 6 to the equality $10Y(x)^4/9 =$ Y''(x) - P(x), we have $T(r,Y) = m(r,Y) = O(\log T(r,Y) + \log r)$ as $r \to \infty$, $r \notin E_0, \ \mu(E_0) < \infty$. Hence $T(r,Y) \leq K_0 \log r$ for $r \notin E_0$, where K_0 is some positive number. For each r > 0, there exists a number $r'(r) \geq r$ such that $r'(r) - r \leq 2\mu(E_0)$ and that $r'(r) \notin E_0$. Since T(r,Y) is monotone increasing,

$$T(r, Y) \le T(r'(r), Y) \le K_0 \log r'(r) \le K_0 \log(r + 2\mu(E_0)) = O(\log r),$$

which contradicts the transcendency of Y(x). Thus Theorem 2 has been proved. Next suppose that deg P = 4m, $m \in \mathbb{N}$, namely $P(x) = P_0 x^{4m} + \cdots + P_{4m}$, and that $Y_0(x) = C_0 x^d + C_1 x^{d-1} + \cdots + C_0$ is a polynomial solution of (E). Then 4d = 4m and $10C_0^4/9 + P_0 = 0$. Hence the number of polynomial solutions does not exceed four. Thus we obtain Theorem 3.

5. Proof of Theorem 4

Let y(x) be an arbitrary solution of (E).

5.1. Equivalent system of equations. Suppose that $x = x_0$ is an algebraic branch point of y(x). Since $P(x_0) = P(x) - P'(x_0)\xi + O(\xi^2)$, $\xi = x - x_0$, series (1) is written in the form

$$y(x) = \xi^{-2/3} \left(1 - \frac{9}{22} P(x) \xi^{8/3} + c \xi^{10/3} + \frac{81}{77} P'(x) \xi^{11/3} + \cdots \right).$$

Putting $y = u^{-2}$, we have

$$\xi^{1/3} = \pm u \left(1 - \frac{9}{44} P(x) u^8 + \frac{c}{2} u^{10} \pm \frac{81}{154} P'(x) u^{11} + \cdots \right),$$

and

$$y'(x) = -\frac{2}{3}\xi^{-5/3} - \frac{9}{11}P(x)\xi + \frac{8}{3}c\xi^{5/3} + \frac{9\cdot47}{154}P'(x)\xi^{2} + \cdots$$
$$= \pm u^{-5}\left(-\frac{2}{3} - \frac{3}{2}P(x)u^{8} + \frac{13}{3}cu^{10} + \cdots\right) + \frac{9}{2}P'(x)u^{6}$$

Observing these facts, we define new unknown variables u, v by

(4)
$$y = u^{-2},$$
$$y' = \mp \frac{2}{3}u^{-5}\left(1 + \frac{9}{4}P(x)u^8 + u^{10}v\right) + \frac{9}{2}P'(x)u^6$$

Then, we have a system of equations with respect to u, v. Now regarding x, v as unknown functions of u, we get

(5)
$$\frac{dx}{du} = \pm 3u^2 U(x, u, v)^{-1}, \quad \frac{dv}{du} = 3u^3 V(x, u, v) U(x, u, v)^{-1},$$

with

$$U(x, u, v) = 1 + \frac{9}{4}P(x)u^8 + u^{10}v \mp \frac{27}{4}P'(x)u^{11},$$

$$V(x, u, v) = -\frac{5}{3}u^6v^2 + \frac{3}{4}u^4(-8P(x) \pm 33P'(x)u^3)v$$

$$-\frac{81}{16}u^2(P(x) \mp 3P'(x)u^3)(P(x) \mp 6P'(x)u^3) + \frac{27}{4}P''(x).$$

Note that (5) is equivalent to (E), and that (x(u), v(u)) is a solution of (5) analytic at u = 0 and satisfying $x(0) = x_0$, v(0) = -13c/2.

5.2. Lyapunov function. The second equation of (4) is written in the form

$$\left(y'-\frac{9}{2}P'(x)y^{-3}\right)^2 = \frac{4}{9}u^{-10}\left(1+\frac{9}{4}P(x)y^{-4}+y^{-5}v\right)^2,$$

which implies that

(6)
$$V = (y')^2 - 9P'(x)y^{-3}y' - \frac{4}{9}y^5 - 2P(x)y$$

satisfies

(7)
$$V = -\frac{81}{4}P'(x)^2 y^{-6} + \frac{9}{4}P(x)^2 y^{-3} + \left(\frac{8}{9} + 2P(x)y^{-4}\right)v + \frac{4}{9}y^{-5}v^2.$$

Furthermore, V(x) satisfies the first order equation

$$V' - 27P'(x)y^{-4}V = 243P'(x)^2y^{-7}y' - 9P''(x)y^{-3}y' + 45P(x)P'(x)y^{-3}.$$

Using this equation, we have

Lemma 7. If $y(x)^{-1}$ is bounded along a path Γ with finite length, then V(x) is also bounded along Γ .

