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1 Introduction

In the first paper of this trilogy (Howls 2005a), we have introduced the concept of a higher
order Stokes phenomenon for functions that depend on an asym ptotic param eter $\epsilonarrow 0$ and
an additional set of non-asymptotic variables $\mathrm{a}$ . We explained the phenomenon in terms of a
hyperasymptotic approach that can be extended to cover the class of functions that possess a
Borel transform.

When solving differential equations it is often the case that an explicit, closed form, integral
representation of the Borel transform either does not exist, or is not required. The purpose
of this paper is to illustrate how the effect of the higher order Stokes phenomenon might be
quantified under these circumstances.

Jn order to proceed with any exponential asymptotic analysis, at the very least it is essential that
one must first find the exponents of the exponential prefactors or, synonymously the locations
of the corresponding singutarities $f_{j}(\mathrm{a})$ in the Borei plane. Assuming that this can be done, it
is then necessary to deduce the Riemann sheet structure of the Borel plane. This is required so
that when the condition for a Stokes phenom enon

$S_{i>j}=\{\mathrm{a} : \epsilon^{-1}(f_{j}(\mathrm{a})-f_{l}(\mathrm{a}))>0\}$ . (1.1)

is satisfied, we may deduce whether the Stokes line is active or inactive. If the corresponding
Borel singularities are on different Riem ann sheets, then the Stokes line is inactive, otherwise it

is active and a Stokes phenomenon will take place. The activity of a Stokes curve may change
across a higher order Stokes curve in a-space defined by
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$\frac{f_{j}(\mathrm{a})-f_{i}(\mathrm{a})}{f_{k}(\mathrm{a})-f_{j}(\mathrm{a})}\in R$ . (1.2)

A single dimensional integral representation provides a natural graphic solution to the determi-
nation of the activity of a Stokes curve. One simply has to plot the steepest descent contours
passing through $f_{i}(\mathrm{a})$ and $f_{j}(\mathrm{a})$ . If at the putative Stokes phenomeon these steepest paths con-
nect and are topologically consistent with the contour of integration, then the Borel singularities
are on the sam $\mathrm{e}$ Riemann sheet and the Stokes line is active. If there is no connection, then the
Stokes curve is inactive.

To proceed in the absence of a suitable integral representation we make the following observation.
The activity (or otherwise) of a Stokes curve can be linked to the Stokes multiplier that prefactors
the exponentially small terms that are switched on (or off) across it. If a Stokes line is inactive
then the Stokes multiplier can be interpreted as being zero.

Rom this viewpoint, the higher order Stokes phenomenon can be interpreted as causing a change
in the value of a Stokes multiplier. As a higher order Stokes curve is crossed in a-space the Stokes
multiplier associated with an asymptotic contribution will change abruptly, to or from zero, or
in more general cases, between other complex values.

It is often possible to determine the activity of a Stokes curve from a monodromy argument,
starting from one sector of the complex a-plane between Stokes lines with a specific expansion.
Stepping over successive Stakes lines, we could travel to distant Stokes sectors and back by a
variety of closed orbits, making assurnptions about the non-zero or zero values of Stokes constants
on each Stokes curve. If progress along these different routes led to contradictory asymptotic
expressions in the starting and finishing sector then we might deduce that at least one of the
Stokes constants was zero in the vicinity of the point of traversal and hence the Stokes curve was
inactive there. In simple situations it is also possible to deduce the value of Stokes constants.
However for arbitrary differential equations, the Stokes constants may take any complex value
and more systematic methods may be necessary.

Here we choose to obtain the Stokes multiph.ers and hence the activity of the Stokes curves in
regions of a delineated by the higher order Stokes lines from the explicit terms in the expansions.
The methods of exponential asymptotics naturally lend themselves to this.

Assuming that we can find the relevant exponents (or Borel singularities) $f_{j}(\mathrm{a})$ , we will pro-
ceed by relating this to the analytic properties as functions of a of the coefficients in the local
expansions about the Borel singularities.

Other methods approaches are also possible. For one such method involving matching, see
Chapm an & Mortimer (2004). Other methods are discussed in Aoki et $al$ (1994, 2002, 2002).
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We shall discuss two examples, the first an ODE, the second a PDE.

2 Example: A Linear Ordinary Differential Equation

The following example can be found in Olde Daalhuis (2004), where further details and discussion
may be found.

Consider the inhom ogeneous second order differential equation

$\epsilon^{2}\frac{d^{2}w}{dz^{2}}+z^{2}w=\exp \mathrm{i}\frac{(z^{2}/2-4z)}{\epsilon}$ , $\epsilonarrow 0^{+}$ . (2.1)

Solutions of this equation will have three asymptotic contributions, two from the complementary
functions and one from the particular integral.

The general solution of the corresponding homogeneous equation is of the form

$w_{c}(z, \epsilon)=A(u)\sqrt{z}H_{1/4}^{\acute{(}1)}(\frac{z^{2}}{2\epsilon})+B(\epsilon)\sqrt{z}H_{1/4}^{(2)}(\frac{z^{2}}{2\epsilon})$ , (2.2)

where $A(\epsilon)$ and $B(\epsilon)$ are arbitrary functions of $\epsilon$ and the $H$ are Hankel functions.

The asymptotic expansion of the complementary function is thus

$w_{\mathrm{c}}(z, \epsilon)\sim\frac{\tilde{A}(\epsilon)}{\sqrt{z}}e^{iz^{2}/2\epsilon}\sum_{s=0}^{\infty}\frac{i^{s}d_{s}\epsilon^{s}}{z^{2s}}+\frac{\overline{B}(u)}{\sqrt{z}}e^{-iz^{2}/2\epsilon}\sum_{s=0}^{\infty}\frac{(-\mathrm{i})^{s}d_{s}\epsilon^{s}}{z^{2s}}$ , (2.3)

with
$d_{B}= \frac{\Gamma(3/4+s)}{s!\Gamma(3/4-s)}$ , (2.4)

and $\hat{A}(\epsilon)$ and $\tilde{B}(\epsilon)$ are two arbitrary functions of $\epsilon$ different from $A(\epsilon)$ and $B(\epsilon)$ in (2.2). The
non-asymptotic parameter of interest here is a $=z$ .

