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Abstract

In this paper, we report the recent development of the study of the Stokes equa-
tion with Neumann boundary condition which is obtained as a linearized equation
of the free boundary value problem for the Navier-Stokes equation. Especially, we
are concerned with the resolvent problem of the reduced Stokes equation with Neu-
mann boundary condition, the generation of the Stokes semigroup which is analytic
on the solenoidal space and the L,-Lg estimate of the Stokes semigroup both in a
bounded domain and in an exterior domain. Especially, comparing with the non-
slip boundary condition case, we have the better decay estimate for the gradient
of the semigroup in the exterior domain case because of the null net force at the
boundary.

Introduction

Let € be a bounded or an exterior domain in R (n 2 2) with boundary 9Q which is

a C»! hypersurface. The paper is concerned with the Stokes equation with Neumann
condition:

(SN)

Ou — DivT(u,m) =0 in Q, t>0
divu=0 in Q, t>0
Tu,mrv=0 on 890, t>0

Ulio =up in 0
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Here, u = (uy,-++ ,u,) and 7 are unknown velocity and pressure, respectively; v denotes
the unit outer normal to 8€2; ug is an initial velocity, and we have set

T(u,n) = D(u) — 71,
D(u) = (Dji(u))3hey,  Dyx(w) = Ou;/Oz + Our /O

Note that Div T(u,7) = Au— Vr if diva = 0.
(SN) is a linearlized problem of the free boundary value problem:

B+ (v- Vv —Av+Vg= fz,t) in Q), t>0,
V.u=0 iQt), t>0,
T(v, q)v(t) + golz, t)p(t) =0 on 8Q(t), >0,

v)s—o = vo  in £(0),

(F)

where g is an initial velocity; f(z,t) is an external mass force vector; go(, ) is a pressure;
Q(t) is occupied by the fluid which is given only on the initial time ¢ = 0, while Q(t) for
+> 0 is to be determined; v(t) is the unit outer normal to G€(t); and v(z,t) and g(z,t)
are unknown velocity and pressure in the Euler coordinate, respectively. We may assume
that go(x,t) = 0, since we can arrive at this case by replacing g(z,t) by ¢+ go.

To write the problem (F) as an initial boundary value problem in the given region
0(0) = §, we go over the Euler coordinate: z € Q(t) to the Lagrange coordinate: § € Q.
If a velocity vector field u(é,t) is known as a function of the Lagrange coordinate &, then
this connection can be written in the form

z=(4 / (e, 7) dr = Xo(£,1).

0

If we denote the inverse matrix of
6333' & au' .
I = (6 et} d
(58) = (ot ]0 6 )

Vm = A(’Ua,t)V§ = Vu.
Setting v(z,t) = u(é,t) and g(z,t) = 7(, t), we have

by A(u,t), then

B — Agu + Vo = f(Xu(6,t),t) in £, 1>0,
divyu =0 in Q,t>0,
Tu(u, )y =0 on 98, t >0,
ulimo = ug  in £,

where Ay = Ve - Vo, and divyu = Ve - 2.
If u(£,¢t) is small then A(u,t)=1+B (u,t), and then we have

Vy=Ve+ B(’LL, t)Vg,
A.u = Vu . V,u = Ag -i- C(u,t)Vg + D(U,t)Vg.
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Therefore, we obtain

[ Oyu— Au+ V7 = —p(A — Ay)u
+ (V= Vo )r+ f(Xu(&2),t) inQ, t>0
Jdivu:(V—Vu)-u inQ, t>0
T(u, m)v = (Tv — Tyvy)(u,7) on €, t >0
[ Uli=0 = ug in Q.

From this we see that the linearized equation of (F) is (SN).

Our final goal is to prove a globally in time existence of solutions of (F) for arbitrary
small initial data by using the analytic semigroup approach. To do this, we have the
following

—- Plan of Analysis —

1° Analysis of the resolvent problem corresponding to (SN).
2° Analytic semigroup approach to (SN).

3° L, — L, estimate of (SN).

4° Maximal regularity of (SN).

