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Abstract

This paper shows that reachability is undecidable
for confluent monadic and semi-constructor TRSs,
and joinability and confluence are undecidable for
monadic and semi-constructor TRSs. Here, a TRS
is monadic if the height of the right-hand side of
each rewrite rule is at most 1, and semi-constructor
if all defined symbols appearing in the right-hand
side of each rewrite rule occur only in its ground
subterms.

1 Introduction

In this paper, we consider the reachability problem
for confluent monadic and semi-constructor TRSs
posed by our previous paper [4]. Here, a TRS is
monadic if the height of the right-hand side of each
rewrite rule is at most 1, and semi-constructor if all
defined symbols appearing in the right-hand side
of each rewrite rule occur only in its ground sub-
terms. We give a negative answer to this problem.
This undecidability result is compared with the de-
cidability results of joinability and unification for
the same class [4, 3].

Moreover, we show that joinability and con-
fluence are undecidable for monadic and semi-
constructor TRSs.

2 Preliminaries

‘We assume that the reader is familiar with standard
definitions of rewrite systems [1] and we just recall
here the main notations used in this paper.

Let F be a finite set of operation symbols graded
by an arity function ar: F — N{(= {0,1,2,.--}),
F, = {f € F|ar(f) =n}. Weusez,y as variables,
f as an operation symbol, 7, s,t as terms. Let V(s)
be the set of variables occurring in s. The height
of a term is defined as follows: height{a) =0 if a is
a variable or a constant and height{f{t1,...,ts)) =
1+ max{height(t1),..., height(t,}} if n > 0. The

root symbol of a term is defined as root(a) =aif a
is a variable and root{f(¢1,...,t,)) = f.

A position in a term is expressed by a sequence of
positive integers, and positions are partially ordered
by the prefix ordering <. Let O{s} be the set of
positions of s. For a set of positions W, let Min(W)
be the set of its minimal positions(w.r.t. <).

Let 5|, be the subterm of s at position p. For a
sequence (p1,--- ,Pn) of pairwise parallel positions
and terms t1,- -+ ,tn, Weuse sft1,- -+ ,tn)(p,,..pn) tO
denote the term obtained from s by replacing each
subterm s|,, by ;{1 <4 < n). For a set of function
symbols F, let Op(s) = {p € O(s) | root(sp) €
F}. For a string of unary function symbols u =
aiaq - - - ax and a term ¢, let u(t) be an abbreviation
for al(az(- - ak(t))).

A rewrite rule a — (8 is a directed equation over
terms. A TRS R is a set of rewrite rules. Let «+ be
the inverse of —, & = = U+, and | = =% - «*,
t is reachable from s if s —* t. r is confluent on
TRS R if for every s «+% r =% t, s | t. ATRS
R is confluent if every r is confluent on R. Let
ni sy B osye-- PS5 s, be a rewrite sequence. This
sequence is abbreviated to y: s; «* s,. Let Iv| be
the number of steps of v. « is called p-invariant if
g > p for any redex position g of v, and we write

p—inv :
v:81 &% sq.

The set Dy of defined symbols for a TRS R is
defined as Dg = {root(a) | @ — g € R}. A term s
is semi-constructor if for every subterm ¢ of s, ¢ has
no variable or root(t) is not a defined symbol.

Definition 1 A rule o — (8 is monadic if
height(8) < 1, semi-constructor if § is semi-
constructor. A TRS R is monadic if every rule in
R is monadic, semi-constructor if every rule in R is
semi-constructor.
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3 Undecidability of joinabil-
ity for monadic and semi-
constructor TRSs

We have shown that joinability is undecidable for
linear semi-constructor TRSs [4]. In this section,
we show that joinability for monadic and semi-
constructor TRSs is undecidable by a reduction
from the Post’s Correspondence Problem (PCP).
Let P = {{us,v;) € * x Z* | 1 £ 1 < n} be an
instance of the PCP. The corresponding TRS Rp
is constructed as follows. Let F = FoUFiUF,
where Fy = {0,¢,d,8}, Fi = {&; | 1 < i < n}{=
E)UE, F2={fsg}'

Rp = {0—¢&(0)]1<i<n}U{0—flcd)}
U {b—ad), b—>a8)|be{cd},ack}
VU {fz,z) - glz,2)}

{ei(g(wi(2), u @) — glz,¥) | L Si<n}

Rp is monadic. Here, Dg, = {0,¢,d,f}UE, so Rp
is semi-constructor.

