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SINGULARITY BARRIERS AND BOREL PLANE ANALYTIC
PROPERTIES OF $1^{+}$ DIFFERENCE EQUATIONS

O. COSTIN

ABSTRACT. The paper addresses generalized Borel summability of “$1^{+}"$ dif-
ference equations in “critical time”. We show that the Borel transform $Y$ of a
prototypical such equation is analytic and exponentially bounded for $\Re(p)<1$

but there is no analytic continuation &om 0 toward $+\infty$ : the vertical line
$\ell:=\{p : \Re(p)=1\}$ is a singularity barrier of $Y$ .

There is a unique natural continuation through the barrier, based on the
Borel equation dual to the difference equation, and the functions thus obtained
are analytic and decaying on the other side of the barrier. In this sense, the
Borel transforms are analytic and well behaved in $\mathbb{C}\backslash p$ .

The continuation provided allows for generalized Borel summation of the
formal solutions. It differs $\mathrm{f}\mathrm{i}\cdot \mathrm{o}\mathrm{m}$ standard “pseudocontinuation” [9]. This
stresses the importance of the notion of cohesivity, a comprehensive exten-
sion of analyticity introduced and thoroughly analyzed by Ecalle.

We also discuss how, in some cases, Ecalle acceleration can provide a pro-
cedure of natural continuation beyond a singularity barrier.

1. INTRODUCTION

In the case of generic differential equations, generalized Borel summation of a
formal power series solution, in the sense of Ecalle [4], essentially consists in the
following steps: (1) Borel transform with respect to a cretical time, related to the
order of exponential growth of possible solutions, (see also the note below), usual
summation of the obtained series, analytic continuation along the real line or in its
neighborhood, proper averaging of the analytic continuations (e.g. medianization)
toward infinity, possible use of acceleration operators and Laplace transform C.

The choice of the critical time, or of a very slight perturbation -weak acceleration-
of it is crucial for Ecaile summability. A slower variable (time) would hide the
resurgent structure encapsulating the Stokes phenomena, and, perhaps more $\mathrm{i}\mathrm{m}rightarrow$

portantly, introduces superexponential growth preventing Laplace transformability
at least in some directions. In a faster variable, convergence of the Borel trans-
formed series would not hold.

In some functional equations and so called type $1^{+}$ difference equations, new
difficulties occur. For them, Ecalle replaces analyticity with cohesivity [5]. This
property was studied rigorously for some classes of difference equations by Immink
[6]. It is the purpose of this note to show the importance of this notion: even in
simple $1^{+}$ difference equations it is shown that critical time Borel transform has
barriers of singularities, preventing continuation in some half-plane. This occurs in
the prototypical equation
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(1) $y(x+1)= \frac{1}{x}y(x\}+\frac{1}{x}$

(example 2. of [6]). A simple proof of Borel space natural boundaries is not present
in the literature, as far as the author is aware. We also show that the barrier
is traversable: on the real line the associated function is well defined and Laplace

transformabie to a solution of the difference equation. This function is real analytic

except at one point and, in fact has analytic continuation in the whole of $\mathbb{C}\backslash \ell$ with
$\ell=\{p : \Re(p)=1\}$ a singularity barrier. The present approach is adaptable to more
general equations.

We expect barriers of singularities to occur quite generaliy in $1^{+}$ caged, due to
the fact that the pole position is periodic in the original variable, while critical time

introduces a logarithmic shift in this periodicity. This leads to lacunary series in

Borel plane, hence to singularity barriers.
Nonetheless, further analysis shows that, in this simpie case, and likely in quite

some generality, softer Borel summation methods and study of Stokes phenomena

are possible, relying on the convolution equation for continuation through singular-

ity barriers.
In spite of its simplicity, the properties in Borel plane of this equation, in the

critical time, are very rich.
Note on critical time. The solution of the homogeneous equation associated to