So far, we finished 1°, 2° and 3°. In this paper, we report the results about 1°, 2° and 3°,
below.

The free boundary value problem (F) was already solved by Solonnikov [15] in the
bounded domain case. The linear problem (SN) was already studied by using the theory
of pseudo-differential operators with parameter (cf. Grubb and Solonnikov [9] and Grubb
[7] and [8]). Our approach is completely different from [15], [9], [7] and [8].

2 Analysis of the resolvent problem to (SN).
The corresponding resolvent problem to (SN) is:

Mu— A _ =0
(2.1) {u u+Vr=Ff divu=0 inQ

T(’U., W)Vlagz =0.
As the space for the pressure, we set

WHQ) = {7 € Lypoo() | Vi € Ly(2)"}
Xp(Q) = {m € W) | |7lly, ) < 00-
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When Q is a bounded domain, |||, o = |7, and W3 (Q) = X,(). When Q is an
exterior domain, ’
Il = IV7llLy@ + 7/ dll @ n<p<oo
0 = [Vl + Ir/dlie + i o 1<p<n

i) = {2+|x| p#n
2+ ]|z log(2 + |5]) p=n.

Concerning (SN), we have the following theorem proved by Shibata and Shimizu [14],
which is the base of our analytic semigroup approach to (SN}.

Theorem 2.1. Let 1 <p<oo,0<e<n/2 andd > 0. We set
B, = {AeC\ {0} | |arg A £ 7= .

For every A € &, and f € L,(Q))", there exists a unique solution (u,7) € W2(Q)" x Xp(Q)
of (1). Moreover, the (u,T) satisfies the estimate:

Ay + 12 gy + 17l S Ceill Fllzyian

for any X € L, with |A| 2 4.

3 Analytic semigroup approach to (SN).

In order to formulate (SN) in the analytic semigroup framework, first of all we have to
introduce the Helmholtz decomposition:

Ly(Q)" = J(92) & Gp(2)
where we have set
J(Q) ={ve L) |V-u=0 in}

Gp(Q) = {Vr | 7 € X,()}
XP(Q’) ={m € Xp(Q) | 7|5 = 0}.

To prove the Helmholtz decomposition and also the unique solvability of the Laplace
equation with Dirichlet condition, we use the following theorem which is proved by letting
A — oo in (2.1) and using Theorem 2.1.

Lemma 3.1. (A) Given f € L(Q)", there exist unique g € J,(§2) and 7 € X,(9) such
that f = g+ Vm in Q.

(B) If m € WL(Q) satisfies Ar =0 in Q and 7|, = 0, then m = 0.
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(C) Given h € Wp 2/P(8%)), there exists a € X, () which solves the equation:
Ar=0 inQ, 7nisg=nh.

Let P, : L(Q)" — J,(£2) be the Solenoidal projection, and then there exists a unique
€ X,(Q) such that f = P,f + V. Inserting this formula into (2.1) and noting that
0laa = 0, (2.1) is reduced to the equation:

M —Au+V(r—-8)=F,f, divu=0 inQ,
T(u,m —6)v],, =0.
Therefore we consider (2.1) for f € J,(2), below.

Now, we shall introduce the reduced Stokes equation corresponding to (2.1). Given
F € (), let (u,m) € W2(Y)"™ x X,(2) be a solution of the equation:

M—Au+Vr=f V.-u=0inQ
(T, m))ilog = > v (Ojui + Oug) — viml,g =0 (i =1,...,m),
§=1 :

where (T(u,7)v); denotes the i-th component of the n-vector T(u,7)v. Applying the
divergence to the first equation implies that An = 0 in . Multiplying the boundary
condition by »; and using ¥ i , 7 =1 on 89 and divu = 0 in Q, we have

Tlon = Y viviDyg(u) = divu gy,

1, f=1

In view of Lemma 3.1, there exists a solution operator K : W, ~ip 0" = X,(9)
associated with the equation:

AK(u)=0in 9, K(u)l,, = Z viviDij(u) — divu|,,

ig=1

such that there holds the estimate:

K ()l = Ci"“u”w;—””wm'.

