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WKB ANALYSIS AND POINCAR\’E’S THEOREM
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1. INTRODUCTION

In this note, we discuss the asymptotic analysis in the normal form
theory of a singular vector field at the origin. By introducing a new
parameter in the equation in a natural way, we will discuss the famous
Poincare”s theorem for a singular vector field from the viewpoint of a
WKB analysis.

Let $x=(x_{1}, \ldots, x_{n})\in \mathbb{C}^{n},$ $n\geq 2$ be the variable in $\mathbb{C}^{n}$ . We consider
a holomorphic vector field

$\mathcal{X}=\sum_{j=1}^{n}a_{j}(x)\frac{\partial}{\partial x_{j}}$ ,

which is singular at the origin, $\mathrm{i}.\mathrm{e}$ ,

$a_{j}(0)=0$ , $j=1,$ $\ldots,$
$n$ .

We set

$X(x)=(a_{1}(x), \ldots, a_{n}(x))$ , $\frac{\partial}{\partial x}=(\frac{\partial}{\partial x_{1}}, . . . , \frac{\partial}{\partial x_{n}})$ ,

and write
X $=X(x) \cdot\frac{\partial}{\partial x}$ , $X(x)=\Lambda x+R(x)$ ,

$R(x)=(R_{1}(x), \ldots, R_{n}(x))$ ,
where A is an $n$-square constant matrix and

$R(x)=O(|x|^{2})$ .

We want to linearize $X$ by the change of variables,
$x=u(y)$ , $u=(u_{1}, \ldots, u_{n}),$ $y=(y_{1}, \ldots, y_{n})$ ,

namely,
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$X(u(y)) \frac{\partial y}{\partial x}\frac{\partial}{\partial y}=X(u(y))(\frac{\partial x}{\partial y})^{-1}\frac{\partial}{\partial y}=\Lambda y\frac{\partial}{\partial y}$ .

It follows that u satisfies the equation

$X(u(y))( \frac{\partial u}{\partial y})^{-1}=$ Ay,

that is

(1.1) Au $+R(u)= \Lambda y\frac{\partial u}{\partial y}$ .

The equation (1.1) is called a homology equation . In the following, we
assume that A is semi simple. Hence, by a suitable linear change of
variables, we may assume that A is a diagonal matrix with diagonal
components given by $\lambda j,$ $(j=1,2, \ldots, n)$ .

If we denote the variable by $x$ instead of $y$ , then $u$ satisfies

(H) $\mathcal{L}u_{j}=\lambda_{j}u_{j}+R_{j}(u_{1}, \ldots, u_{n})$ , $j=1,$ $\ldots,$
$n$ ,

where $\mathcal{L}$ is given by

$\mathcal{L}=\sum_{i=1}^{n}\lambda_{i}x_{i^{\frac{\partial}{\partial x_{i}}}}$ .

Remark. (Relation to a Painleve equation). We introduce the new
variable $z_{j}$ by

$e^{z_{j}}=x_{j},$ $j=1,$ $\ldots,$
$n$ .

We consider a plane wave solution

$u_{j}=u_{j}(t)$ , $t=z_{1}/(n\lambda_{1})+\cdots+z_{n}/(n\lambda_{n})$ .

Then we have
$\mathcal{L}u_{j}(t)=u_{j}’(t)$ ,

and we can write the equation (H) in the form

(1.2) $u_{j}’=\lambda_{j}u_{j}+R_{j}(u)$ , $j=1$ , . . . , $n$ .

Let us consider the special case, $n=3$ and

$R_{1}(u)$ $=u_{1}^{2}(u_{2}-u_{3}),$ $R_{2}(u)=u_{2}^{2}(u_{3}-u_{1})$ ,

$R_{3}(u)$ $=u_{3}^{2}(u_{1}-u_{2})$ .
By the change of unknown functions

$u_{j}=\exp(U_{j})$ ,
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we obtain a symrnetric form of a hornology equation
$U_{1}^{l}$ $=$ $\lambda_{1}+e^{U_{1}}(e^{U_{2}}-e^{U_{3}})$ ,
$U_{2}’$ $=$ $\lambda_{2}+e^{U_{2}}(e^{U_{3}}-e^{U_{1}})$ ,
$U_{3}’$ $=$ $\lambda_{3}+e^{U_{3}}(e^{U_{1}}-e^{U_{2}})$ .