The asymptotic expansion of the particular integral is obtained from substitution of the expan-
sion

$w_{1}(z, \epsilon)=\exp(\mathrm{i}\frac{z^{2}/2-4z}{\epsilon})\sum_{s=0}^{\infty}a_{s}(z)\epsilon^{s+2}$ , (2.5)

into equation (2.1) to obtain

$a_{0}(z)= \frac{1}{8(z-2)}$ , $a_{1}(z)= \frac{-\mathrm{i}}{16(z-2)^{3}}+\frac{\mathrm{i}}{64(z-2)^{2}}$ , (2.6)
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with higher order terms given by

$-8(z-2)a_{s+2}=a_{s}’’+2\mathrm{i}(z-4)a_{s+1}^{\mathit{1}}+\mathrm{i}a_{s+1}$ . (2.7)

Clearly $a_{s}(z)$ has a pole of order $2s+1$ at $z=2$ . We will use this information in the determination
of the Stakes constants below. In contrast to what follovs, here we have freedom in choosing
the coefficients $a_{s}(z)$ in (2.8), since $a_{s+1}$ is given in terms of derivatives. In what foliows, the
coefficients will possess the complicating factor of constants of integration.

We shall study the asymptotic behaviour of particular integral of (2.1) in the complex z-plane.
We focus on the Stokes curves where the expansion (2.5) maximally dominates the other pos-
sible asymptotic contributions. As these Stokes curves are crossed traditionally these extra
contributions appear or disappear in the complete asymptotic representation.

We thus form a template

$w_{1}(z, \epsilon)$ ” $\exp(-\frac{f_{1}(z)}{\epsilon})\epsilon^{2}(\sum_{s=0}^{\infty}a_{s}(z)\epsilon^{S}+\sum_{j}K_{1j}\exp(-\frac{F_{1j}(z)}{\epsilon})\epsilon^{-\alpha_{J}}\sum_{s=0}^{\infty}b_{s,j}(z)\epsilon^{S)}$ , (2.8)

as $\epsilonarrow 0^{+}$ . where
$f_{1}(z)=-\mathrm{i}(z^{2}/2-4z)$ (2.9)

and
$F_{ij}(z)=f_{j}(z)-f_{i}(z)$ (2.10)

The goal now is to determine the $f_{j},$ $K_{1j}$ and $b_{S,f},$ $j\neq 1$ . (Note that in more general cases the
Stokes constants $K_{1j}$ could depend on $\epsilon.$ )

If we used an integral representation of the particular integral we could proceed as in the Pearcey-
type case as above. In the absence of a convenient integral representation (as will be the case
in ma1ly situations) we could proceed a follows. The asymptotic expansion (2.8) is divergent.
This is because of the presence of the singularities of at $f_{j}(z)$ in the Borel plane. The presence
of this singularities is incorporated in the growth of the coefficients $a_{s}(z)$ as $sarrow\infty$ .
We will use the “factorial-over-power” ansatz for the higher orders of the a-coefficients

$a_{s}(z) \sim\frac{K(z)\Gamma(s+\alpha)}{F_{1j}(z)^{s+\alpha}}$, (2.11)

as $sarrow\infty$ . Here the $F_{1j}$ gives the spacing between $f_{1}$ and the singularities $f_{j}$ in the Borel
plane that control the divergence of the expansion of the particular integral. Note that (2.11)
is a leading order approximation only. There are correction term $\mathrm{s}$ (as we will see below) and in
more complication situations, alternative forms of this ansatz are reqaired. When this ansatz is
substituted into the recurrence relation (2.7), we find at leading order in $s$ that

$F(z)^{2}-2\mathrm{i}(z-4)F’(z)+8(z-2)=0$. (2.12)
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Solving this equation we find two solutions

$F_{12}(z)=\mathrm{i}(z^{2} - 4z+k_{2})$ and $F_{13}(z)=-4\mathrm{i}z+k_{3}^{\wedge}$ , (2.13)

where $k_{2}$ and $k_{3}$ are constants. Hence the most general form of $a_{s}(z)$ is

$a_{s}(z) \sim\frac{K_{12}(z)\Gamma(s+\alpha_{2})}{F_{12}(z)^{s+\alpha_{2}}}+\frac{K_{12}(z)\Gamma(s+\alpha_{3})}{F_{13}(z)^{s+\alpha_{3}}}$, (2.14)

We determine $k_{2}$ and the corresponding $\alpha 2$ by recaling the fact that the exact $a_{s}(z)$ have a pole
of order $2s+1$ at $z=2$. Hence, $k_{2}$ must be 4 so that

$F_{12}(z)=\mathrm{i}(z-2)^{2}$ and $a\mathit{2}=1/2$ . (2.15)

The constant $k\mathrm{s}$ is determined by examining the homogeneous form of the originai differential
equation (2.1). This has a turning point at $z=0$ . One signature of a turning point in the
WKB-type expansions we are dealing with here is that the exponential prefactors, and hence
the $F\mathrm{s}$ relating to the complementary functions in the ansatz (2.15) be equal. Thus we set
$F_{12}(0)=F_{13}(0)$ and deduce that $k_{3}=4\mathrm{i}$ .