Using the operator K, we see that when f € J,(2), the problem:
MM—~Au+Vr=f V.u=0inQ
> v (Oyus + Buy) — vy, =0 (i=1,...,m)
j=1

is equivalent to the reduced Stokes resolvent problem

(3.1) A—~Au+ VK@) =f inQ
T(u, K(u))v|,, =0.
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The reason why we insert divu into the boundary condition is to prove that the solution
u of (3.1) satisfles the condition: divu = 0 in Q. Theorem 2.1 implies the following
theorem immediately.

Theorem 3.2. Let 1 <p<oo,0<e<7w/2 and§ >0. Given A € &, and f € L,(Q)",
(3.1) admits a unique solution u € W2(Q)" satisfying the estimate:

RYICH P Y

VV;‘)’Z(Q) § Ce,rs,pH f ”Lp(ﬂ)
for any A € &, with [A| 2 6.
Let us define the reduced Stokes operator A, by the relations:

Ayu = —Au+ VK(u) foru € D(A)
D(Ay) = {u € (@) NWEQ) | T(u, K(w)vl,, = 0}

Then (3.1) is formulated as du + Apu = f in Q and u € D(4,). Letting A — oo in (3.1),
by Theorem 3.2 we obtain the following lemma.

Lemma 3.3. Let 1 < p < oo. Then, A, is a densely defined closed operator.
Combining Theorem 3.2 and Lemma 3.3, we obtain the following theorem.

Theorem 3.4. Let 1 < p < co. Then, A, generates an analytic semigroup {T (t)}izo on
Jp(€2).

Moreover, we can also prove the following theorem concerning the dual space and the
adjoint operator.

Theorem 3.5. Let 1 < p< oo andp = p/(p—1). Then, Jp(Q)* = Jp(2) and A, = Ay.

4 L, L, estimate of (SN).
4.1 The bounded domain case.
Let © be a C?! - class bounded domain in R™ (n 2 2). Let us set
R ={Az+b| Ais an anti-symmetric matrix and b € R"}.

Let p1,-- ,pm (M = n(n —1)/2 + n) be the orthogonal bases of R in  such that
(pj,pr)a = 85 Let us set '

Lo(Q) = {u € Ly(QQ" | (w,px)a =0, k=1,...,M}.

Then, we have the following exponential stability of the semigroup {T(t)}t0 in the
bounded domain case.
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Theorem 4.1. Given any f € J,(Q) N L,(€), we have

. ~nfi_1Y_4d
IV Tl S Cpae™ 2701,

for1SpS gl oo (p#o0,g#1),t>0andj =01, where c = cpq s a positive
constant. '

To prove this theorem, the key is the solvability of the following problem:
(4.1) —-DivT(u,n) = f, divu=0 in Q
T(u, m)v|,q = g.
In fact, we have the following theorem concerning this equation.

Theorem 4.2. Let 1 < p < oo. Given f € L,(Q)" and g € WQ‘”*’(@Q)% satisfying the
condition:

(f,pj)g-f*(g,joj)an:(), jzla"'aMa
(4.1) admits a unique solution
(u,m) € (W2(Q)" N Ly(Q)) x WHS).
Combining this theorem with Theorem 3.2, we have the following theorem.

Theorem 4.3. Let 1 < p < o0 and 0 < € < 7/2. Then, there exists a o > 0 such that
given f € L,(Q) N L,(Q) and A € L. U{A e C| [N £ o}, we have

A A Ap) T Fll o + N+ AT S Coll /]

wi(o) = Lp()”

By Theorem 4.3, we have immediately

(4.2) T, S Coe 5| ], §=0,2

wi@) =
By using the complex interpolation:
(Lp(), Wy (Q))e = W (), 0=35/2
the real interpolation:
[Lo(0), Wy (@))o1 = By (Q), 6=n/2p
the embedding theorems:

W) € L), s=n (32 (@#o0)

P q
B () C Leo()

semigroup property: T'(t)f = T(t/2)T(t/2)f and the dual argument, we can show Theo-
rem 4.1 from (4.2).
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4.2 The exterior domain case.

