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Dynamics of Turing patterns in cylindrical domains
on 2D

九州大学数理学研究院 栄 伸一郎 (Shin-Ichiro Ei)
Faculty of Mathematics, Kyushu University

Abstract. Reaction-diffusion systems in an infinitely long strip-like domain with finite width
in $2\mathrm{D}$ are treated. We construct the solution connecting different types of stationary solutions
at infinity by considering the neighborhood of Turing instability. We also derive 4th order
equations of buckling type which shows the dynamics of the connecting solutions.

1 Introduction

In 1995, Konclo and Asai[1] show ed some chemical waves are observed in the skin
of real fishes. Their simulations by using reaction-diffusion systems reappear very well
the growth of patterns on the skin. One of the typical patterns is the rearrangement of
the stripe patterns. For example, when the width of skin are different in locations, the
number of stripes are different depending on the width. Then patterns with different
numbers of stripes are connected and some defects appear. According to the growth
of skin, the location of the defects change. After their work, there have been many
simulations related to such phenomena, but no theoretical results yet. To give a theo-
retical framew ork to it, we first consider a problem on a fixed domain and construct a
solution connecting two different stable stripe patterns as follows:

Let $\Omega=(-\infty, \infty)\mathrm{x}(0, l)\in R^{2}$ and consider a reaction-diffusion system

(1.1) $u_{t}=D\Delta u$ $+F(u)$ , $t>0$ , $x$ $=(x,y)\in\Omega$

with the homogeneous Neumann boundary conditions, where $u=$ $(u_{1}, \cdots,u_{N})\in$

$R^{N},F$ is a smooth function on $R^{N}$ and $D$ denotes a diagonal matrix with positive
elements $d_{j}$ , that is, $D=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\mathrm{d}1, \cdots,d_{N})$ .

Let us also consider ID problem of (1.1)

(1.2) $u_{t}=Du_{yy}+F(u)$ , $t>0$ , $y\in(0, l)$

with the boundary conditions $\frac{\partial u}{\partial y}=0$ at $y=0$ , $l$ . We assume (1.2) have two different
stationary solutions, say $U^{\pm}(y)$ with $U^{+}(y)\neq U^{-}(y)$ . Under these assumptions, we
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look for the solutions $u(t$ , $ $)$ of (1.1) satisfying

(1.3) $u(t, \pm\infty, y)=U^{\pm}(y)$ .

There have been few works related to the problem (1.1) with (1.3) (e.g. [2], [3],
[4] $)$ . Specially, traveling front solutions connecting $U^{\pm}(y)$ have been considered. If we
take a solution in the form $u(t, x, y)=U(z, y)$ for $z=x-ci$ , then $U$ satisfies

(1.4) $0=D(U_{zz}+U_{yy})+cU_{z}+F(U)$ , $U(\pm\infty, y)=U^{\pm}(y)$ .

When the problem (1.1) is a gradient system or skew gradient system, we can know
in a formal way how $c$ is determined, which will be mentioned in the following sec-
tions. It gives the movement of the connecting solution. In fact, [4] showed rigorously
the existence and its stability of connecting traveling wavefront solution for a sealer
equation.

On the other hand, if there are no gradient structure in any sense for the system,
there have been no theoretical results even in formal arguments.

In this paper, we consider the problem (1.1), (1.3) for general function $F$ without
any gradient structure, but in the neighb orhood of Turing instab ility. By it, it is show $\mathrm{n}$

that a pitchfork type bifurcation occurs in the system (1.2) on ID and we can get two
different stable stationary solutions, say $U^{\pm}(y)$ . We can construct approximate solu-
tions of (1.1) connecting $U^{\pm}(y)$ at $xarrow\pm\infty$ . We can show the dynamics is essentially
governed by the dynamics of

(1.5) $R_{T}=-\gamma_{1}R_{\zeta\zeta\zeta\zeta}+R(M_{2}-M_{1}R^{2})$ , $T>0$ , $($ $\in R$ ,

where all coefficients are positive constants.
In the following sections, we give preliminaries and results.

