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Abstract

We present an $O(n^{3})$ -time approximation algorithm for the maximum $\mathrm{t}\mathrm{t}$ aveling salesnlan
problem whose approximation ratio is asymptotically $\frac{61}{81}j\mathrm{w}\mathrm{h}\mathrm{e}1^{\backslash }\mathrm{e}n$ is the number of vertices
in the input complete edge-weighted (undirected) graph We also present an $O(n^{3})$ time
approximation $\mathrm{a}1\mathrm{g}\mathrm{o}\mathrm{r}^{}1\mathrm{t}\mathrm{h}\mathrm{m}$ for the metric case of the problem whose approximation ratio is
asymptotically $\frac{17}{20}$ . Both algorithms improve on the previous bests.

1 Introduction

The maximum traveling salesman problem $({\rm Max} \mathrm{T}\mathrm{S}\mathrm{P})$ is to compute a maximum-weight Hamil-
tonian circuit (called a tour) in a given complete edge-weighted (undirected) graph. The problem
is known to be ${\rm Max}- \mathrm{S}\mathrm{N}\mathrm{P}- \mathrm{h}\mathrm{a}\mathrm{r}\mathrm{d}[1]$ and there have been a number of approximation algorithms
known for it [4, 5, 10]. In 1984, Serdyukov [10] gave an $O(n^{3})$-time approximation agorithm
for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ that achieves an approximation ratio of $\frac{3}{4}$ . Serdyukov’s algorithm is very sim-
ple and elegant, and it tempts one to ask if a better approximation ratio can be achieved for
${\rm Max}$ TSP by a polynomial-time approximation algorithm. However, previous to our work, there
was no (deterministic) polynomial-time algorithm with an approximation ratio better than $3\tilde{4}$ .
Interestingly, Hassin and Rubinstein [5] showed that with the help of randomization, a better
approximation ratio for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ can be achieved. More precisely, they gave a randomized
$O(n^{3})$-time approximation algorithm (H&R-algorithm) for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ whose expected $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}o\mathrm{x}\mathrm{i}\sim$

$\mathrm{m}$ ation ratio is asymptotically $\frac{25}{33}$ . The expected approximation ratio $\frac{25}{33}$ of H&R-algorithm does
not guarantee that with (reasonably) high probability (say, a constant), the weight of its output
tour is at least $\frac{\underline{\mathrm{o}}5}{33}$ times the optimal, So, it is much more desirable to $\mathrm{h}.\mathrm{a}$

$\mathrm{v}\mathrm{e}$ $\mathrm{a}$ (deterministic.)
approximation algorithm for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ that achieves an approximation ratio better than $\frac{3}{4}$ (and

runs at least as fast as Serdyukov’s algorilhm). In this paper, we give the first such (deter-
ministic) approximation algorithm for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ ; its approximation ratio is asymptotically $\frac{61}{81}$

and its running time is 0 $(n^{3})$ . While this improvement is small (as Hassin and Rubinstein said
about their algorithm), it at least demonstrates that the ratio of $\frac{3}{4}$ can be improved and further
research along this line is encouraged. Our agorithm is basically a nontrivial derandomization
of H&R-algorithm
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We \’il0te in passing that Chen and Wang [3] have recently improved $\mathrm{H}\ \mathrm{R}-\dot{\mathrm{c}}\iota \mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ to $\mathrm{a}$

randomized $O(n^{3})$-time approximation algorithm whose expected approximation ratio is asymp-
totic.ally $\frac{251}{331}$ . Their new algorithm is complicated and even more difficult to derandomize.