Assuming that $U_{j}$ is small, we replace $e^{U_{j}}$ with $1+U_{j}$ in the above
equation. If we replace $1+U_{j}$ with $U_{j}$ , then we have a symrnetric forrn
of a fourth Painleve equation

$U_{1}’$ $=$ $\lambda_{1}+U_{1}(U_{2}-U_{3})$

$U_{2}’$ $=$ $\lambda_{2}+U_{2}(U_{3}-U_{1})$

$U_{3}’$ $=$ $\lambda_{3}+U_{3}(U_{1}-U_{2})$ .

Indeed, if we assume $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$ , this system of equation is
equivalent to the so-called fourth Painleve equation.

Because we have $U_{1}+U_{2}+U_{3}=t$ , we obtain a system of equations
for $U_{1}$ and $U_{2}$ . Then we eliminate $U_{1}$ : we finally obtain the second
order equation for $U_{2}$ . Indeed, if we set

$u=\sqrt{2}U_{2}$ , $s=-\sqrt{2}t$ ,

then we have
$u^{\prime/}= \frac{1}{2u}(u’)^{2}$

$+( \frac{3}{2}u^{3}+4su^{2}+2(s^{2}+(1-2\lambda_{1}-\lambda_{2}))u-\frac{2\lambda_{2}^{2}}{u})$ .

2. WKB SOLUTION OF A HOMOLOGY EQUATION

Introduction of a parameter
The natural way of introducing a large parameter in the symmetric
form of a Painleve equation is the following

$U_{1}’$ $=$ $\eta(\lambda_{1}+U_{1}(U_{2}-U_{3}))$ ,
$U_{2}’$ $=$ $\eta(\lambda_{2}+.U_{2}(U_{3}-U_{1}))$ ,
$U_{3}’$ $=$ $\eta(\lambda_{3}+U_{3}(U_{1}-U_{2}))$ .

This system of equations is essentially equivalent to the fourth Painleve
equation with a large parameter due to Aoki-Kawai- Takei, where a
parameter was introduced via monodromy preserving deformation of a
Schr\"odinger equation. (cf. [10]). Indeed, the equation introduced by
them was

$u^{l\prime}= \frac{1}{2u}(u’)^{2}\frac{2}{u}+\eta^{2}(\frac{3}{2}u^{3}+4su^{2}+2(s^{2}+\beta_{1})u-\frac{8\sqrt 0}{u})$ .
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In view of the presentation in the preceeding section, we have the fol-
lowing relations

$\beta_{0}=\frac{\eta^{2}\lambda_{2}^{2}-1}{4\eta^{2}}$ , $\beta_{1}=\frac{1-2\eta\lambda_{1}-\eta\lambda_{2}}{4\eta}$ .

Hence we introduce a parameter in the homology equation in the fol-
lowing way

(2.1) $\mathcal{L}u_{j}=\eta(\lambda_{j}u_{j}+R_{j}(u))$ , $j=1,$ $\ldots,$
$n$ .

Remark. If we make the change of variables $e^{z_{j}}=x_{\mathrm{i}}$ in the homology
equation (H), then we obtain

(2.2) Cu $=$ Mu $+R(u_{1}, \ldots, u_{n}),$ $\mathcal{L}=\sum_{j=1}^{n}\lambda j\frac{\partial}{\partial z_{j}}$ .

By making the change of variables $z_{j}=\eta y_{j}$ , we obtain

$\sum_{j=1}^{n}\lambda_{j}\frac{\partial}{\partial z_{j}}=\eta^{-1}\sum_{j=1}^{n}\lambda_{\mathrm{i}}\frac{\partial}{\partial y_{j}}$ .

if we write $e^{y_{j}}$ as $x_{j}$ , then we obtain (2.1). We note that a parameter
$\eta$ is also introduced in the homology equation through the following
blowing up transformation

$x_{j}=y_{j}^{\eta}$ , $j=1,$ $\ldots,$
$n$ .