2 traveling solutions

In this section, we consider the problem (1.4) and show how the velocity $c$ is deter-
mined, All are by formal discussions
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2.1 Gradient systems
Suppose that $F(u)=-\nabla W(u)$ holds for a function $W(u)\in R$ and that (1.4) has a
solution $U(z, y)$ . Then according to [4] we have

$-c \int_{\Omega}$ $\langle\langle U_{z}, U_{z}\rangle$ dzdy

$=$ $\int_{\Omega}$ $\langle D\Delta U, U_{z}\rangle dzdy-\oint_{\Omega}W(U)_{z}dzdy$

$=$ $\int_{\Omega}$ $\langle D\triangle U, U_{z}\rangle$ $dzdy- \int_{\Omega}W(U)_{z}dzdy$

$=$ $\frac{1}{2}\oint_{\Omega}\frac{\partial}{\partial z}$ $\langle$ DU,, $U_{z}\rangle$ $dzdy+I_{-\infty}^{\infty}\{[\langle$ DU,, $U_{z}\rangle]_{0}^{l}-l^{l}$ $\langle$ DU,, $U_{zy}\rangle$ $dy\}dz$

$- \int_{0}^{f}[W(U)]_{-\infty}^{\infty}d\mathrm{y}$

$=$ $\frac{1}{2}$ ($\int_{0}^{l}[\langle DU_{z}, U_{z}\rangle]_{-\infty}^{\infty}dy-\int_{0}^{l}\oint_{-\infty}^{\infty}\frac{\partial}{\partial z}$ $\langle DU_{y}, U_{y}\rangle dzdy$) $- \int_{0}^{l}[W(U)]_{-\infty}^{\infty}dy$

$=$ $- \frac{1}{2}f_{0}^{l}\{\langle DU_{y}^{+}, U_{y}^{+}\rangle-\langle DU_{y}^{-}, U_{y}^{-}\rangle\}dy-l^{l}\{W(U^{+})-W(U^{-})\}dy$

$=$ $- \frac{1}{2}\int_{0}^{l}\{\langle DU_{y}^{+}, U_{y}^{+}\rangle-\langle DU_{y}^{-}, U_{y}^{-}\rangle\}dy-\int_{0}^{l}\{W(U^{+})-W(U^{-})\}dy$

$=$ $E(U^{-})-E(U^{+})$ ,

where $E(U):= \int_{0}^{l}\{\frac{1}{2}$ $\langle DU_{y}, U_{y}\rangle+W(U)\}dy$. Thus

(2.1) $c$ ’ $(U_{z}, U_{z})$ $dzdy=E(U^{+})-E(U^{-})$

holds. This means the sign of $c$ is determined the difference of energies $E(U^{\pm})$ of $U^{\pm}(y)$

on the interval $(0, l)$ .

2.2 Skew-gradient systems
Suppose that $F(u)=-Q\nabla W(u)$ holds for a function $W(u)\in R$ and a matrix $Q$

which is symmetric and invertible satisfying $DQ=QD$(e.g. [5]). Assume (1.4) has a
solution $U(z, y)$ . Then similarly to the previous subsection, we have

(2.2) $-c \int_{\Omega}$ $\langle U_{z}, Q^{-1}U_{\mathit{2}}\rangle$ dzdy

$=$ $\int_{\Omega}$ $\langle D\triangle U, Q^{-1}U_{z}\rangle dzdy-\int_{\Omega}$ $\langle Q\nabla W(U), Q^{-1}U_{z}\rangle$ dzdy

$=$ $E(U^{+})-E(U^{-})$ ,
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where
$E(U):= \int_{0}^{l}\{\frac{1}{2}$ $\langle DU_{y}, Q^{-1}U_{y}\rangle+W(U)\}dy$ .

But the coeffi cient of $c$ in the left hand side of (2.2) does not have fixed sign due to $Q$ .
Thus, we need more informations on the solution $U(z,y)$ in order to know the sign of
$c$ .

3 Preliminaries for Turing Instability

3.1 Bifurcation diagram in ID problems

Let 0 be a linearly stable equilibrium of $F$ , that is, $F(0)=0$ is satisfied and all

eigenvalues of the linearized matrix $B:=F’(0)$ are negative real parts. Consider the 1
dimensional problem (1.2) and $L$ be a linearized operator with respect to 0. Expanding

solutions in Fourier series $U= \sum_{n=0}^{\infty}\cos$ $C_{n}ya_{n}(a_{n}\in R^{N})$ and substituting it to the

eigenvalue problem $LU=\lambda U$ , we have

$\{-C_{n}^{2}D+B\}a_{n}=\lambda a_{n}$ ,

where $C_{n}:= \frac{n\pi}{\ell}$ . Therefore, we first consider the matrix –(-\mbox{\boldmath $\tau$}) $:=-\tau D+B$ parametrized
by $\tau\geq 0$ . Let Xj(r) $(j=1, \cdots, N)$ be eigenvalues of —(\mbox{\boldmath $\tau$}). We assume there exist

positive constants 70, $\tau_{0}$ such that $Re(\lambda \mathrm{i}(\tau))<-\gamma \mathfrak{o}$ for $j=2$ , $\cdots$ , $N$ and $\lambda_{1}(\tau)\in R$ ,