The $metr\dot{\iota}c$ case of ${\rm Max}$ $\mathrm{T}\mathrm{S}\mathrm{P}$ has also been considered in the literature. In this case, the
weights on the edges of the input graph obey the triangle inequality. What is known for this
case is very similar to that for ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$. In $1985_{2}$ Kostochka and Serdyukov [$8\mathrm{J}$ gave an $O(n^{3})$ -

time approximation algorithm for metric ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ that achieves an approximation ratio of $\frac{5}{6}$ .
Their algorithm is very simple and elegant. Tempted by improving the ratio $\frac{5}{6}$ , Hassin and
$\mathrm{R}\mathrm{u}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{i}_{\Gamma 1}[6]$ gave a randomized $O(n^{3})$ -time approximation algorithm (H&R2-a1gorithm) for
metric ${\rm Max}$ $\mathrm{T}\mathrm{S}\mathrm{P}$ whose expected approximation ratio is asymptotically $\frac{7}{8}$ . In this $\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}_{r}$ by non-
trivially derandomizing H&R2-a1gorithm, we give $\mathrm{a}$ (deterministic) $O(n^{3})$ -time approximation
algorithm for metric ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ whose approximation ratio is asymptotically $\frac{17}{20}$ , an improvement
over the previous best ratio (namely, $\frac{5}{6}$ ). Our algorithm also has the advantage of being easy to
parallelize.

2 Basic Definitions

Throughout this paper, a graph means a simple undirected graph ( $\mathrm{i}.\mathrm{e}.,$ it $\mathrm{I}_{1}\mathrm{a}\mathrm{s}$ neither parallel
edges nor self-loops), while a multigraph may have parallel edges but no self-loops.

Let $G$ be a graph. We denote the vertex set of $G$ by $V(G)$ , and denote the edge set of $G$ by
$E(G)$ . The degree of a vertex $v$ in $G$ is the number of edges incident to $v$ in $G$ . A cycle in $G$ is
a connected subgraph of $G$ in which each vertex is of degree 2. A path in $G$ is either a single
vertex of $G$ or a connected subgraph of $G$ in which exactly two vertices are of degree 1 and the
others are of degree 2. The length of a cycle or path $C$ is the number of edges in $C$ . A tour (also
called a Hamiltonian cycle) of $G$ is a cycle $C$ of $G$ with $V(C)=V(G)$ . A cycle cover of $G$ is $\mathrm{a}$

subgraph $H$ of $G$ with $V(H)$ $=V(G)$ in which each vertex is of degree 2. A subtour of $G$ is $\mathrm{a}$

subgraph $H$ of $G$ in which each connected component is a path. Two edges of $G$ are adjacent
if they share an endpoint, A matching of $G$ is $\mathrm{a}$ (possibly empty) set of pairwise nonadjacent
edges of $G$ . A perfect matching of $G$ is a matching $M$ of $G$ such that each vertex of $G$ is an
endpoint of an edge in $M$ . For a subset $F$ of $E(G)$ , $G-F$ denotes the graph obtained from $G$

by deleting the edges in $F$ .
Throughout the rest of the paper, fix an instance $(G, w)$ of ${\rm Max} \mathrm{T}\mathrm{S}\mathrm{P}$ , where $G$ is a complete

(undirected) graph and $w$ is a function mapping each edge $e$ of $G$ to a nonnegative real number
$w(e)$ . For a subset $F$ of $E(G)$ , $w(F)$ denotes $\sum_{e\in F}w(e)$ . The weight of a subgraph $H$ of $G$

is $w(H)=w\{E(H))$ . Our goal is to compute a tour of large weight in $G$ . We assume that
$n=|V(G)|$ is odd; the case where $n$ is even is simpler. For a random event $A$ , $\mathrm{P}\mathrm{r}[A]$ denotes
the probability that $A$ occurs. For a random variable $X$ , $\mathcal{E}[X]$ denotes the expected value of $X$ .

3 Algorithm for ${\rm Max}$ TSP

3.1 Sketch of H&R-algorithm

H&R-algorithm starts by computing a maximum-weight cycle cover C. If $\mathrm{C}$ is a tour of $G$ , then
we are done. Throughout the rest of this section, we assume that $\mathrm{C}$ is not a tour of $G$ . Suppose
that $T$ is a maximum-weight tour of $G$ . Let $T_{\mathrm{i}\mathrm{n}\mathrm{t}}$ denote the set of all edges $\{u, v\}$ of $T$ such that
some cycle $C$ in $\mathrm{C}$ contains both $u$ and $v$ . Let $T_{\mathrm{e}\mathrm{x}\mathrm{t}}$ denote the set of edges in $T$ but not in $T_{\mathrm{i}\mathrm{n}\mathrm{t}}$ .
Let $\alpha=w(T_{\mathrm{i}\mathrm{n}\mathrm{t}})/w(T)$ .