(1), $f(x)=1/\Gamma(x)$ has large $x$ behavior $(x/2\pi)^{1/2}e^{-x\ln x+x}$ . The critical time $z$ is

then the leading asymptotic term in the exponent, $z=x\ln x[6]$ . (The origin of

the terminology $1^{+}$ is related to the exponential order slightly larger than one of
$f)$ . Various slight perturbations of this variable, weak accelerations, are used and

indeed are quite useful,

2. THE SINGULARITY BARRIER

Theorem 1. Let $Y(p)$ be the Borel transform of $y$ in (1) in the critical time $z$ .
Then $Y(p)$ is analytic on $\{p\neq 0 : \arg(p)\in(\pi-2\pi, \pi+2\pi)_{)}.\Re(p)<1\}$ and

exponentially bounded as $|p|arrow$ $\mathrm{o}\mathrm{o}$ in this region. The line $\ell=\{p : \Re p=1\}$ is $a$

singularity barrier of $Y$ .
Proof of the theorem. Let $\tilde{y}$ be the formal power series solution of (1). We study

the analytic properties of the Borel transform $B’\tilde{y}:=Y(p)$ of the on $\mathrm{S}_{0}$ , the Riemann

surface of the $\log$ at zero, with respect to the critical time $z$ . In critical time the

functional equation of By (9) is unwieldy, and instead we look at the meromorphic

structure of solutions on which we perform a Mittag-Leffier decomposition.

It is straightforward to check that $\overline{y}$ is the asymptotic series for $\arg(x)$ $\neq 0$ of

the following actual solution of (1)

(2) $y_{0}(x)= \sum_{k=1\dot{g}}^{\infty}\prod_{=1}^{k}\frac{1}{x-j}$

The fact that ${\rm Res}(y_{0};x=n)=e^{-1}/\Gamma(n)$ and the behavior at infinity of $y_{0}$ show

that the Mittag-Leffler partial fraction decomposition of (3) is

(3) $y_{0}=e^{-1} \sum_{k=1}^{\infty}\frac{1}{(x-k)\Gamma(k)}$
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(1) Analyticity in the left half plane. The inverse function $z\mapsto x(z)$ of $x\ln x$

is analytic on $\mathrm{S}_{0}\backslash$ $(-e^{-1},0)$ as it can be seen from the differential equation $\frac{dx}{dz}=$

$(1+\ln x)^{-1}$ . Then $Y\langle p$ ) is the analytic continuation of the function defined for $p$

negative by

(4) $- \frac{1}{2\pi \mathrm{i}}\oint_{i1\mathrm{R}-e^{-1}}e^{pz}y0(x(z))dz=\frac{1}{2\pi \mathrm{i}}\int_{C}e^{pz}y_{0}(x(z))dz$ , $p\in \mathbb{R}^{-}$

where $C$ is a contour from oo $+\mathrm{i}\mathrm{O}$ around $-e^{-1}$ and to oo $-\mathrm{i}\mathrm{O}$ .
(2) Identities for finding continuation in $\{z : \Re(z)<1\}$ and exponential bounds.

For analytic continuation clockwise we start from argp $=\pi$ and rotate up the
contour, collecting the residues:

$Y(p)= \frac{1}{2e\pi \mathrm{i}}\sum_{k=1}^{\infty}\frac{1}{\Gamma(k)}\int_{C}\frac{e^{pz}dz}{x(z)-k}=F(p)+\frac{1}{2e\pi \mathrm{i}}\int_{C_{1}}\sum_{k=1}^{\infty}\frac{1}{\Gamma(k)(x(z)-k)}e^{pz}dz$

(5) where $F(p):= \sum_{k=1}^{\infty}\frac{1+\ln k}{e\Gamma(k)}e^{pk\ln k}$

and where for small $\phi>0,$ $C_{1}$ is the contour from $\infty e^{i\phi+i0}$ around $(-e^{-1},0)$

to $\infty e^{\mathrm{i}\phi-i0}$ . As argp is decreased from to zero (and further to $-\pi$), $\phi$ can be
increased from $0^{+}$ to $2\pi^{-}$ making $I_{C_{1}}$ visibly analytic in $\{p\neq 0 : \arg p\in (-\pi,\pi)\}$

and exponentially bounded as $|p|arrow\infty$ . We decomposed $Y$ into a sum of a lacunary
Dirichlet series and a function analytic in the right half plane.

(2) The natural boundary. The Dirichlet series $F$ is manifestly analytic for $\Re p<$

$1$ . As $p\uparrow 1$ we have $F(p)arrow+\infty$ and thus $F$ is not entire. But then, by the Fabry-
Wennberg-Szasz\sim Carlson-Landau theorem [8] pp. 18, $\ell$ is a singularity barrier of $F$

and thus of $Y$ . For a detailed analysis, see also the note below. 0

Note: Description of the behavior of $F$ at $\ell$ . Since all terms of the Dirichlet
series are positive on the real line, it is easy to check using discrete Laplace method1
that $F$ increases like an iterated exponential along $\mathbb{R}^{+}$ toward $\ell,$ $F(p)\propto\exp((1$ –