Another way of obtaining this result is to note that, as we will see below, the recurrence relation
for the coefficients $b_{s,j}(z)$ show that the $b_{s,j}(z)$ coefficients themselves have poles at $z=0$.
However, the terms in the asymptotic expansion of $w1(z, u)$ are analytic in $z$ near $z=0$ , see
(2.6), (2.7), Hence, the exponentially ’small’ terms in (2.8) must cancel each other as $zarrow \mathrm{O}$ .
Hence we have

$F_{13}(0)=-4\mathrm{i}(z-1)\mathrm{J}$ $\alpha_{3}=\alpha_{2}=\frac{1}{2}$ $K_{2}(0)=-K_{3}(0)$ (2.16)

We can now deduce the exponential behaviours $f_{j}$ in the expansion of particular integral, From
(2.10)

$)$
(2.13), (2.15) and (2.16) we have

$f_{1}(z)=-\mathrm{i}(z^{2}/2-4z)$ ,
$f_{2}(z)=F_{12}(z)+f1(z)=\mathrm{i}(z^{2}/2+4)$ ,
$f_{3}(z)=F_{13}(z)+f_{1}(z)=-\mathrm{i}(z^{2}/2-4)$ (2.17)

Note that $f_{2}$ and $f_{3}$ give rise to exponential prefactors that are of the same form as that arising
in the expansion of the complementary function. They differ only by a constant shift in a $1/\epsilon$

term. In fact we could have written the expansion of the complementary function (comp func
expansion $\mathrm{e}\mathrm{q}\mathrm{n}$ ) in terms of the $fj$ here by a redefinition of the constants $\tilde{A}(\epsilon)$ and $\tilde{B}(\epsilon)$ .

We are now in a position to draw the Stokes curves for the particular integral expansion for
$\epsilonarrow \mathrm{O}^{+}$ . Recall from the first paper in the trilogy (Howls $2005\mathrm{a}$) that $S_{i>j}$ is the Stokes curve
on which the expansion prefactored by an exponential involving $f_{\mathrm{i}}$ maximaly dominates the
expansion prefactored by an exponentiai involving $fj$ . We substitute (2.17) into the necessary
condition for a Stokes curve (1.1) and find that the Stakes curves are given by

$|\Im z|=|\Re z|$ , $|\Im z|=|\Re z-2|$ , $\Re z=1$ , $(2.1\mathrm{S})$
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Figure 1: The candidate Stakes curves in the complex $\mathrm{a}=z$ piane defined by (1.1) based on
exponents (2.17) with $\epsilon>0$ (left) and $\arg\epsilon=-\pi/6(r\mathrm{i}ght)$ . The bold circle in both diagrams
is the corresponding higher order Stokes line which from (1.2), is invariant under changes of
$\arg\epsilon$ . Stokes line sprout from turning points (TP) at $z=0$ and $z=2$ , and also from the virtual
turning point or virtual caustic (VC) at $z=1$ . The candidate Stokes lines cross at Stokes
crossing points (SCP) at $z=1\pm i$ when $\epsilon>0$ . The candidate Stokes curves and SCP obviously
rotate with $\arg\epsilon$ . The higher order stakes curve is invariant.

Plotting these curves for $6arrow 0^{+}$ , we arrive at figure 1.

Note that not only do the Stokes curves meet at the double turning points at $z=0$ and $z=2$ ,
but also cross at at the regular Stokes crossing points (SCP) $z=1\pm \mathrm{i}$ . The higher order Stokes
curve can be plotted by substituting $fi(z),$ $f_{2}(z)$ and $f_{3}(z)$ from (2.17) into the definition (1.2).
It transpires that the curve is simply the circle

$|z-1|=1$ , (2.19)

and passes through the Stokes crossing points (as it must).

We now begin an examination of the activity of the Stokes curves. It transpires that we only
need to consider one point in each of the regions delineated by the higher order stokes curve to
determine the activity of the lines passing through that region.

When solution $w_{1}(z, u)$ crosses the Stokes curve $S_{1>2}$ it can switch on a subdominant con-
tribution of a Stokes constant times $w_{2}(z, u)$ , which is the expansion of one solution of the
homogeneous version of (2.1). The expansion of $w_{2}(z,u)$ has the small $\epsilon$ asymptotic behaviour

$w_{2}(z, \epsilon)\sim\frac{1}{\sqrt{z}}e^{-f\langle z)/\epsilon}\epsilon^{3/2}\sum_{s=0}^{\infty}2b_{s}(z)\epsilon^{s}$ , (2.20)
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where the $b_{s}$ satisfy the recurrence relation

$b_{s+1}’= \frac{-\mathrm{i}}{2}(\frac{b_{s}’’}{z}-\frac{b_{s}}{z^{2}},+\frac{3b_{s}}{4z^{3}})$ (2.21)

which is obtained from the the substitution of (3.4) into (2.2). Note that the form of the
recurrence relation will introduce (at this stage unknown) constants of integration for each
coefficient $b_{s}(z)\backslash$ . In (2.20) the factor $\epsilon^{3/2}$ is just the product of $\epsilon^{2}$ and $\epsilon^{-\alpha_{2}}$ in (2.8).

Likewise, on crossing the Stakes curve $S_{1>3},$ $w_{1}(z, u)$ can switch on a constant times $w3(z, u)$ ,
which is the expansion of the second solution of the homogeneous version of equation (at begin-
ning). With the small $\epsilon$ asymptotic behaviour

$w_{3}(z, \epsilon)\sim\frac{1}{\sqrt{z}}e^{-f\mathrm{a}(z)/\epsilon}\epsilon^{3/2}\sum_{s=0}^{\infty}c_{s}(z)\epsilon^{S}$ , (2.22)

with recurrence relation
$c_{s+1}’= \frac{\mathrm{i}}{2}(\frac{c_{s}’’}{z}-\frac{c_{\mathit{8}}’}{z^{2}}+\frac{3\mathrm{c}_{s}}{4z^{3}})$ . (2.23)

Again each $c_{s}(z)$ will involve constants of integration.