A $WKB$ solution (0 - instanton solution)
For the sake of simplicity we set $u(x)=x+v(x)$ in the original homol-
ogy equation and we introduce a parameter yy by the above argument.
The resultant equation is

(2.3) $\mathcal{L}v_{j}=\eta(\lambda_{j}v_{j}(x)+R_{j}(x+v(x)))$ , j $=1,$ \ldots , n.

Definition. A WKB solution (0 - instanton solution) $v(x, \eta)$ of (2.3)
is a formal power series solution of the form

(2.4) $v(x, \eta)=\sum_{\iota J=0}^{\infty}\eta^{-l/}v_{\nu}(x)=v_{0}(x)+\eta^{-1}v_{1}(x)+\cdots$ ,

where the series is a formal power series in $\eta$ with coefficients $v_{l^{J}}(x)$

being holomorphic vector functions in $x$ in some open set independent
of $lJ$ .
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By substituting the expansion (2.4) into (2.3), we obtain

(2.5) $\mathcal{L}v_{j}=\sum_{\nu=0}^{\infty}\mathcal{L}v_{\nu}^{j}(x)\eta^{-\nu}$ ,

(2.6) $R_{j}(x+v)=Rj(x+v_{0}+v_{1}\eta^{-1}+v_{2}\eta^{-2}+\cdots)$

$=$ $R_{j}(x+v_{0})+ \eta^{-1}\sum_{k=1}^{n}(\frac{\partial R_{j}}{\partial z_{k}})(x+v_{0})v_{1}^{k}+O(\eta^{-2})$ .

By comparing the coefficients of $\eta,$ $\eta^{0}=1$ we obtain

(2.7) $\lambda_{j}v_{0}^{j}(x)+R_{j}(x_{1}+v_{0}^{1}, \ldots, x_{n}+v_{0}^{n})=0$ .

(2.8) $\mathcal{L}v_{0}^{j}=\lambda_{j}v_{1}^{j}+\sum_{k=1}^{n}(\frac{\partial R_{J}1}{\partial z_{k}})(x+v_{0})v_{1}^{k}$ ,

In order to determine $v_{\nu}(x)(\nu\geq 2)$ we compare the coefficients of $\eta^{-}"$ .
Then we obtain

(2.9) $\mathcal{L}v_{\nu-1}^{j}=\lambda jv^{j}\nu+\sum_{k=1}^{n}(\frac{\partial R_{j}}{\partial z_{k}})(x+v_{0})v_{\nu}^{k}$

(2.10) (terms consisting of $v$’;, $k\leq\nu-1$ and $j=1,$ $\ldots$ , $n$ ).

In order to determine $v_{\nu}$ from the above recurrence relations we first
make adefinition.
Definition. The point $x$ such that

$\det$ (A $+(\partial R/\partial z)(x+v_{0})$ ) $=0$

is called a turning point of the equation (2.3).
Assumption. We assume

$\det$ A $\neq 0$ .
If $\det$ A $\neq 0$ , then the origin $x=0$ is not a turning point of (2.3) for
any holomorphic $v_{0}(x)=O(|x|^{2})$ .
By the implicit function theorem, we can uniquely determine a holo-
morphic function $v_{0}(x)$ from (2.7) such that $v_{0}(x)=O(|x|^{2})$ . Next,
every $v_{\nu}$ are calculated algebraically via differentiation and division.
Consequently, we have
Proposition Assume that $\det$ A $\neq 0$ . Then every coefficients of a
$WKB$ solution is holomorphic in a common neighborhood of the origin
independent of $\mathcal{U}$ .
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Definition (Resonance condition). We say that $\eta$ is resonant, if

$\sum_{i=1}^{n}\lambda_{i}\alpha_{i}-\eta\lambda_{j}=0$ ,

for some $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{+}^{n},$ $|\alpha|\geq 2$ and $j,$ $1\leq j\leq n$ . If $\eta$ is not
resonant we say that $\eta$ is nonresonant.
Definition (Poincar\’e condition) We say that a homolgy equation
satisfies a Poincari condition, if the convex lvull of $\lambda_{j},j=1,$ $\ldots$ , $n$ in
the complex plane does not contain the origin.

If a Poincare’ condition is not verified, then we assume the following
condition

$\lambda_{j}\in \mathbb{R}$ , $j=1,$ $\ldots,$
$n$ .