Let © be an exterior domain in R” (n = 3), whose boundary 9 is a C?! hypersurface.
Then, we have the following theorem. :

Theorem 4.4.
(4.3) IO oo S Coat™ EE 1S

for1§p§q§oo(p;éoo,q#l),t>0andf€,]p(ﬂ), and

(4.4) VTl < Crat” 253 fll ey

for 1<p<gS oo (pAoo, g#1),t>0 and f € J(S).

Remark 4.5. If we consider the non-slip boundary condition u|,, = 0 instead of the
Neumann boundary condition, to obtain (4.4) we have to assume that 1 <p<gsn

(g#1) (cf. [10]; 11}, [13], (3], [4] and [5)).

5 A Sketch of Proof of Theorem 4.4

5.1 1st step. Construction of a solution operator R()).
The following theorem is concerned with the solution operator to (2.1).

Theorem 5.1. Let 1 < p £ g £ oo and set
Lyr(Q) = {f € L()" | f(z) =0 =« & Br}.

Then, there exists an € > 0 and an operator R(A) = (Ro(X), Ra(N)) for A € U ={)\¢€
C\ (—00,0] | || < €} having the following properties:

(1) If we set u = Ro(A)f and 7 = Ri(\)f, then (u,m) solves the problem:
M~ DivT(u,n) = f, divu=0 in{, T(u,7)vl,q =0.

(2) There holds the relation: Ro(A)f = (A -+ A)7 Bpf for any A € U, and f € Ly ().
(3) There holds the estimate:

[Bo() flzatr S Cra TG0

for1<p<qS oo, Me U, and f € Ly r(R).

(4) There holds the estimate:

[9Ro() S Nzyiy S GolAT™ T 70

for A€ U, and f € Ly ().
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(5) There holds the ezpansion formula:
R(\) = A% 1(log \)*™ Hy + A2 72 Hi(N) + Ha(N)
for A € U, on Qp = QN Bpg,
where

o(n) =1 (n 2 4,even),o(n) =0 (n 2 3, 0dd);
Hy € L(Lyp(S0), W2 (Qr)" x Wy (2a));
Hi(\) € BA(U., L(Lyr(), W2(Qr)" x W, (Q&)));
Hy(A) € BA(Ue, L(Ly p(2), W2 (QR)" x W, (QR)));
Us={d e C||A <¢},
and BA(U, W) is the set of all bounded analytic functions on U with their values in W.

Using Theorem 5.1, we can show (4.3) and also (4.4) under the assumption: 1 Sp £
g £n(g# 1) in Theorem 4.4. To prove Theorem 5.1, we use the solution operator
(E\,II) of the Stokes resolvent equation in R™, which gives the solutions u = E)f and
7w = IIf of the equation:

A=-Au+Vr=f divu=0inR"

Since E, f is given by the modified Bessel function of order (n—2)/2, applying the Young
inequality we have

(5.1) V9 Exfll my S CoalANEG™E 2 £, oo

for 1 <pS g oo (poo,q71), A€ T = {Ae C\{0} | |\ S m—e} and f € L,(R").
By using the expansion formula of the modified Bessel function near the origin, we have

(5.2) By = A" (log ™G, () f + Go(N)f in Bg
for f € Lpr(R") and A € U%, where
G;(A) € BA(Uy, L(Lypr(R"), Wy (Bg)))-

And also, we use the solution operator (A4, B) which gives solutions v = Af and = = Bf
of the interior problem:

—DivT{u,n)=f, diveu =0 in Qp
T{u, m)v|sq =0
T, m)snls, = T(Eofo, Tfo)ols,

where vy = z/|z|, Sg = {|z] = R}, Qp = QN Bg, 8Qr = 00U SR, fo = f (z € Q) and
fo =0 (z ¢ Q). Since there holds the compatibility condition:

(fapa‘)aR + (T(Eufmﬂfo)l’a,pj)sR =0
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for j =1,...,M, we can find A and B. Moreover, since D(p;) = 0 and divp; = 0, we
may assume that