To determine the constants of integration in the $b_{s}(z)$ and $c_{s}(z)$ we again resort to the artalytic
properties of the $a_{s}(z)$ . We use the complete expansion for the late terms of the $a_{n}(z)$ of which
(2.14) included but the first terms.

$a_{n}(z) \sim\frac{K_{12}}{2\pi \mathrm{i}}\sum_{s=0}^{\infty}\frac{b_{\mathit{8}}(z)\Gamma(n-s+1/2)}{\sqrt{z}F_{12}(z)^{n-s+1/2}}+\frac{K_{13}}{2\pi i}\sum_{s=0}^{\infty}\frac{c_{s}(z)\Gamma(n-s+1/2)}{\sqrt{z}F_{13}(z)^{n-s+1/2}}$, (2.24)

as $narrow\infty$ . We know this to be the form of the expansion of the late term $\mathrm{s}$ since the Borel plane
(and from this the Borel transform) involves only three singularities, and (2.24). This illustrates
the power of the Borel-plane approach.

Recalling the reason for this calculation, we remark that the value of the Stokes constants
(multipliers) $K_{21}$ and $K_{31}$ will depend on the location of 2 with respect to the higher order
Stokes curve.

The logic for determining the activity of the Stokes lines then proceeds as follows

. We observe from (2.16) that $F_{13}(1)=0$ . However, from (2.6) and (2.7) the exact $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}rightarrow$

cients $a_{n}(z)$ have no apparent singularity at $z=1$ . Hence we must have $K_{1\mathrm{S}}=0$ for 2 in
the vicinity of $z=1$ . With the Stokes constants formulated as above, $K_{13}$ can only change
value across a higher order Stokes curve. Hence $K_{13}=0$ inside the circle $S_{higher}$ , that is,
for $|z-1|<1$ .
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. An asymptotic analysis of the first few exact coefficients $a_{n}(z)$ from (2.6)-(2.7) shows that

$a_{n}(z) \sim\frac{\Gamma(n+1/2)\mathrm{i}^{n}}{\Gamma(1/2)2^{2n+3_{Z}n+1}}$ (2.25)

as $|z|arrow\infty$ . We now compare the powers of $z$ in (2.25) with (2.24) together with the
respective forms of $F_{12}(z)$ and $F_{13}(z)$ . We deduce that the term in (2.24) involving $F_{13}(z)$

must dominate the right hand side of (2.24) as $|z|arrow\infty$ . A comparison of the prefactors
of (2.24) with (2.25) suggests that $K_{13}c_{0}=\sqrt{\pi i}/2$ . Without loss of generality, we can
take $K_{31}=\sqrt{\pi i}/2$ and $c_{0}=1$ . These results are valid everywhere outside the higher order
Stokes curve $|z-1|>1$ .. Observation of the form of the first few exact coefficients $a_{n}(z)$ from (2.6)-(2.7) shows that

$a_{n}(z)= \frac{\mathrm{a}\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1\mathrm{i}\mathrm{n}z\mathrm{o}\mathrm{f}\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}n}{(z-2)^{2n+1}}$ (2.26)

This allows us to identify that the coefficients of integration for the $\mathrm{c}_{s}$ in (2.23) are all zero.
If any of them were non-zero, this would lead to overall positive powers of $z$ appearing in
the expansion (2.23) of $a_{n}(z)$ as $|z|arrow\infty$ . This would not agree with the exact form of
(2.6).. It follows from (2.6), (2.7), (2.24), (2.26) that the blow up of $a_{n}(z)$ near $z=2$ is dominated
by

$a_{n}(z) \sim\frac{\Gamma(n+1/2)\sqrt{i}}{8\Gamma(1/2)F_{12}(z)^{n-s+1/2}}$ . (2.27)

Comparison of leading orders of (2.24), (2.27) suggests $K_{12}b_{0}=\mathrm{i}\sqrt{\pi i/\mathrm{S}}$ . Again, without
loss of generality, we take $K_{12}=\mathrm{i}\sqrt{\pi i}/8$ and $b_{0}=1$ . It turns our that these results are
valid for all $z\in C$ .. Consideration of the constants of integration arising in the $b_{s}(z)$ shows that any mop-zero
value would also lead to non-analytic behaviour on the right hand side of (2.24) as $|z|arrow\infty$ .
This would violate the analyticity of $a_{n}(z)(2.26)$ as $|z|arrow\infty$ and so they must all be zero.. We can conclude that when $|z-1|>1$

$a_{n}(z) \sim\frac{(-\mathrm{i})^{n}}{4\sqrt{2\pi z}}\sum_{s=0}^{\infty}\frac{(1/4,s)\Gamma(n-s+1/2)}{z^{2s}(z-2)^{2n-2s+1}}+\frac{\mathrm{i}^{n}}{8\sqrt{\pi(z^{2}-z)}}\sum_{s=0}^{\infty}\frac{(1/4,s)\Gamma(n-s+1/2)}{z^{2s}(4z-4)^{n-s}}$,

(2.28)
as $narrow\infty$ .. If $|z-1|<1$ we have

$a_{n}(z) \sim\frac{(-\mathrm{i})^{n}}{4\sqrt{2\pi z}}\sum_{s=0}^{\infty}\frac{(1/4,s)\Gamma(n-s+1/2)}{z^{2s}(z-2)^{2n-2s+1}}$, (2.29)

as $narrow\infty$ .
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Figure 2: The Stokes curves in the complex $\mathrm{a}=z$ based on exponents (2.17) with $\epsilon>0$ and
considering function defined to be the particular integral of (2.1) at $z=3/2$ . The thin line
denotes Stokes curves that are active and across which a Stokes phenmenon takes place. The
dotted lines denote Stokes curves that are inactive. The dashed curves denote active Stokes
curves which are nevertheless irrelevant to the asymptotics of the function in question.