H&R-algorithm then computes three tours $T_{1}$ , $T_{2}$ , $T_{3}$ of $G$ and outputs the one of the largest
weight. Based on an idea in [4], $T_{1}$ is computed by modifying the cycles in $\mathrm{C}$ as follows. Fix a
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parameter $\epsilon>0$ . For each cycle $C$ in $\mathrm{C}$ , $\mathrm{i}\mathrm{f}|E(C)|>\epsilon^{-1}$ , then remove the minimum-weight edge;
otherwise, replace $C$ by a maximum-weight path $P$ in $G$ with $V(P)=V(C)$ . Then, $\mathrm{C}$ becomes
a subtour and we can extend it to a tour $T_{1}$ in an arbitrary way. As observed by Hassin and
Rubinstein [5]

$)$
we have:

Fact 3.1 $w(T_{1})$ $\geq(1-\epsilon)w(T_{\mathrm{i}\mathrm{n}\mathrm{t}})=(1-\epsilon)\alpha w(T)$ .

When $w(T_{\mathrm{e}\mathrm{x}\mathrm{t}})$ is large, $w(T_{\mathrm{i}\mathrm{n}\mathrm{t}})$ is small and $w(T_{1})$ may be small, too. The two tours $T_{2}$ and
$T_{3}$ together are aimed at the case where $w(T_{\mathrm{e}3\mathrm{f}\mathrm{t}})$ is large. By modifying Serdyukov’s algorithm,
$T_{2}$ and $T_{3}$ are computed as follows:

1. Compute a maximum-weight matching $M$ in $G$ .
2. Compute a maximum-weight matching $M’$ in a graph $H$ , where $V(H)$ $=V(G)$ and $E(H)$

consists of those $\{u, v\}\in E(G)$ such that $u$ and $v$ belong to different cycles in C.
3. Let $C_{1}$ , $\ldots$ , $C_{r}$ be an arbitrary ordering of the cycles in C.
4. Initialize a set $N$ to be empty.
5. For $\mathrm{i}=1,2$ , $\ldots$ , $r$ (in this order), perform the following two steps:

(a) Compute two disjoint nonempty matchings $A_{1}$ and $A_{2}$ in $C_{i}$ such that each vertex
of $C_{i}$ is incident to an edge in $A_{1}\cup A_{2}$ and both graphs $(V(G), M\cup N\cup A_{1})$ and
$(V(G), M\cup N\cup A_{2})$ are subtours of $G$ .

(b) Select $h\in\{1,2\}$ uniformly at random, and add the edges in $A_{h}$ to $N$ .

6. Complete the graph $(V(G), M\cup N)$ to a tour $T_{2}$ of $G$ by adding some edges of $G$ .
7. Let $M’$ be the set of all edges $\{u, v\}\in M’$ such that both $u$ and $v$ are of degree at most 1 in

$\mathrm{C}-N$ . Let $G”$ be the graph obtained from $\mathrm{C}$ $-N$ by adding the edges in $M’$ . (Comment:
For each edge $\{u, v\}$ $\in M’$ , $\mathrm{P}\mathrm{r}[\{uv\}\}\in M’]\geq\frac{1}{4}$ . So, $\mathcal{E}[w(M’)]\geq w(M’)/4$ . Moreover, $G’$

isacollection of vertex-disjoint cycles and $\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{h}_{\mathrm{S}_{\}}}$
. each cycle in $G”$ must contain at least

two edges in $M’$ . )
8. For each cycle $C$ in $G’$ , select one edge in $E(C)\cap M’$ uniformly at random and delete it

from $G”$ . (Comment: After this step, $\mathrm{P}\mathrm{r}[\{u, v\}\in E(G’)]$ $\geq\frac{1}{8}$ for each edge $\{u, v\}\in M’$ ,
and hence $\mathcal{E}[w(M’\cap E(G’))]\geq w(M’)/8.)$