$p)\exp(1/(1-p)))$ . There are densely many points near $\ell$ where the growth is similar;
it suffices to take a sequence of $k\in \mathrm{N},$ $\Re(p)=k/$ ( $1+$ In(k)) and $(1+\ln(k))\Im(p)$

very close to an integer multiple of $2\pi$ . (A Rouche’ type argument shows there are
also infinitely many zeros with a mean separation of order the reciprocal of the
maximal order of growth, Jn(J) $\sim-(1-p)e^{1/(1-p)}.)$ Rather than attempting some
form of continuation through points where $F$ is bounded, which are easy to exhibit,
we prefer to soften the barrier first, by acceleration techniques.

3. GENERAL BOREL SUMMABILITY IN THE DIRECTION OF THE BARRIER.
PROPERTIES BEYOND THE BARRIER.

Strategy of the approach. It is convenient to perform a “very weak acceleration”
to smoothen the behavior of $Y(p)$ near $\ell$ . The natural choice of variable is $z=$
$\ln\Gamma(k)$ , but we prefer to slightly accelerate further, to $z_{m}(x)$ defined in Remark 1
below. We construct actual solutions of (1) starting from an incompiete Bore4 sum.
We identify these actual solutions and show they are inverse Laplace transformable.
Furthermore, they solve the associated convolution equation in Borel space. From

$1$ Determining, for fixed $p$ , the maximal term of the series and doing stationary point expansion
nearby.
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these points of view, we have a unique continuation on $\mathbb{R}^{+}$ . We show that the
function thus obtained is real analytic on $\mathbb{R}\backslash \{1\}$ and continuable to the whole of
$\mathbb{C}\backslash \ell$ .

The general solution of (1) is

(6) $y(x)=y_{0}(x)+ \frac{f(x)}{\Gamma(x)}$

where $f$ is any periodic function of period one, as it can be easily seen by making
a substitution of the form (6) in the equation. It can be easily checked that the
following solution of (1)

(7) $y_{1}(x)=y_{0}+ \frac{\pi}{e}\frac{\cot\pi x}{\Gamma(x)}$

is an entire function, and has the asymptotic behavior $\tilde{y}$ , the formal series solution
to (1) defined in the proof of the tl eorem.
Remark 1. Let $m$ $\in \mathrm{N}$ and $z_{m}(x)=x \ln x-x-(m+\frac{1}{2})$ In $x$ . For given $C>0$ , there
is $a$ one-parameter family of solutions of (1) which are analytic and polynomially
bounded in a region of the form $S_{C}=\{x : \Re(z_{m}(x))\geq C\}$ . They are of the form
$y_{c}(x)=y_{1}(x)+c/\Gamma(x)$ for some constant $c$ .
Proof The solution (7) already has the stated boundedness and analyticity proper-
ties (and in fact, it decreases at least lke $x^{-m}$ in $Sc$ ). The general solution is of the
form $y_{1}+f(x)/\Gamma(x)$ with $f$ periodic, as remarked at the beginning of the section.
Analyticity implies $f$ is analytic and boundedness in the given region implies $f$ is
bounded on the line $\partial S_{C}$ . By periodicity, $f$ is poiynomially bounded in the whole
of $\mathbb{C}$ , which means $f$ is a polynomial, and by periodicity, a constant. cl

Theorem 2 (Generalized Borel summability). (i) There exists $a$ one pararneter
family of solutions of (1) which can be written as $\mathcal{L}_{z_{n\mathrm{r}}}H_{\mathrm{C}}.\cdot=\int_{0}^{\infty}e^{-z_{m}p}H_{c}(p)dp$

where $H_{c}=B_{z_{n\iota}}\tilde{y}$ is analytic and exponentially bounded for $\Re(p)<1$ and $H_{c}\in$

$C^{m-1}(\mathbb{R}^{+})$ .
(ii) $H_{c}$ are real analytic on $\mathbb{R}^{+}\backslash \{1\}\mathrm{i}$ they extend analytically to C) $\ell_{J}$ and $\ell$ is $a$

singularity barrier $H_{c}$ and the functions are $C^{m-1}$ on the two sid es of the $barr\mathrm{i}er^{2}$ .
$Furthermore_{l}$ for $\Re(p)>1,$ $H_{\mathrm{c}}$ decrease toruard infinity in C.
Remark 2. It would not be correct at this time to conclude that, say, $\mathcal{L}^{-1}y_{1}$ pro-
vides Borel summation of $\overline{y}j$ we need to show that $y_{1}$ satisfies the necessary Gevrey-
type estimates to identify the inverse Laplace transform with $B\tilde{y}$ in the unit disk. We
prefer to proceed in a more general way, not using explicit forrnulas, but construct-
$ing$ actual solutions starting with an incomplete Borel surnmation (and identifying
them later with the explicit formulas).