. These results can be confirm ed numerically using the system atic techniques of hyper-
asymptotics and choosing points inside and outside the higher order Stokes curve (see
Olde Daalhuis 2004 for details) .

We can now discuss the activity of the Stokes curves in relation to the higher order Stokes
phenomenon.

The Stokes curves $S_{2>1}$ and $S_{3>1}$ , that is $z=1+r\mathrm{i},$ $r<0$ , can never be active since the
solutions of the homogeneous equation (2.2) are independent of the inhomogeneity (Howls &
Olde Daalhuis 2003).

Above, we showed that the Stokes multiplier $K_{13}=0$ for $|z-1|<1$ . Thus the Stokes line $S_{1>3}$

from $z=1$ to $z=1+\mathrm{i}$ is also inactive. However that portion of $S_{1>3}$ , where $z=1+r\mathrm{i},$ $r>1$ ,
is active, since $K_{13}\neq 0$ for $|z-1|<1$ .

We may check this by following the asymptotics of the particular integral $w_{1}(z)$ that has (2.7)
as its complete asymptotic expansion in the triangle with vertices $z=0,$ $z=1$ , and $z=1+\mathrm{i}$ .
We will walk around the Stokes crossing point $z=1+\mathrm{i}$ in the clock wise direction and examine
the monodromy of the expansion.

. When we cross the Stokes curve $S_{2>3}$ nothing happens, since solution up (z) is not contained
in the asymptotics of $w_{1}(z)$ at this crossing. Hence, although the part of the Stokes curve
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$S_{2>3}$ between the turning point $z=0$ and Stokes crossing point $z=1+\mathrm{i}$ is active but is
irrelevant.. As we cross the Stokes curve $S_{1>2},$ $w_{1}(z)$ switches on $K_{21}w_{2}(z)$ .. On crossing the Stokes curve $S_{1>3}w_{1}(z)$ switches on $K_{31}w_{3}(z)$ .. We cross the Stokes curve $S_{2>3}$ again. This time $w_{2}(z)$ is active, and it switches off
$K_{31}w_{3}(z)$ . Thus $S_{2>3}$ is stiu active and is now a relevant Stokes curve.. We cross the Stokes curve $S_{1>2}$ again $w_{1}(z)$ switches off $K_{21}w_{2}(z)$ .. Monodromy of the particular integral then demands that the Stokes curve from $z=1$ to
$z=1+\mathrm{i}$ cannot be active.

Conversely, if the the Stokes curve $z=1+r\mathrm{i},$ $r>1$ were to be inactive, then nothing would
have happened at step (3), and this would have led to a contradiction. The role of the higher
order Stokes curve in this example is now clear. The Stokes line $S_{1>3}$ is seen to change activity
across the higher order Stokes line at the SCP $z=1+\mathrm{i}$ .

Note that in this example we can use information about the origins of the expansions as a short
cut to assessing the activity of the Stokes curves. The process can be simplified dramatically if we
recall that the $w_{1}$ is solution of the full inhomogeneous equation (2.1). Hence the homogeneous
solutions $w_{2}$ and $w_{3}$ cannot ever contain a contribution from a specific $w_{1}$ 1n their re-expansions
(see Howls and Olde Daalhuis 2003). Consequently all the Stokes curves $S_{2>1}$ and $S_{3>1}$ can
never be active. Likewise, for the same reason since there are only three possible contributions
$S_{2>3}$ artd $S_{3>2}$ must always be active. In a more complicated problem that could not be written
as an inhomogeneous problem this simplification would not occur.

Note that if we consider the values of the $f_{j}(z)$ in (3.1) we observe that $f_{1}(1)=f_{3}(1)$ . Hence we
shouId expect a turning point at $z=1$ , with associated divergences in $a_{n}(1)$ or $c_{n}(1)$ . This does
not happen, since we have established that $K_{13}=0$ at $z=1$ , i.e., the Borel singularity $f_{1}(1)$

is on a different Riemann sheet to $f_{3}(1)$ . Since $z=1$ has the characteristics of a turning point,
but no divergence, it is called a “virtual turning point”, see Aoki et al (2001). The existence of
virtual turning points will be of some significance in the third paper,

3 Example: A Linear Partial Differential Equation

In this example we ilhtstrate the use of analytical properties of coefficient expansion to determine
the Stokes multipliers and investigate the higher order Stokes phenomenon in a linear partial
differential equation vhere a $=(x, t)$ . Again a monodromy argument may be used to examine
the activity of Stokes curves. However, here we again study the phenomenon from the point of
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view of Stokes multipiiers deduced from the analytical properties of the expansion coefficients.
The presence of an additional non-asymptotic parameter naturally complicates the calculations,
and several of the steps in the example outiined below may be undetermined in more general
situations. Nevertheless it is instructive to see how the arguments of the ODE example above
need to be generalised.

Our goal is to compute the active and inactive Stokes lines. The key problem $\mathrm{s}$ remain the same.
First one must determine the $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}/\mathrm{B}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{l}$singularities $f(\mathrm{a})$ , then one must determine suf-
ficiently many of the coefficients in the expansion of interest to gain insight into their analytic
properties. Then one uses a resurgence ansatz for the asymptotic form of the coefficient, in-
cluding Stokes multiplers, that in turn are evaluated by comparing analytic properties with the
exact coefficients.