9. Complete $G’$ to a tour $T_{3}$ of $G$ by adding some edges of $G$ .

3.2 Derandomization of H&R-algorithm

For clarity, we transform each edge $\{u, v\}\in M’$ to an ordered pair $\langle$ $u$ , $v)$ , where the cycle $C_{l}$ in
$\mathrm{C}$ with $u\in V(C:)$ and the $\mathrm{c}\mathrm{y}_{\mathrm{C}1\mathrm{e}C}j$ in $\mathrm{C}$ with $v\in V(C_{J})$ satisfy $\mathrm{i}>j$ . To derandomize Step 5 in
H&R-algorithm, we replace Steps 4 and 5 in H&R-algorithm by the following four steps:

4’. For each $h\in\{1, \ldots , 5\}$ , initialize a set $N_{h}$ to be empty.
5’. For $\mathrm{i}=1,2$ , $\ldots$ , $r$ (in this order), process $C_{i}$ by performing the following two steps:

$(\mathrm{a}^{\mathit{1}})$ Compute five subsets $A_{1,7}\ldots A_{5}$ of $E(C_{i})-M$ satisfying the following four conditions:

(C1) For each $h\in\{1$ , $\ldots$ : 5 $\}$ , $A_{h}\neq\emptyset$ .
(C2) For each $h\in\{1$ , $\ldots$ , 5 $\}$ , $A_{h}\cap(M\cup Nh)=\emptyset$ and the graph $(V(G), M\cup N_{h}\cup A_{h})$

is a subtour of $G$ .
(C3) Each vertex of $C_{i}$ is an endpoint of at least one edge in $\bigcup_{1\leq j\leq 5}A_{\mathrm{J}}$ .

(C4) $w(S_{i})\geq w(M_{i}’)/2$ , where $M_{i}’$ is the set of all edges $(u, v)\in M’$ such that
$u\in V(C:)$ and $v \in\bigcup_{1\leq j<i-1}V(Cj)$ , and $S_{i}$ is the set of all edges $(u, v)$ $\in M_{i}’$

such that for at least one $-h\in\{1\ldots, 5\}\}$
’

$N_{h}$ contains an edge incident to $v$ and
$A_{h}$ contains an edge incident to $u$ .
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$(\mathrm{b}’)$ For each $h\in\{1_{1}\ldots, 5\}$ , add the edges in $A_{h}$ to $N_{h}$ .

6’. For each $h\in\{1, \ldots , 5\}$ , let $M_{l\iota}’$ be the set of all edges $(\mathrm{w}, v)\in \mathrm{J}/I’$ such that $N_{h}$ contains
an edge incident to $u$ and another edge incident to $v$ . (Comment: By Condition (C4),
$w( \bigcup_{1\leq h\leq 5}M_{h}’)\geq w(M’)/\underline{9}.)$

7’. Let $N$ be the $N_{h}$ with $h\in\{1$ , $\ldots$ , 5 $\}$ such that $w(M_{h}^{\prime/})$ is the maximum amoxg $w(M_{1}’’)$ , $\ldots$ , $w(M_{5}’)$ .
(Comment: By the comment on Step $6’$ , $w(M_{h}’’)$ $\geq w$ ($M’)/10.$ )

The details of computing $A_{1}$ , $\ldots$ , $A_{5}$ are complicated and are omitted here for lack of space.

Lemma 3.2 After Step $5’$ , $M\cap N_{h}=\emptyset$ and $(V(G), M\cup N_{h})$ is a subtour of $G$ for each $h\in$

$\{$ 1, $\ldots$ , $5\}$ , and $N_{h}$ contains at least one edge of $C_{i}$ for each $h\in\{1, \ldots , 5\}$ and for each cycle $C_{i}$

in C.