Ai(r) $\leq 0$ for any $\tau\geq 0$ and Ai (r) $=0$ if and only if $\tau=\tau \mathrm{o}(\mathrm{F}\mathrm{i}\mathrm{g}.3.1)$ . Moreover, we

Figure 3.1: Eigenvalues $\lambda_{1}(\tau)$ and others
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assume $\lambda_{0}(\tau)$ is a simple eigenvalue of —(\mbox{\boldmath $\tau$}) with the associated eigenvector $\alpha(\tau)\in R^{N}$ .
If we take the width $l$ of $\Omega$ such that $( \frac{\pi}{l})^{2}=\tau_{0}$ and take $a_{1}=\alpha_{0}$ , then $L\phi_{1}=0$

holds, where $\phi_{n}(y):=\cos C_{n}ya_{n}$ and $\alpha_{0}=\alpha(\tau_{0})$ . Thus, 1n the system (1.2), only 1
mod solution close to $\phi_{1}(y)$ can be unstable.

Under the above assumptions, we consider the system

(3.1) $u_{t}=D\triangle u+F(u)+\eta G(u)$ , $t>0$ , $x$ $=(x, y)\in$ St

for small $\eta$ and a function $G(u)$ with$\mathrm{h}G(0)=0$ . Then we can show for the ID problem
of (3.1)

(3.1) $u_{t}=u_{yy}+F(u)+\eta G(u)$ , $t>0,0<y<l$

has a pitch-fork type bifurcation diagram in super critical as follows.

Proposition 3.1 For sufficiently $\eta$ , there exist constants $M_{1;}M_{2}$ and a function $\sigma=$

$\sigma(r;\eta)(y)$ with $||\sigma||=O(|\eta|+r^{2})$ such that

$u(t, y)=r(t)\varphi_{1}(y)+\sigma(r(t);\eta)(y)$

with
$\dot{r}=-fll_{1}r^{3}+M_{2}r\eta+O(|\eta|^{2}+r^{4})$ .

This proposition is easily proved by a standard center manifold theory.
Hereafter, we assume both $M_{1}$ and $M_{2}$ are positive, which means a super criti-

caliy pitch-fork type bifurcation diagram occurs. In fact, there exist stable stationary

solutions $U^{\pm}(y)$ corresponding to $r_{\pm}:=\pm\sqrt{\frac{M_{2}\eta}{M_{1}}}$ for small $\eta>0$ . $U^{\pm}(y)$ are given by

$U^{\pm}(y)=r_{\pm}\phi_{1}(y)+\sigma(r_{\pm \mathrm{j}\eta)(y)=\pm\sqrt{\frac{M_{2}\eta}{M_{1}}}}\cos C_{1}y\alpha_{0}+O(|\eta|)$ .

3.2 Stability of planar solutions in 2D
In this subsection, we give the stability conditions of $U^{\pm}(y)$ as the solutions of (3.1) in
211 Let $u^{\pm}(x, y):=U^{\pm}(y)$ and Jet $\alpha^{*}(\tau)$ be the eigenvectors satisfying $t—(\tau)\alpha^{*}(\tau)=$

$\lambda_{1}(\tau)\alpha^{*}(\tau)$ and $\langle$ $\alpha(\tau)$ , $\alpha^{*}(\tau)$ $)$ $=1$ . Define $\alpha_{0}^{*}$ $:=\alpha^{*}(\tau_{0})$ . Then we have

Theorem 3.1 Let $\omega_{1}$ be the constant given by

$\omega_{1}:=\frac{1}{8}$ $\langle F’(0)\alpha_{0}. (v_{1}-b_{2}), \alpha_{0}^{*}\rangle+\frac{1}{32}$ $\langle F’(0)\alpha_{0}^{3}, \alpha_{0}^{*}\rangle$ ,

where $v_{1}$ and $b_{2}$ are unique vectors determined by

$(-4 \tau_{0}D+B)b_{2}+\frac{1}{4}F’(0)\alpha_{0}^{2}=0$, $(-2\tau_{0}D+B)v_{1}+F’(0)\alpha_{0}^{2}=0$.

If $\omega_{1}<0\{>0$) then $u^{\pm}$ are stable (unstable) as the stationary solutions in $2\mathrm{D}$
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Corollary 3.1 Assume $u=(\begin{array}{l}uv\end{array})$ $\in R^{2}$ aanndd $F(u)+\eta G(u)=(f(u)-v+\eta g(u,v)\mathit{5}(u-\gamma v))$

with $f(0)=g(0,0)=0$ and $f’(\mathrm{O})=0$ , where $\delta$ and $\gamma$ are positive constants. Then
$u^{\pm}(x, y)$ are stable (or unstable ) if $f’(0)<0$ $(or>0)$ .