Proof of Theorem 2, (i) We redo the analysis of the proof of Theorem 1 in the
variable $z=z_{m}$ and we get a decomposition of the form (5), where now $F$ is
replaced by

(8) $F_{2}= \sum_{k=1}^{\infty}\frac{\ln k+\frac{m}{k}}{e\Gamma(k)}e^{p[k\ln k-k-(m+\frac{1}{2})\ln k]}$

which is a Dirichlet series of the same type as $F$ and hence has $l$ as a singularity
barrier. However, $F_{2}$ is (manifestly) uniformly $C^{m-1}$ up to $\ell$ and so is thus $Y(p)$ .

$2\mathrm{T}\mathrm{h}\mathrm{e}$ values on the two sides cannot, obviously, be the same,
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For the solutions of (1) that decrease in a sector in the right half –plane it is
clear that the dominant balance is between $y(x+1)$ and $1/x$ . We then rewrite the
equation to prepare it for a contraction mapping argument in Borel space. By a
slight abuse of notation we write $y(z)$ for $y(x(z))$ and we have

$(x(z)-1)y(x(z))=y(x(z)-1)+1$
$(x\langle z)-1)y(z)=y(z-g(z))+1$

where $g(z)=$ in $z-$ ln ln $z+o(1)$ and then

$(x(z)-1)y(z)= \sum_{k=0}^{\infty}y^{\langle k)}(z)g(z)^{k}/k!+1$

Thus, dividing by $x(z)-1$ and taking inverse Laplace transform, with $G_{k}(p)$ the
inverse Laplace transform of $g(z)^{k}/(x(z)-1)/k!$ , we have

(9) $Y(p)= \sum_{k=0}^{\infty}[(-p)^{k}Y]*G_{k}(p)+F(p)$

The term $G_{k}$ is (roughly) bounded by $|e^{-k(1-p\}}|$ , as can be seen by the saddle
point method applied to the inverse Laplace transform integral. Jt is easy to check,
using standard contraction mapping arguments (see e.g. [2]), that $Y$ is given by a
convergent ramified expansion in the open unit disk. This was to be expected from
estimates of the divergence type of the formal solutions of (L). However, given the
estimates on the terms of the convolution equation, the equation, as written, cannot
be straightforwa dly interpreted beyond $\Re(p)=1$ , the threshold of convergence of
the ingredient series. It is however possible to write a meaningful global equation
by returning to the definition in terms of Laplace transform. We then write

$\mathcal{L}^{-1}y(z+g(z))=\frac{1}{2\pi \mathrm{i}}\int_{\mathrm{c}-\mathrm{z}\infty}^{c+i\infty}$ dze $\int_{0}^{\infty}dqe^{-q\{z+g(z))}Y(q)=\int_{0}^{\infty}H(p, q)Y(q)dq$

where

$H(p, q)= \frac{1}{2\pi \mathrm{i}}\oint_{c-i\infty}^{c+i\infty}e^{(p-q)z-q\mathit{9}(z)}dz=\frac{1}{2\pi \mathrm{i}}\int_{c-\mathrm{i}\infty}^{c+i\infty}e^{\langle p-q\}z+q(\ln\ln z+\ldots)}z^{-q}dz$

which is well defined for $q>0$ and integrable at $q=0$ ; the convolution equation
becomes

(10) $\oint_{0}^{\infty}H(p, q)Y(q)dq=Y*\mathcal{L}^{-1}[\frac{1}{x\langle z)-1}]+\mathcal{L}^{-1}[\frac{1}{x(z)-1}]$

Based on the solution on $[0, 1)$ of (9) we construct soiutions to (1) and their
inverse Laplace transforms provide continuation of $Y$ past $\Re(p)=1$ and implicitly
solutions to (10).

We define the incomplete Borel sum

$\hat{y}=\int_{0}^{1}e^{-zp}Y_{1}(p)dp$

Formal manipulation shows that $\hat{y}$ satisfies (1) with errors of the $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}^{3}o(e^{-z})$ or
$o(x^{m}/\Gamma(x))$ in the variable $x$ ) where the estimate of the errors is uniform in the
right half-plane in $z$ , or in a region $S_{C}\mathrm{w}.\mathrm{r}$ . to $x$ .