To derandomize Step 8 in $\mathrm{H}\ \mathrm{R}- \mathrm{a}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}_{7}$ it suffices to replace it by the following two steps:

8’. Com pute two disjoint subsets $D_{1}$ and $D_{2}$ of $M’$ such that $D_{1}$ contains exactly one edge
from each cycle in $G’$ and so does $D_{2}$ .

9’. If $w(D_{1})$ $\leq w(D_{2})$ , then remove the edges in $D_{1}$ from $G’$ ; otherwise, remove the edges in
$D_{2}$ from $G’$ .

Lemma 3.3 Let $\delta w(T)$ be the total weight of edges in N. Then, $w(T_{2})\geq\{0.5$ $- \frac{1}{2n}+\delta)w(T)$ ,
and either $w(T_{3}) \geq((1-\delta)+\frac{1}{40}(1-\alpha))w(T)$ or $w(T_{3}) \geq(1-\delta +\frac{1}{40}-\frac{1}{40n})w(T)$ .

Theorem 3.4 For anyfixed $\epsilon>0$ , there is an $O(n^{3})$ -time approximation algorithm for ${\rm Max}$ TSP
achieving an approximation ratio of $(61- \frac{20}{n})$ . $\frac{1-\epsilon}{81-80\epsilon}$ .

4 Algorithm for Metric ${\rm Max}$ TSP

Let $(G, w)$ be as in Section 2. Here, $w$ satisfies the following triangle inequality: For every three
vertices $x$ , $y$ , $z$ of $G$ , $w(x_{2}y)\leq w(x, z)+w(z, y)$ . Then, we have the following useful fact:

Fact 4.1 Suppose that $P_{1}$ , $\ldots$ , $P_{t}$ are vertex-disjoint paths in $G$ each containing at least one
edge For each $1\leq \mathrm{i}\leq t$ , let $u_{i}$ and $v_{i}$ be the endpoints of $P_{i}$ . Then, we can use some edges
of $G$ to connect $P_{1}$ , . . ’

$P_{t}$ into a single cycle $C$ in linear time such that $w(C) \geq\sum_{i=1}^{t}w(P_{i})+$

$\frac{1}{2}\sum_{i=1}^{t}w(\{u_{i}, v_{i}\})$ .

4.1 Sketch of H&R2-a1gorithm

H&R2-a1gorithm assumes that $n$ is even. It starts by computing a maximum-weight cycle cover
C. If $\mathrm{C}$ is a tour of $G$ , then we are done. Throughout the rest of this section, we assume that
$\mathrm{C}$ is not a tour of $G$ . H&R2-a1gorithm then computes two tours $T_{1}$ , $T_{2}$ of $G$ and outputs the
heavier one between them as follows:

1. Compute a maximum-weight matching $M$ in G. (Comment: Since $n$ is $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}_{2}M$ is perfect.)
2. Let $C_{1}$ , $\ldots$ , $C_{r}$ be an arbitrary ordering of the cycles in C.
3. Initialize a set $N$ to be empty.
4. For $\mathrm{i}=1,2$ , $\ldots$ , $r$ (in this order), perform the following two steps:

(a) Compute two distinct edges $e_{1}$ and $e_{2}$ in $C_{i}$ such that both graphs $(V(G), M\cup N\cup\{e_{1}\})$

and $(V(G), M\cup N\cup\{e_{2}\})$ are subtours of $G$ .
(b) Select $h\in\{1,2\}$ uniformly at random, and add edge $e_{h}$ to $N$ .
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5. Comnplete the graph $\mathrm{C}-N$ to a tour $T_{1}$ of $G$ by suitably choosing and adding some edges
of G. (Comment: Randomness is needed in this step.)

6. Let $S$ be the set of vertices $v$ in $G$ such that the degree of $v$ in the graph $(V(G), M\cup N)$ is 1.
(Comment: $|S|$ is even because each connected component $\tilde{1}\mathrm{n}$ the graph $(V(G), M\cup A)$ is
a path of length at least 1.)