We shall study the equation

$u_{t}-u_{x}= \epsilon^{2}u_{xxx}-\frac{1}{1+\mathrm{i}x}$ , $u(x, \mathrm{O})=-\mathrm{i}\ln(1+\mathrm{i}x)$ . (3.1)

defined on $-\infty<x<+\infty,$ $t>0$ with $\epsilonarrow 0^{+}$ . It will be necessary to consider at least $x$ to be a
complex variable. This equation has also been studied in Chapman & Mortim er (2004) using a
matching and resummation approach. It is convenient to extract the first term of the expansion
and to change variables to $(s, \tau)$ thus

$u(x, t)=-\mathrm{i}\ln(1+\mathrm{i}x)+v(s, \tau)$ , where $s=x+t,$ $\tau=t$ . (3.2)

Then (3.1) becomes
$v_{\tau}= \epsilon^{2}v_{sss}-\frac{2\epsilon^{2}}{(1+\mathrm{i}(s-\tau))^{3}}$, $v(s, 0)=0$ . (3.3)

where $v(s, \tau)$ has a leading order power series expansion

$v(s, \tau)\sim\sum_{n=1}^{\infty}a_{n}(s, \tau)\epsilon^{2n}$ . (3.4)

Equations for the coefficients $a_{n}$ can be obtained by substituting (3.4) into (3.3) to obtain

$\frac{\partial a_{1}}{\partial\tau}=\frac{-2}{(1+\mathrm{i}(s-\tau))^{3}}$ , $a_{1}(s, 0)=0$ , (3.5)

and
$\frac{\partial a_{n}}{\partial\tau}=\frac{\partial^{3}}{\partial s^{3}}a_{n-1}$ , $a_{n}(s, 0)=0$ , $n=2,3,4,$ $\cdots$ . (3.6)

Thus the $a_{n}$ satisfy the recurrence relation

$a_{1}(s, \tau)=\frac{\mathrm{i}}{(1+\mathrm{i}(s-\tau))^{2}}-\frac{\mathrm{i}}{(1+\mathrm{i}s)^{2}}$ , $a_{n}(s, \tau)=\int_{0}^{\tau}\frac{\partial^{3}a_{n-1}(s,\tilde{\tau})}{\partial s^{3}}d\overline{\tau}$ . (3.7)
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We thus observe that $a_{1}(s, 0)$ has no singuiarity. However at time $\tau=0^{+}$ , two singularities in
$a1(s, \tau)$ are spontaneously created at $s=\mathrm{i}$ and $s-\tau=\mathrm{i}$ . This is consistent with the work of
Costin and Tanveer (2003)

As in the first example we form a template solution, now of the form

$v(s, \tau;\epsilon)\sim\exp(-\frac{f_{e}(s,\tau)}{\epsilon})(\sum_{n=0}^{\infty}a_{n}(s, \tau)\epsilon^{2n}+\sum_{j}K_{ej}\exp(-\frac{F_{ej}(z)}{\epsilon})\epsilon^{-\alpha_{j}}\sum_{s=0}^{\infty}b_{s,j}(z)\epsilon^{S)}$ ,

(3.8)
as $\epsilonarrow 0^{+}$ . where

$f_{e}(s, \tau)=0$ (3.9)

and
$F_{ij}(z)=f_{j}(z)-f_{i}(z)$ (3.10)

The goal is again to determine the $F_{ej}$ and Stokes multipliers $K_{ej}$ .

Following the first examples, we consider the ansatz

$a_{n}(s, \tau)\sim\frac{K(s,\tau)\Gamma(2n+\tilde{\alpha})}{F(s_{?}\tau)^{2n+\alpha}}$ , as $narrow\infty$ , (3.11)

where the prefactor that includes the Stokes multiplier, $K(s, \tau)$ is now a function of $s$ and $\tau$ .
Note that in contrast to the ODE example above, $\alpha\neq \mathrm{c}$ as we will see below. For more general
cases Mortim er (2004) it may also be necessary to allow $\alpha$ and a in (3.11) to also be functions of
$s$ and $\tau$ . (The $2n$ in the gamma function arises with hindsight from a preliminary calculation.)
Substituting this ansatz into (3.6) we obtain

$F_{\tau}=(F_{s})^{3}$ (3.12)

Note that we have no explicit boundary data for this equation. However we are interested in
soiutions of this (3.12) that blow up at the same places as $a_{n}(s,\tau)$ , that is at $s=\mathrm{i}$ and at
$s-\tau=\mathrm{i}$ .

For the blow up at $s=\mathrm{i}$ , by comparison of the powers of derivatives in (3.12) we pose a sotution
of the form

$F(s, \tau)=\frac{(s-\mathrm{i})^{3/2}}{g(s,\tau)}$. (3. L3)

The function $g(s, \tau)$ is non$\sim$singular at $s=\mathrm{i}$ . Substitution of this ansatz into (3.11) gives

$a_{n}(s, \tau)\sim\frac{K(s,\tau)\Gamma(2n+\overline{\alpha})(g(s,\tau))^{2n+\alpha}}{(s-\mathrm{i})^{3n+3\alpha/2}}$ . (3.14)

Comparison of this form vith the blow up of $a_{1}(s, \tau)$ at $s=\mathrm{i}$ , shows that

a $=-2/3$ (3.15)
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Thus
$a_{n}(s, \tau)\sim\frac{K(s,\tau)\Gamma(2n+\tilde{\alpha})(g(s,\tau))^{2n-2/3}}{(s-\mathrm{i})^{3n-1}}$ as $narrow\infty$ . (3.16)

At, this point, those readers familiar with exponential asymptotics may question the comparison
of an ansatz for late terms $narrow$ oo with the exact form of the first few terms. The resolution of
this apparently illogical action is that we are exploiting the fact that there are addition variables,
$s$ and $\tau$ , which give rise to analytic behaviour that is seeded in the first few terms and propagated
via (3.7) to higher order terms. Of equal importance to this argument is that the form of the
recurrence relation for the higher order $a_{n}(3.7)$ , introduces no additional singularities in $x$ or $t$ .