3Resulting from incomplete representation of $\mathrm{l}/(\mathrm{z}(\mathrm{z})-1)$ .
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We look for a solution of (1) in the form $\hat{y}+\delta(x)/\Gamma(x)$ . Then $\delta(x)$ satisfies
$\delta(x+1)=\delta(x)+R(x)$ (the $1^{+}$ degeneracy is not present anymore) where $R(x)=$

$o(x^{m})$ with differentiable asymptotics (by Watson’s lemma). A solution of this
equation is $\delta(x)=P(x)-\mathcal{P}^{m+3}\sum_{k=0}^{\infty}R^{(m+\mathrm{S})}(x+k)$ , with $P$ an antiderivative
and $P$ a polynomial of degree at most $m+2$ , which is manifestly analytic and
polynomially bounded in regions of the form $Sc$ , and $\hat{y}+\mathit{5}/\Gamma$ is manifestly a solution
of (1), which, by construction, is also polynomially bounded in $Sc$ .

By Remark 1, $\hat{y}+\delta/\Gamma$ is one of the solutions $y_{c}$ . But $y_{c}$ is inverse Laplace
transformable with respect to $z$ , and has sufficient decay to ensure the existence of
$m-1$ derivatives of the transform. By Remark 1 any solution that decreases in
the natural region $Sc$ in the right half plane can be represented in this way and
thus the conclusion follows. $\square$

Corollary 3. In $\{p : \Re(p)<1\}\cup[1, \infty)$ , there is $a$ one parameter farnily of Loplace

transformable solutions to (10), the functions $H_{\mathrm{c}}$ in Theorern 2 (i). They have $p$ as
a barrier of singularities.

Proof of Theorern 2 (ii). Since all Laplace transformable solutions to (10) are those
provided in Remark 1 we analyze the properties of the inverse Laplace transform
of these functions for $\Re(p)>1$ .

We note that, due to the fact that $y_{c}(z_{m})$ increase at most as $e^{z_{m}}/z_{m}^{m}$ , we can
deform for $\Re(p)>1$ , the integral

(11) $\int_{\mathrm{c}-i\infty}^{\mathrm{c}+\mathrm{i}\infty}e^{\mathrm{p}z_{m}}y_{c}(z_{m})dz_{m}$

to an integral

(12) $\int_{C}e^{pz_{m}}y_{c}(z_{m})dz_{m}$

where $C$ starts at $-\infty-\mathrm{i}\epsilon$ , avoids the origin through the right half plane and turns
back to $-\infty+\mathrm{i}\epsilon$ . In view of the bound mentioned above for $y_{c}(z_{m})$ , this function is
manifestiy bounded and analytic for $\Re(p)>1$ , and in fact is continuous with $m-1$

derivatives uP to $\Re(p)=1$ .
Cohesive continuation and pseudocontinuation. It follows from our analysis

and from the fact that \’Ecalle’s cohesive continuation also provides solutions to the
equation, that the results of the continuations are the same (modulo the choice of
one parameter, discussed in the Appendix). This type of continuation is the natural
one since it provides solutions to the associated convolution equation. It is easy
to see however that this continuation is not a classical pseudocontinuation through

the barrier, as it folJows from the following Proposition.
Proposition 4. The values of $H_{c}$ on the two sides of $\ell$ are not pseudocontinuations
[9] of each-other.

Proof. Indeed, pseudocontinuation [9], pp. 49 requires that the analytic elements
coincide almost everywhere on the two sides of the barrier. But $H_{\mathrm{c}}$ is continuous on
both sides, and then the vaiues would coincide everywhere, immediately implying
analyticity through $\ell$ , a contradiction.
Remark 3. The axis $\mathbb{R}_{l}^{+}$ which is also a Stokes line, plays a special role. No other
points on the singularity barrier can be used for Borel summation, as shown in the
proposition below.
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Proposition 5. No Laptace transformable solution of (10) exists, in directions
$e^{i\phi}\mathbb{R}_{\mathit{3}}^{+}\phi\in(0, \pi/2)$ . (The same conclusion holds with $\phi\in(-\pi/2,0).$)