7. Compute a random perfect matching $Ms$ in the subgraph $(S, F)$ of $G$ , where $F$ consists
of all edges $\{u, v\}$ of $G$ with $\{u, v\}\underline{\subseteq}S$ .

8. Let $G’$ be the multigraph obtained from the graph $(V(G), M\cup N)$ by adding every edge
$e\in Ms$ even if $e\in M\cup N$ . (Comment: Each connected component of $G’$ is either $\mathrm{a}$

path, or a cycle of length 2 or more. The crucial point is that for each edge $e$ in $G_{1}’$ the
probability that the connected component of $G’$ containing $e$ is a cycle of size smaller than
$\sqrt{n}$ is at most $O(1/\sqrt{n}).)$

9. For each cycle $C$ in $G’$ , select one edge in $C$ uniformly at random and delete it from $G’$ .
10. Complete $G’$ to a tour $T_{2}$ of $G$ by adding some edges of $G$ .

4.2 Derandomization of H&R2-a1gorithm

Unlike H&R2-a1gorithm, we assume that $n$ is odd (the case where $n$ is even is simpler). Then,
the matching $M$ computed in Step 1 in H&R2-a1gorithm is not perfect. Let $z$ be the vertex in
$G$ to which no edge in $M$ is incident. Let $e_{z}$ and $e_{z}’$ be the two edges incident to $z$ in C.

To derandomize H&R2-a1gorithm, we replace Steps 4 through 10 in H&R2-a1gorithm by the
following eight steps:

$4’$ . Compute two disjoint subsets $A_{1}$ and $A_{2}$ of $E(\mathrm{C})$ $-M$ satisfying the following three con-
ditions:

(C5) Both graphs $(V(G), M\cup A_{1})$ and $(V(G), M\cup A_{2})$ are subtours of $G$ .
(C6) For each $\mathrm{i}\in\{1, \ldots, r\}$ , $E(C_{i})\cap A_{1}\neq\emptyset$ and $E(C:)\cap A_{2}\neq\emptyset$ .

(C7) $e_{z}\in A_{1}$ and $e_{z}’\in \mathrm{A}_{2}$ .

$5’$ . Choose $N$ from $A_{1}$ and $A_{2}$ uniformly at random. (Comment: This step needs one random
bit. For a technical reason, we allow our algorithm to use only one random bit; so we can
easily derandomize it, although we omit the details.)

6’. Complete the graph $\mathrm{C}-N$ to a tour $T_{1}$ of $G$ as described in Fact 4.1. (Comment: Imme-
diately before this step, each connected component of $\mathrm{C}$ $-N$ is a path of length at least 1
because of Conditions (C6) and (C7).)

$7’$ . Same as Step 6 in H&R2-algorithm.

8;. Compute a maximum-weight matching $Ms$ in the graph $(S, F)$ , where $F$ is as in Step 7 in
H&R2-a1gorithm. (Comment: $Ms$ is perfect.)

9;. Same as Step 8 in $\mathrm{H}\ \mathrm{R}_{\ovalbox{\tt\small REJECT}}2- \mathrm{a}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$. (Comment: The first assertion in the comment on
Step 8 in H&R2-a1gorithm holds here too, but the second assertion does not hold here.)

$10’$ . Compute a subset $M_{S}’$ of $Ms$ such that each cycle in $G’$ contains exactly one edge of $M_{S}’$ .
$11’$ . Complete the graph $G’-\mathrm{J}/I_{S}’$ to a tour $T_{2}$ of $G$ as described in Fact 4.1.

The details of computing $A_{1}$ and $A_{2}$ is omitted here for lack of space.

Theorem 4.2 There is an $O(n^{3})$ -time approximation algorithm for metric ${\rm Max}$ TSP achieving
an approximation ratio of $\frac{17}{20}-\frac{1}{5n}$ .
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