(Af - EOfGapj)aR =0,j=1,..., M.
To define our parametrix for (2.1), we choose a cut-off function ¢ in such a way that
00 <1, p@)=1(a] SR-2), ¢(&)=0 (a2 R-1)

where R is a number such that Br O Q°. As the parametrix for (2.1), we set

&,f = (1—@)Exsfo+ @Al +B(Ve)(ErSf — Af)]
Uf=(1-9fo+¢Bf

where B is the usual Bogovskil operator (cf. [1], [2], [12], [6]). Then, there exists a
compact operator Ty of Ly g(£2) such that

)\@)\f - DiVT(@,\fo, \I’f) = (I + T).)f, div @,\f =0in
T(thv \ij)l/]an = 0.

The uniqueness of the solution to the homogeneous equation:
~DivT(u,m) =0, dive=0in Q, T(y,mv|,, =0
in the class of functions satisfying the radiation condition:

u(z) = O(fal "), Vu(s) = Oz
(@) = O(lal ") s |a| = oo,

and Fredholm’s alternative theorem imply the existence of the inverse operator:
(I +Ty)" € BA(U., L(Ly r()))-
Therefore, we can define R(A) by the relations:
Ro(N) = &,(I + 1o)™Y, Ru(N) =¥(I+Ty)7"

By this, (5.1) and (5.2), we can show Theorem 5.1.

5.2 2nd step. Modification of R(}).

By using the special structure of Neumann boundary condition, we modify R(}) to prove
Theorem 4.4, especially (4.4). In order to do this, we use the following reduction: Given
f € Ly(Q), let u and 7 be solutions to the resolvent problem:

M —DivT(u,m) = f, divu=0inQ
T(u, )|, = 0.
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We set
u=FE\fo+vand w=1If; + 6.

Then, v and 7 enjoy the equation:

A —DivT(v,60) =0, divv=0in
T(U>9)V}an = —T(E)\fo,ﬂfo)Vlm-

Since
(T(E)\fmﬂf())yipj)an = “(DiVT(E)\fG:HfU%pj)Qc - _(AEAfO?pj)QC
for j =1,..., M, there exists (w, T) which solves the equation:
Mw — DivT{(w,7) =g, divw =20 in Qp
T(’LU, T)V'an = ~T(E fo, Hfg)lllm
T(w,T)VolsR =0,
where
M
gx = Z(AEAf():pj)ncpj‘
=1
We set

v=opw+z—B[(V-p)w] and § = o1 + w,

and then z and w enjoy the equation:
Az = DivT(z,w) = hy, diva=0inQ, T(z,w)v|,, =0,
where

hy = =gy +2(Ve) : Vw + (Ap)w
— AB[(Vyp) - w] + DivD(B[(Vy) - w]) — (V).

We can divide h, into two parts : hy = h} + AhZ, where

supph, C Dpgp1={z e R"|R—2% lz| £ R—1}
(Brpi)en =0, 5=1,..., M.

Finally, we set
z2=2"+ ARo(M)R: and w = w' + AR (M)A,

and then z' and w! enjoy the equation:
Azt =DivT(z,w') =k}, dive =0 in ©, T(2*,w')v|,, =0.
Now, let us set

7= {f € LP(RH) I S‘Llppf - DR-—2,R—17 (f?pj)nan =0 (.? = 1) v )M)}
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Since h} € Z, we consider the problem :
M — DivT(u,m) = f, dive=0 in Q
T(U,'ﬂ')l/]m =0
with f € Z. Recall that
)\@,\f— Div T(‘I)Afg, \I’f) = (I + T)\)f, div ‘I))\f =0 in
T(@5f, Uf)V|oq = 0.
The point is that we can divide T} into two parts: T) = Ay + AB,, where

A i1s a compact operator on Z;

1Axf ~ Aofll,, < CIAM2| £,
B, is a bounded operator from Z into Ly r(£2).

Therefore, if we set
Usf =0 f - )\RO(A)BAf
O,f =Uf — AR;(M)B\rf
then we see that

AULf — DivT(Usf,O5f) = f + Arf, divUyf =0 in Q
T(U,\f, @,\f)l/l(,m =0.