Proof. Indeed, the Laplace transform $y$ of such a solution would be analytic and
decreasing in a half plane bisected by $e^{\iota\phi}$ and solve(l), Since $1/\Gamma(x)$ is entire and
the generai solution is of the form (6), by periodicity $f_{1}=f- \frac{\pi}{e}\cot$ ox would be
entire too. Taking now a ray $te^{i(\phi+\pi/2-\epsilon)}$ we see, using again periodicity, that $f_{1}$

decreases factorially in the upper half plane. Standard contour deformation shows
that half of the Fourier coefficients are zero, $f_{1}(x)= \sum_{k\in \mathrm{N}}$ cke and that, because
$f$ is entire, $c_{k}$ decrease faster than geometrically. But then $f1(x)=:F(\exp(2\pi \mathrm{i}x))$

with $t\mapsto F(t)$ entire. When $xarrow$ icyo, $tarrow \mathrm{O}$ and, unless $F=0$ , we have $F(t)\sim ct^{n}$

for some $n\in \mathrm{N}$ , thus $f(x)\sim ce^{\acute{\mathrm{z}}nx}$ , incompatible with factorial decay. This means
$f=0$ but then (6) is not analytic on the real line4. $\square$

4. APPENDIX: WEAK ACCELERATION, INTEGRAL REPRESENTATION, MEDIAN
CHOICE, NATURAL CROSSING OF THE BARRIER

A weak acceleration is provided by the passage $x$ In $x-x\mapsto x$ . The $x-$ inverse
Laplace transform of (1) satisfies $e^{\sim p}Y- \int_{0}^{p}Y(s)ds-$ $1$ $=0$ with the solution
$Y=e^{-1}\exp(p+\exp(p))$ . $\mathcal{L}Y$ exists along any (combination of) paths $R_{n}$ starting
from the origin and ending on a ray of the form $p=\mathbb{R}^{+}+(2n+1)\mathrm{i}\pi,$ $n\in \mathbb{Z}$ . The
function $f_{+}= \int_{R_{1}}e^{-xp}e^{p+\mathrm{e}^{\mathrm{p}}-1}dp$ is manifestly entire5. For $x=-t;tarrow$ oo the
saddle point method gives

$f_{+}\sim\sqrt{2\pi}e^{t\ln t-t+\pi i\ell+_{5}^{1}\ln t-1}$

which identifies $f_{+}$ with $y_{1}+\pi i/e/\Gamma(x)$ . With obvious notations, we see that
$y_{1}= \frac{1}{2}(f_{+}+f-)$ , reminiscing of medianization. We have also checked numericaily
that $y_{1}$ is approximated by least term truncation of its asymptotic series with errors
$o(1/\Gamma(x))$ . (The integral representation would allow for a rigorous check, but we
have not done this and we state the property as a conjecture; we also conjecture that
the solution constructed in Proposition 2 is $y_{1}$ ; this could be checked by looking
at the asymptotic behavior on $\partial S_{C}.$ ) There is, obviously, only one solution so
well approximated. It should then be considered as the natural candidate for the
medianized transform in critical time and its inverse Lapiace transform, defined on
the whole of $\mathbb{R}^{+}$ , and the natural continuation of the Borel transform $B\tilde{y}$ past the
barrier. For all these reasons it is likely, but we have not checked it rigorously, that
$y1$ corresponds to the medianized cohesive continuation of Ecalle.
Remark 4. The procedure described of naturally crossing a barrier does not neces-
sarily depend on the ecistence of an underlying functional equation. It is sufficient
to have accelerations as above that allow for Borel (over)summation along some
paths, and choose as a natural actual finction the one that has minimal errors
in least term tmncation or resori to a medianized choice. The process of contin-
uation through the barrier can be written as the composition $\mathcal{L}_{z_{n\iota}}^{-1}\mathcal{L}_{z_{1}}B_{z_{1}}\hat{\mathcal{L}}_{z_{m}}$ with

$\hat{\mathcal{L}}$ formal Laplace transform, and is expectel to commute with most operations of
4We should note that a procedure mimicking the proof of Theorem 2 (i) in non-horizontal

directions would fail because now the remainders $R(x$} would grow fast along the direction of
evolution - parallel to $\mathbb{R}^{+}$ .

5It provides, in view of the suPerexponential properties of the integrand, Borel oversummation.
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natural origin. It is applicable to rnany other series including the Dirichlet series
$\sum_{k=0}^{\infty}e^{(p-1)n^{2}}$

Finally, it seems a plausible conjecture that in the case of nonlinear systems,
infinitely many equally spaced “isolated” barriers should occur.
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