5.3. Derivation of Theorem 4. Suppose that x = a is a singular point of y(x). Let Γ be a segment terminating in a such that each $\xi \in \Gamma \setminus \{a\}$ is at most an algebraic branch point of y(x). Modifying Γ if necessary, we may suppose that Γ is a curve terminating in a, and that y(x) is analytic along $\Gamma \setminus \{a\}$. Put

$$A = \liminf_{x \to a, x \in \Gamma} |y(x)|.$$

We divide into three cases (i) $0 < A < +\infty$, (ii) $A = +\infty$, (iii) A = 0.

Case (ii) $A = +\infty$: By supposition, $y(x) \to \infty$ as $x \to a$ along Γ , and V(x) is bounded along Γ near a. Then, regarding (7) as a quadratic equation with respect to v, we can choose a branch $v_{-}(x)$ of v(x) which is bounded along Γ . Let $u_{-}(x)$ be the corresponding branch of u(x) such that $u_{-}(x)^{-2} = y(x)$ (cf. (4)). Denote by x = x(u) the inverse function of $u = u_{-}(x)$. Then, x = x(u) and $v = v_{-}(x(u))$ are analytic functions of u along $\Gamma^* = u_{-}(\Gamma \setminus \{a\})$ satisfying

(a) $x(u) \to a$ as $u \to u_{-}(a) = 0$ along Γ^* ;

(b) $v_{-}(x(u))$ is bounded along Γ^* .

Take a sequence $\{b_n\} \subset \Gamma^*$ satisfying $b_n \to u_-(a) = 0$, $x(b_n) \to a$, $v_-(x(b_n)) \to v_0 \neq \infty$. Observe that $(x(u), v_-(x(u)))$ is a solution of (5). By Lemma 5, x(u) is analytic at u = 0, implying that x = a is at most an algebraic branch point of $y(x) = u(x)^{-2}$.

Case (iii) A = 0: For y(x), we note the following lemma, which is obtained from [2, Lemma 2.2] with $R_0 = \Delta = 1/2$, K = 1 + |a|.

Lemma 8. Set $\theta_0 = (1 + |a|)^{-1}/42$. Let c be a point such that |c - a| < 1/4, and suppose that y(x) is analytic at x = c. If the inequalities $|y(c)| \le \theta_0/6$, $|y'(c)| \ge 2$ hold, then y(x) is analytic for $|y'(c)||x - c| < \theta_0$ and satisfies $|y(x)| \ge \theta_0/4$ on the circle $|y'(c)||x - c| = \theta_0/2$.

Let us consider the set $\Gamma_0 = \{x \in \Gamma \mid |y(x)| \leq \theta_0/6\}$. By the supposition A = 0, we have $\Gamma_0 \cap \{x \mid |x-a| < \varepsilon\} \neq \emptyset$ for every $\varepsilon > 0$. We may suppose that $|y'(x)| \geq 2$ for $x \in \Gamma_0$. Indeed, if this is not the case, then there exists a sequence $\{a_n\} \subset \Gamma_0$, $a_n \to a$ such that $y(a_n)$ and $y'(a_n)$ are bounded, and hence y(x) is analytic at x = a. Now we proceed along Γ toward x = a. Suppose that we meet the first point $c_1 \in \Gamma_0$. By Lemma 8, there exists a disc $D_1 : |x - c_1| \leq |y'(c_1)|^{-1}\theta_0/2$ such that $|y(x)| \geq \theta_0/4$ on the boundary ∂D_1 . Note that $a \notin D_1$. Restarting from a point in $\Gamma \cap \partial D_1$, we proceed along Γ until we meet the next point $c_2 \in \Gamma_0$. Take the disc $D_2 : |x - c_2| \leq |y'(c_2)|^{-1}\theta_0/2$, and repeat the procedure above. In this way, we get a sequence of discs $\{D_j\}$ such that $|y(x)| \geq \theta_0/4$ on the boundary ∂D_j . Then, $|y(x)| \geq \theta_0/6$ on the boundary of the set $\Gamma \cup \left(\bigcup_{j=1}^{\infty} D_j\right)$, which contains a curve γ with the properties: (i) γ terminates in a; (ii) $|y(x)| \geq \theta_0/6$; (iii) y(x) is analytic along $\gamma \setminus \{a\}$. Hence this case is reduced to either (i) or (ii), which completes the proof of Theorem 4.

6. A remark

As was shown in [3], the equation

$$y'' = \frac{10}{9}y^4 + x$$

x = a.

has the quasi-Painlevé property, and, the quadratic version of this is the first Painlevé equation

$$(I) y'' = 6y^2 + x.$$

For (E), the corresponding version is

(8)
$$y'' = 6y^2 + P(x).$$

In general, this equation does not always admit the quasi-Painlevé property. In fact, equation (8) with $P(x) = x^2$ possesses the solution of the form

$$y = \xi^{-2} - \frac{x_0^2}{10}\xi^2 - \frac{x_0}{3}\xi^3 + \left(c + \frac{1}{7}\log\xi\right)\xi^4 + \cdots, \qquad \xi = x - x_0,$$

which means that $x = x_0$ is a logarithmic branch point.

References

- [1] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, 1993.
- [2] S. Shimomura, Japan. J. Math. **29** (2003), 159–180.
- [3] S. Shimomura, RIMS Kokyuroku 1367 (2004), 204-210.