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Abstract

We propose new complexity measure, energy complexity, for artifi-
cial circuits of threshold gates ( $=\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{h}$-Pitz neurons or percep-
trons) that measures the average number of intermediate gate outputs
“1” over all the inputs. This complexity measure is motivated by the
fact in biology such that neurons of biological neural circuits consumes
substantially more energy when those output the analogous value “fir-
ing” than “non-firing”. Hence biological circuits need to save the num-
ber of “firing” inrder to use limited energy effectively. We show that
a fairly large class of computational problems can be solved by feed-
foward threshold circuits of polynomial size and only $O(\log n)$ energy
complexity.

1 Introduction
A recent biological study on the energy cost of cortical computation
[2] concludes that “The cost of a single spike is high, and this limits,
possibly to fewer than 1%, the number of neurons that can be substan-
tially active concurrently”’ According to the best currently available
estimates the fraction of neurons in cortex that are firing during a
typical cortical computation that lasts up to 1 second is about 1 %.

In contrast to that, one has to assume that about 50 % of gates in a
typical feedforward threshold circuit, also in a circuit that has been
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optimized with regard to traditional circuit complexity measures, out-
put the value 1 during a computation. Consequences of this sparse
firing activity of neurons in cortex have been already addressed in

numerous theoretical studies of computational neuroscience, but only

in terms of corresponding schemes for sparse representations of infor-
mation (which are also advantageous for other reasons, see [1] for a
recent review). Obviously these studies of biologically realistic sparse
data structures in neural circuits need to be complemented by the

investigation of algorithms. In this study we introduce new complex-

ity measure, energy complexity, that measures the average number

of intermediate gate outputs “1” and try to investigate feedfow ard

threshold circuits from that perspective.

2 Definition of Energy Complexity

We consider circuits consisting of threshold gates (also called linear

threshold gates, McCulloch-Pitts neurons, or perceptrons). We set

sign(z) $=1$ if $z\geq 0$ and sign(z) $=0$ if $z<0$ . A threshold gate $g$ (with

weights $w_{1}$ , . . . , $w_{n}\in \mathbb{R}$ and threshold $t\in \mathbb{R}$) gives as output for any

input $X=(x_{1}, \ldots,x_{n})\in\{\mathrm{O}, 1\}^{n}$

$g(X)= \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\sum_{i=1}^{n}w_{i}x_{i}-t)=\{\begin{array}{l}1,\mathrm{i}\mathrm{f}\sum_{i=1}^{n}w_{i}x_{i}\geq t0,\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\end{array}$

For a threshold gate $g_{l^{r}}$ within a feedforward circuit $C$ that receives
$X=$ $(x_{1}, \ldots, xn)$ as circuit input we will write $g_{i}(X)$ for the output

that gate $g_{\overline{l}}$ gives for this circuit input $X$ (although the actual input

to gate $gi$ during this computation will in general consist of just some

bits from $X\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ outputs of other gates in the circuit $C$). With this

convention we define the energy complexity of a circuit $C$ consisting

of threshold gates $g_{1}$ , $\ldots$ , $g_{m}$ as
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$EC(C):= \frac{1}{2^{n}}\sum_{X\in\{0,1\}^{n}}\sum_{i=1}^{m}g_{i}(X)$

We will write $G(X)$ for activation pattern $(g_{1}(X), \ldots,g_{m}(X))$ of

the circuit $C$ for input $X\in\{0,1\}^{n}$ . Furthermore we classify the

activation patterns into two sets by the value of circuit output $C(X)\in$

$\{0, 1\}$ and define:

$AP_{j}(C):=$ { $G(X$ ) : $X\in\{0$ , $1\}^{n}$ and $C(X)=j$ }

for $j\in\{0,1\}$ .

3 Result
Obviously the size of the total activation patterns $AP(C)=AP_{0}(C)\cup$

$AP_{1}(C)$ of a circuit $C$ is somewhat related to its energy complexity
$EC(C)$ , since an upper bound on $EC(C)$ and on the total number of

gates in the circuit $C$ entails an upper bound for $AP(C)$ . This results
from the simple combinatorial fact that a bound on the number of 1’s
in a bit string of length $m$ gives rise to an upper bound on the total
number of such bit strings of length $m$ . For example, if one assumes
that at most $k\cdot\log n$ many 1’s occur in any computation of circuit $C$ for
some input $X\in\{0,1\}^{n}$ then $\# AP(C)\leq\sum_{j=0}^{k}(_{j}^{m})$ . So for reasonably
small $k$ and $m$ we have a nontrivial upper bound on $\# AP(C)$ . On
the other hand there exists a extra case such that $\# AP(C)=1$ and
$EC(C)=m$. But theorem 1 below state that it’s possible to convert
$C$ to $C’$ with polynomial blow-up in size and small $EC(C’)$ , precisely:

Theorem 1: Assume that $C$ is a threshold circuit computing a
Boolean function $f$ : $\{0, 1\}^{n}arrow\{0, 1\}$ with $m$ gates. Then one
can construct a depth $m+1$ threshold circuit $C’$ computing $f$

with at most $mp+1$ gates and $\mathrm{E}\mathrm{C}(\mathrm{C}1)\leq$ logp +2 where $p=$

$\min(\# AP_{0}(C), \# AP_{1}(C))$ .
where $\# S$ for a set $S$ is the cardinality of $S$ . Theorem 1 gives the
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following result,

Corollary 1: Assume that $C$ is a threshold circuit computing
a Boolean function $f$ : $\{0, 1\}^{n}arrow\{0,1\}$ with poly(n) gates and
$\min(\# AP_{0}(C), \# AP_{1}(C))$ $=$ poly(n). Then one can construct thresh-
old circuit $C’$ computing $f$ with poly(n) gates and $EC(C’)=O(\log n)$ .

Many threshold circuits for computing specific functions that have
been discussed in the literature (for example threshold circuits of
depth 2 that compute symmetric functions in linear size) produce just
$O(n)$ many activation patterns, but also on average $\Omega(n)$ Is. Corol-
lary 1 state that it’s possible to compute such Boolean functions using

threshold circuits with only $O(\log n)$ energy complexity. On the other

hand the depth of the circuit $C’$ after this conversion is increased to

the size of original circuit $C$ even if the depth of $C$ is a constant.
We don’t know well how strong the restrictions in corollary 1 are,

since the activation pattern is new concept for threshold circuits. But

the corollary 2 from theorem 2 partially answers this question.

Theorem 2: Let $C$ be a threshold circuit computing a Boolean func-

tion $f:\{0,1\}^{n}arrow\{0,1\}$ with $m$ gates where the absolute value of a
weight are between 1 and $w$ . Then one can construct a depth 3 thresh-

old circuit $C’$ computing $f$ that consists of $n^{O(\log(m+n)w\log p1o\mathrm{g}\log p)}$

gates $p= \min(\# AP_{0}(C), \# AP_{1}(C))$ .
Theorem 2 can be proved using similar conversion technique used

in [3]. Theorem 2 gives the following corollary,

Corollary 2 Let $C$ be a threshold circuit computing a

Boolean function $f:\{0,1\}^{n}$ $arrow$ {0, 1} with poly(n) gates where
$\min(\# AP_{0}(C), \# AP_{1}(C))=poly(n)$ and weights are between 1 and

0 (n). Then one can construct a depth 3 threshold circuit
computing $f$ with 0 (n ) gates.

Corollary 2 is interesting also from the viewpoint of circuit com-
plexity theory, because we don’t know a Boolean function that cannot

be computed by a depth 3 threshold circuit while [4] showed there ex-

ists a Boolean function that cannot be computed by a depth 2 thresh
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old circuit. bom this pesperctive corollary 2 seems significant.

4 Future Work
Since the energy complexity is new concept for threshold circuits there

exist many directions. As we said in Section 1 it’s attractive to study

the sparse firing activity in biological circuit using the complexity

measures introduced here. Another direction is to investigate upper
and lower bounds of the energy complexity (and also the activation

pattern complexity ) for a specific Boolean function. It is also impor-

tant to investigate a relationships between these new measures and

conventional complexity measures like size or depth.

5 Acknowledgements

We would like to thank Rodney Douglas and Robert Legenstein
for helpful discussions, Kazuyuki Arnano and Eiji Takimoto for his
advice, and Akira Maruoka for making this collaboration possible.

References
[1] F\"oldiak, P.(2003). Sparse cording in the primate cortex., The

Handbook of Brain Theory and Neural Networks, 1064-1068. MIT
Press.

[2] Lennie, P.(2003). The cost of cortical computation. Current Biol-
ogy, 13:493-497.

[3] Klivans, A, R. and Servedio, R, (2004). Learning DNF in Time
$2^{\tilde{O}(n^{1/3})}$ . JCSS 68(2), 303-318.

[4] Hajnal A., Maass W., Pudlak P., Szegedy M, and Turan G.(1993)

Threshold circuits of bounded depth. JCSS 46(2), 129-154