By using the uniqueness of the solution to the Stokes equation with Neumann boundary
condition and the Fredholm alternative theorem, we can show that there exists an € > 0
such that

(I+ A~ € BA(U.,L(T)).

From these consideration, by using not only (5.1) and Theorem 5.1 but also the relation:
Exf=X(og )G NS+ G(N)f [el

on By with some G| (\) € BA(Uy /2, L(Z, W2(Bg)" x W, (Br))), we can show the following
proposition.

Proposition 5.2. There ezist operators Y()) and Z(\) such that for any f € Ly(€2)"
A+ AR =YNf+Z(Nf, xeZnUe
YOl ey S Coa MEG
IVY (V) S Cod MEETD 73 £,
foranyl<p<qS oo (p#00), A€ U and
Z(Nf € BA(U., L(Lp(Q), W5(9))), suppZ(N)f C Br.
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If we write

T f = — /P I / Y (V) + Z(\)F dA

2m Iy

where

Iy = {se*® | e £ 5 < 00}, g<90<7r, Ty = {ee? | 0, £ 6 <6},

then by Proposition 5.2 and Theorem 3.2 we can show Theorem 4.4.

References

[1]

M. E. Bogovskil, Solution of the first boundary value problem for the equation of
continuity of an incompressible medium , Dokl. Acad. Nauk. SSSR 248, 1037-1049
(1979). ; English transl: Soviet Math. Dokl. 20, 1094-1098 (1979).

, Solution of some vector analysis problems connected with operators div
and grad Trudy Seminar S. L. Sobolev # 1. 80 Akademia Nauk SSSR. Sibirskoe
Otdelnie Matematik, Nowosibirsk in Russian, 5-40 (1980).

W. Dan and Y. Shibata, On the L, - L, estimates of the Stokes semigroup in a two
dimensional ezterior domain, J. Math. Soc. Japan 51, 181-207 (1999).

and , Remark on the Lg-Loo estimate of the Stokes semigroup in a
2-dimensional exterior domain, Pacific J. Math. 189, 223-240 (1999).

W. Dan, T. Kobayashi and Y. Shibata, On the local energy decay approach to some
fluid flow in exterior domain, Recent Topics on Mathematical Theory of Viscous
Incompressible Fluid, 1-51, Lecture Notes Numer. Appl. Math. 16, Kinokuniya,
Tokyo, 1998.

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions, Vol I: Linearized Steady Problems, Springer Tracts in Natural Philosophy, Vol
38, 1994, Springer-Verlag, New York Berlin Heidelberg.

G. Grubb, Parameter-elliptic and parabolic pseudodifferential boundary problems in
global Ly, Sobolev spaces, Math. Z. 218, 43-90 (1995).

, Nonhomogeneous time-dependent Navier-Stokes problems in L, Sobolev
spaces, Differential Integtral Equations, 8, 1013-1046 (1995).

G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary
Navier-Stokes equations treated by pseudo-differential method , Math. Scand. 69, 217-
290 (1991).



93

[10] H. Iwashita, L,-L, estimates for solutions of the nonstationary Stokes equations in
an exzterior domain and the Navier-Stokes initial value problems in L, spaces, Math.
Ann. 285, pp. 265-288 (1989).

[11] P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in ezterior
domains, Ann. Sc. Norm. Sup. Pisa 24, 395-449 (1997).

12] K. Pileckas, On spaces of solenoidal vectors Trudy Mat. Inst. Steklov 159, 137-149
3
(1983); English transl: Steklov Math. Inst. 159, 141-154 (1984).

[13] Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equa-
tions, Quart. Appl. Math. LVII, 117-155 (1999).

[14] Y. Shibata and S. Shimizu, On a resolvent estimate for the Stokes system with
Neumann boundary condition, Differential Integtral Equations 16 (2003), 385-426.

[15] V. A. Solonnikov, On the transient motion of an isolated volume of viscous incom-
pressible fluid, Math. USSR Izvestiya 31, 381-405 (1988).