Typical examples of $f$ are cubic-like functions such as $f(u)=u(1-u^{2})$ . Then
the conditions in Corollary 3.1 are easily satisfied and we find planar solutions $u^{\pm}$ are
stable.

4 Solutions of (3.1) connecting $u^{\pm}$

Define $\Sigma(r)(y):=r\phi_{1}(y)+\sigma(r;\eta)(y)$ . Then $\Sigma(r)(y)$ is invariant for the dynamics
of (3.2), that is, there exists $H(r,\cdot\uparrow?)$ such that

$H\Sigma_{r}=\mathcal{L}(\Sigma))$

where $\mathcal{L}(u):=u_{yy}+F(u)+?7G(u)$ . Proposition3.1 suggests tl at $H(r;\eta)=-M_{1}r^{3}+$

$II_{\mathit{2}}r\eta$ $+O(|\eta|^{2}+r^{4})$ holds. Especially, $U^{\pm}(y)$ are given by $\Sigma(r_{\pm}; \eta)$ .
For the eigenvalue $\lambda_{1}(\tau)$ of the matrix $\cup--(\tau)$ mentioned in Section 3.1, we may

assume

(4.1) $\lambda_{1}(\tau_{0}+\epsilon)=-\gamma_{1}\epsilon^{2}+O(\epsilon^{3})$

for positive $\gamma_{1}$ and small $\epsilon$ (Fig.3.1).
Using the above, we define approximate functions by

$u^{*}(t, x, y)$ $:=\Sigma(\sqrt{\eta}R(T, \zeta))(y)$ , $T:=\eta t$ , $\zeta:=\sqrt[4]{\eta}x$

and define constants $R\pm:=\pm\sqrt{\frac{M_{2}}{M_{1}}}$ . Then

Theorem 4.1
$u_{t}^{*}-\{D\triangle u^{*}+F(u’)+\eta G(u^{*})\}=O(|\eta|^{3/2})$

holds and $R(T, |;)$ satisfies
(4.2) $R_{T}=-\gamma_{1}R_{\zeta\zeta\zeta\zeta}+R(M_{2}-M_{1}R^{2})+O(\sqrt{\eta})$

unifo rmly for $0\leq T\leq T^{*}$ and $(x, y)\in\Omega$ , where $T^{*}$ is an arbirrarily given positive
constant.

Suppose there exists the solution, say $R_{0}(T, ()$ , of (L5), the equation (4.2) with $\eta\prec$

$0_{f}$ satisfying $R_{0}(T, \pm\infty)=R\pm for0\leq T\leq T^{*}$ . Let $u_{0}^{*}(t, x_{7}y):=\Sigma(\sqrt{\eta}R_{0}(T, \zeta))(y)$ .

If the initial date $u(0,x, y)$ is sufficiently close to $u_{0}^{*}(0, x, y)$ , then the solution of (3.1)

satisfies
$u(t, x,y)-u_{0}^{*}(t,x, y)=o(1)$

uniformly for $0\leq T\leq T^{*}$ and $(x, y)\in\Omega$ .
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Remark 4.1

$u_{0}^{*}(t, \pm\infty, y)=$ I$(\sqrt{\eta}R_{0}(T, \pm\infty))(y)=\Sigma(\sqrt{\eta}R_{\pm})(y)=$ I$(r_{\pm})(y)=U^{\pm}(y)$

holds. Ttvus, $u_{0}^{*}(t, x, y)$ is the approximate function which connects $U^{\pm}(y)$ at $xarrow\pm\infty$ .

Remark 4.2 For the symmetry of the equations (3.1) with respect to $y$ -axis, $U^{\pm}(y)$

are symmetric each other for $y=l/2$ . Hence $R_{0}(T, \langle)$ may be taken as a stationary
solution of (1.5), $say\ =R_{0}(\zeta)$ .

All coefficients mentioned hitherto such as $M_{j}$ are explicitly given though we don’t
touch on it here because of the restriction of total pages. By using such informations,
we can compare thhe approximate functions constructed here quantitatively with the
solutions of (3.1). Fig4.1 denotes the stationary solution of (3.1) connecting $U^{\pm}(y)$ (in

Figure 4.1: Solution of (3.1) connecting $U^{\pm}(y)$ .

numerical sense ), say $u_{0}(x, y)$ . Fig4.2 show $\mathrm{s}$ the graph of values of $u_{0}(x, y)$ at $y=0$ .

$x$

Figure 4.2: Graph of the edge $u_{0}(x, 0)$ .

It is quite coincident with the graph of $\sqrt{\eta}R_{0}(\sqrt[4]{\eta}x)$ .
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