If a Poincare’ condition is not verified, then there are two important
cases, namely, a Diophantine case and Liouville case. In the former
case, either a Siegel condition or a Bruno type Diophantine condition
is verified among $\lambda_{j},$ $j=1,$ $\ldots$ , $n$ . If no such conditions are satisfied,
then we say that we are in a Liouville case.

We note that, if a Poincar\’e condition is verified then the number of
resonance is finite, while in a Siegel case, the number of resonance is,
in general, infinite. Moreover the resonance may be a dense subset of
a real line.

3. A WKB SOLUTION IN A SECTOR

For the direction $\xi,$ $(0\leq\xi<2\pi)$ and the opening $\theta>0$ the sector
$S_{\xi,\theta}$ is defined by

$S_{\xi,\theta}= \{\eta\in \mathbb{C};|\arg\eta-\xi|<\frac{\theta}{2}\}$ .

Then we have
Theorem There exist a direction 4, an opening $\theta>0_{f}$ a neighborhood
$U$ of the origin $x=0$ and $V(x, \eta)$ such that $V(x, \eta)$ is holomorphic in
$(x, \eta)\in U\mathrm{x}S_{\xi,\theta}$ and satisfies (2.3). $V(x, \eta)$ is an asymptotic expansion
of the $WKB$ solution $v(x, \eta)$ in $U\mathrm{x}S_{\xi,\theta}$ when $\etaarrow\infty.$ Namely, for
every $N\geq 1$ and $R>0$ , there exists $C>0$ such that

$|V(x, \eta)-\sum_{\nu=0}^{N}$ ry $-\nu v_{\nu}(x)|\leq C|\eta|^{-N-1}$ ,

$\forall(x, \eta)\in U\mathrm{x}S_{\xi,\theta},$ $|\eta|\geq R$ .
In addition, if a Poincare condition iS verified, then we can take $\xi=\pi$ .
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Remark. In the above theorem we do not assume that the Poincar\’e
condition is satisfied and the Liouville case is also admitted. The differ-
ence of the behavior of WKB solutions in the Poincare and the Liouville
case appears if we consider the analytic continuation of WKB solutions
to the right half plane.

Sketch of the proof. First we show that there exist $\theta>0,$ $\xi$ and $c_{0}>0$

such that if $\eta\in S_{\xi,\theta}$ , then
$|\eta^{-1}\langle\lambda, \alpha\rangle-\lambda_{j}|\geq c_{0}$ , Vo $\in \mathbb{Z}_{+}^{n},$ $|\alpha|\geq 2$ ,“lq $\in S_{\xi,\theta}$ .

Then we construct $V(x, \eta)=\sum_{\alpha}V_{\alpha}(\eta)x^{\alpha}$ as a formal power series
solution of a homology equation, where $x$ is in some neighborhood
of the origin and y7 $\in S_{\xi,\theta}$ for some ( and 0. Indeed, we solve the
homology equation with a parameter $\eta$ by the method of sucessive
approximations, because the equation is semilinear.

If we expand the coefficients $V_{\alpha}(\eta)$ in the power of $\eta$ formally, and if
we change the order of summation we obtain a WKB solution. Precise
estimate of the derivatives of $V_{\alpha}(\eta)$ gives the desired resuIts.

4. ANALYTIC CONTINUATION OF A WKB SOLUTION TO THE
RIGHT HALF PLANE

In the following we assume that a Poincare’ condition is satisfied.
Without loss of generality, we may assume

${\rm Re}\lambda_{j}>0$ , $j=1,$ $\ldots,$
$n$ .

It follows that we can choose a realization of the WKB solution such
that it is holomorphic in $x$ and $\eta$ when $x$ is in some neighborhood of
the origin and $\eta$ in a sufficiently small sector containing a negative
real axis. We want to make an analytic continuation to the right half
plane. We can easily see that the solution has a singularity on the set
of resonances of $\eta$ . We have

Theorem (Poincare case) If a Poincare’ condition is verified, then
the above $WKB$ solution is analytically continued to the right half
plane as a single valued function except for resonance points. If $\eta=1$

is not resonant, then the analytic continuation of the $WKB$ solution
to $\eta=1$ coincides vvith a classical Poincare’ solution of a homology
equation.
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