We also need to incorporate the boundary condition in (3.6), namely that $a_{n}(s, 0)=0$ in the
vicinity of $s=1$ . Lower order correction terms to the ansatz (3.11) (by definition!) cannot
balance the leading order and so we set

$g(s, \tau)\sim A\tau^{\beta}$ , as $\tauarrow 0$ . (3.17)

Note that many other functional forms for $g$ are possible here, however this choice agrees with
the exact values to leading order in $\tau$ . In more complicated examples we might not be so
fortunate. A consequence of this choice is that

$\beta=1/2$ . $(3.1\mathrm{S})$

With these investigations in mind, we can revise our solution (3.13) to (3.12).

$F(s, \tau)=\frac{2\mathrm{i}(s-\mathrm{i})^{3/2}}{3\sqrt{3\tau}}h(s, \tau)$ , (3.19)

and obtain from (3. i2) the nonlinear PDE:

$(h+2/3(s-\mathrm{i})h_{s})^{3}=h-2\tau h_{\tau}$ . (3.20)

By substitution of a Taylor series expansion for the solution $h$, it is easy to see that the only
solution of this PDE that is analytic near $(s, \tau)=(\mathrm{i}, 0)$ is $h(s, \tau)=\pm 1$ . Hence, the solution $F$

of (3.12) that is singular near to $s=\mathrm{i}$ and that agrees with the behaviour as $\tauarrow 0$ is given by
$F_{es}$ where

$F_{es}= \frac{2\mathrm{i}(s-\mathrm{i})^{3/2}}{3\sqrt{3\tau}}$ . (3.21)

We may therefore infer the existence of Stokes curves $s_{e>p}$ where $F_{es}>0$ , where a contribution
from singularity $s$ may be switched on.

Obviousiy other solutions of (3.12) exist. In particular we seek a solution that is singular near
$s-\tau=\mathrm{i}$ , the other singularity of $a_{n}(s, \tau)$ , that may be deduced from an examination of the
first few terms of (3.7). To that end we try a solution of the form

$F(s, \tau)=(1+i(s-\tau))k(s,\tau)$ . (3.22)
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where $k(s, \tau)$ is analytic at $s-\tau=\mathrm{i}$ . For convenience we make the temporary coordinate change
$x=1+\mathrm{i}(s-\tau),$ $t=\mathrm{i}\tau$ . Then $F=xk(x, t)$ an $\mathrm{d}$

$(k+xk_{x})^{3}=k+x(k_{x}-k_{t})$ . (3.23)

Again, the only analytic solution near $(x, t)=(0,0)$ is $k(x, t)=\pm 1$ . A second solution $F$ to
(3. 12) is thus $F_{ep}$ where

$F_{ep}=1+\mathrm{i}(s-\tau)$ . (3.24)

Hence we deduce the existence of another Borel singularity $p$ and Stokes curves $s_{e>p}$ across
which a contribution from singularity $p$ may be switched on.

The two solutions (3.21) and (3.24) correspond to the the two singularities present in the $a_{n}(s, \tau)$ .
As before, the $F\mathrm{s}$ given by these expressions are the distances in the Borel plane between the
origin and the corresponding singularities, $s$ and $p$ respectively, all these points mapping from
the exponents of the prefactors of the expansions in question. Ikom these results we may also
deduce the location of a further turning point defined by

$F_{sp}=F_{ep}-F_{es}=1+ \mathrm{i}(s-\tau)-\frac{2\mathrm{i}(s-\mathrm{i})^{3/2}}{3\sqrt{3\tau}}=0$ (3.25)

Here, $F_{sp}$ is the complex length of third side of the triangle formed by the three Borel points $e$ ,
$s$ , and $p$ involved in this problem. Clearly $F_{s\mathrm{p}}=0$ when $s=\mathrm{i}+3t$ (or $x=\mathrm{i}+2t$ ) $\mathrm{a}\mathrm{n}\mathrm{d}$ again
this implies the existence of Stokes curves $S_{s>\mathrm{p}}$ where singularity $s$ can switch on asymptotic
contribution from singularity $p$ .

We are now in a position sketch all the associated Stokes curves, and to assess their activity
from the associated higher order Stokes curve (1.2) $F_{sp}/F_{ep}>0$ All these curves are displayed
in figure 3.

If we analytically continue to complex $x$ , but keeping $t$ fixed and real, we observe a similar
picture to figure 1. The higher order Stokes curve sprouts from two turning points (TP) at $s=\mathrm{i}$

and $s=\tau+\mathrm{i}$ corresponding to singularities of the coefficients. The Stokes curves cross the
higher order Stokes at Stakes crossing points (SCP).

We now compute the Stokes multipliers in the different regions of $(s, \tau)$ delineated by the higher
order Stokes curve. Following the usual exponential asym ptotic techniques (Olde Daalhuis
1998) we compute $a_{1}(s, \tau),$ $\cdots$ , $a_{6}(s, \tau)$ (here we regard the index 6 as a large number!) These
coefficients rapidly increase in length, but near $s=\mathrm{i}$ , the following asymptotic form can be
recognized

$a_{n}(s, \tau)\sim\frac{\mathrm{i}(-\tau)^{n-1}\Gamma(3n-1)}{(s-\mathrm{i})^{3n-1}\Gamma(n)}$ , as $sarrow \mathrm{i}$ . (3.26)

Note that this dominant behaviour near $s=\mathrm{i}$ also satisfies the recurrence relation in (3.7). Thus
(3.16) holds for alt $n$ . This is the $F_{s_{1}}$ behaviour. It also follows that $\tilde{\alpha}=-1/2$ .
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Figure 3: The candidate Stokes curves in the complex $x$-plane at constant $t$ for the solutions of
(3.1) for the indicated boundary conditions, based on exponents (3.21) and (3.24) with $\epsilon>0$ .
The higher order Stokes curve is the kidney-shaped thin line. This picture scales with $t$ , the
higher order Stokes curves and turning points TP coalescing at the point $x=\mathrm{i}$ when $t=0$ .

Similarly we discover from the recurrence relation (3.7) that for all $n$

$a_{n}(s, \tau)\sim\frac{\mathrm{i}(-1)^{n}\Gamma(2n)}{(s-\tau-\mathrm{i})^{2n}}$ , aass $s-\tauarrow \mathrm{i}$ . (3.27)

This is the $F_{p1}$ behaviour. Note that this asymptoic behaviour along cannot be valid near $\tau=0$

since it does not satisfy the initial condition that $a_{n}(s, 0)=0$ .

Now we assemble the asymptotic behaviours (3.26) and (3.27) in the vicinities of the distant
BoreI singularities and write down the leading orders of the Borel $\mathrm{r}$ -expansions of the coefficients
in the form

$a_{n}(s, \tau)\sim K_{1}(s, \tau)\frac{\mathrm{i}(-\tau)^{n-1}\Gamma(3n-1)}{(s-\mathrm{i})^{3n-1}\Gamma(n)}+K_{2}(s, \tau)\frac{\mathrm{i}(-)^{n}\Gamma(2n)}{(s-\tau-\mathrm{i})^{2n}}$ , as $narrow\infty$ , (3.28)

The only unknowns are now the Stokes multipliers $K_{1}(s, \tau)$ and $K_{2}(s, \tau)$ , which determine the
activity of the Stokes lines. Note that by comparison of (3.28) with (3.26), $K_{1}(s, \tau)\approx 1$ near
$s=\mathrm{i}$ and from a comparision with (3.27), $K_{2}(s, \tau)\approx 1$ near $s-\tau=\mathrm{i}$ .

We may check these values numerically. Taking the exact coefficients for $n=6,7$ , with typical
values $s=-4.2,$ $\tau=0.02(x=-4.22, t=0.02)$ in (3.28) we obtain two equations for the two
unknowns $K_{1}$ and $K_{2}$ . These may be solved trivialiy to yield

$K_{1}(s, \tau)=0.01263-0.00297\mathrm{i}$ , $K_{2}(s, \tau)=(0.18849+2.93520\mathrm{i})\mathrm{x}10^{-14}$ . (3.29)

Thus, to numerical accuracy, $K_{2}(s, \tau)=0$ for $(s, \tau)$ outside the higher order Stokes curve.
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Figure 4: The activity of Stakes curves in the complex $x$-plane at constant $t$ for the solutions of
(3.1) for the indicated boundary conditions, based on exponents (3.21) and (3.24) with $\epsilon>0$ .
The thin solid lines are active Stokes curves, the dashed lines are active but irrelevant Stokes
curves, the dotted lines are inactive Stokes curves. Note that the Stakes curve $S_{e>p}$ changes
activity at the Stokes crossing point near x=-\’i.

Similarly we take $n=6,7,$ $s=4.2$ and $\tau=4.2(x=0, t=4.2)\mathrm{i}\mathrm{n}(3.28)$ and solve this system
to obtain

$K_{1}(s, \tau)=$ 1.41100 - $0.12928\mathrm{i}$ , $K_{2}(s, \tau)=0.9999998-0.0000002\mathrm{i}$ . (3.30)

Thus $K_{2}(s, \tau)\neq 0$ for $(s, \tau)$ inside the higher order Stokes curve.

We can thus deduce that the Stokes curve $S_{e>p}$ is inactive inside the higher order Stokes curve,
but active outside the higher order Stokes curve. A monodromy argument can be used to deter-
mine that the curve $S_{\mathrm{p}>e}$ must also be inactive inside the higher order Stakes curve, otherwise a
contradiction will occur if one considers an analytic continuation around a circular path enclosing
the middle TP of figure 3,

If one starts with only the contribution from $e$ in the semi-infinite triangular region denoted A
in figure 3, one may deduce the activity of all other Stakes curves from a monodromy argument.
The final activity of the Stokes curves is displayed in figure 4.

4 Discussion

This paper has considered how to calculate the effect of a higher order Stokes line directly from
the coefficients in an expansion. The method illustrated here requires knowledge of the positions
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of the Borel singularities as a function of the variables, together with analytic knowledge of the
coefficients as a function of $\mathrm{a}$ . In the examples used we have been fortunate enough to obtain
this information. Of course it is not too difficult to find equations where this information may
not be available, or only available numerically. In these situations other techniques must be
employed. However, if one is unable even to calculate the position of a subset of the Borel
singularities, since these are effectively the exponents of the expansion prefactors, one will not
even be able to write down an expansion involving exponentially small terms. Arguably, the
question of activity of Stokes lines in these cases is somewhat redundant,

Other techniques for examining the activity of Stakes lines in the absence of initial integral
representations aiso exist. Chapman and Mortimer (2004) have considered a direct approach
using expansion coefficients similar to that of this paper. Rather than using the Borel structure,
they seek a full expansion of the higher order late terms. An explicit resummation is sought
to obtain an integral representation of the remainder of this expansion. The integral is then
examined using the method of steepest descents.

Aoki et at (1994, 2001, 2002) have also considered the activity of higher order Stokes lines using
and exact WKB approach. They have written down detailed guidelines for activity in terms of
the proximity of Stokes lines to virtual caustics and Stokes crossing points.

So far we have only considered the effect of the higher order Stokes line for complex values of
the parameters $\mathrm{a}$ . Readers may then be left with the impression that the effects of the higher
order Stokes phenomenon at real values of spatial or temporal variables is insignificant. In the
next paper we demonstrate that this is not the case.
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