Lemma 2 0 —%, g(8,8) iff PCP P has a solution.
Proof. 0 —% g8.8) iff there
exists  dp-erigy € {1,--+,n}* such
that O —m+l e, --- e (f(c,d)) -7
i ey (F(utsy i (8), 0ty i (8)) -
&, - e (8w, o ui, (8) uiy i, (3))) ="
g($,$) iﬁ'uil---u- = U - Yg

im

C

"

Since g($, $) is a normal form, the following theorem
holds.

Theorem 3 Both joinability and reachability for
monadic and semi-constructor TRSs are undecid-
able.

4 Undecidability of reachabil-
ity for confluent monadic
and semi-constructor TRSs

We give a stronger result for reachability, that
is, reachability for confluent monadic and semi-
constructor TRSs is undecidable. Note that join-
ability is decidable for the same class [4, 3]. Let
F=Fu{1}.
RP=RP U {§-1}u{a(l)—>1lacX}
U {e(g(l,vi(y) — (L, 9),

ei(g(ui(m)z 1)) - g(x, 1))

ei(g(L 1)) d g(lv 1) l 1<isn}
Rp is monadic. Here, Dy, = DrpU{$}UE, s0 Rp
is semi-constructor. First, we show the confluence
of RP.

4.1 Confluence of Rp

To show the confluence of R p, we need some defi-
nitions and lemmata.

Definition 4 The set of I-sirings is defined as fol-
lows.

e 1,¢c,d and § are E-strings.

e a(t) is a U-string if ¢ is a X-string and e € L.

Lemma 3 For any Y-string s, the following prop-
erties hold.

(1) For any v : s +»* t, t is a rstring.

(2) s> 1.

Proof.

(1) By induction on |y}.

(2) By induction on the structure of s. |

Corollary 6 Every Y-string is confluent.

Lemma 7 Let v : u(s) —* t where u € ZF. Then,
if root(s) ¢ {1,¢,d,$} U X and u(s)p1 = s then v is
p-invariant.

Proof. By induction on |v}. n|

Definition 8 The set of E-sirings is defined as fol-
lows.

o 0,f(t1,t2) and g(t1,2) are E-strings if ¢1,¢; are
Y-strings. :

e ¢;(t) is an E-string if ¢ is an E-string and i €

{l, et 17"}-

Lemma 9 For any E-string s, the following prop-
erties hold.

(1) For any v: s ©* t,t is an E-string.
(2) s =" g(1,1).

Proof.

(1) By induection on }y|.

(2) By induction on the structure of s. Basis :
For any Y-strings s1, s2, f{s1,82) —=* f(1,1) —
g(1,1) and g(s1, s2) —* (1, 1) by Lemma 5(2),
and 0 — f(c,d) —* g(1,1). Thus, s —* g(1,1)
if s = f(s1, s2), g(s1,82) or 0. Induction step
: Let s = e;(s’) for some i € {1,---,n}. By
the induction hypothisis, s’ —* g(1,1). Thus,
e;(s") —* g(1,1). O

Corollary 10 Every E-string is confluent.



The following lemma is used as a component of
the proof of Lemma 12.

Lemma 11 For any ¢ € {l,---,n} and terms
1,72, the following properties hold.
P g—~inv
(1) If s « ei{g{ry,r2)) —* ¢ then there exist
terms t1,to such that t —* g(t4,1s).

(2) If g(s1,82) <" ei(g(r1,m2)) =" glt1,12) and
glry,72) is confluent then g(sy, s2) | g(t1,t2).

Proof.

(1) Let ¢t = e;(g(t},t5)). If r1 is & Y-string then
t! —* 1 by Lemma 5. Otherwise, r, #
1. Thus, r; = ui(r}) for some term r] by
e:(g(r1,m2)) = s. By Lemma 7, ¢ = u;(tY),
where 7 —* t{. Similarly, t) —* 1 or tj =
v;(t]) for some term t4. Thus, t —* g{t1,t2),
where t1 € {1,t{} and t2 € {1,%5}.

e—inv

(2) By the definition of Rp, e(g(r1,m)) -*
e—inv
ei(g(sy,53)) — g(sf,s3) —* gls1,52) and
£—inv , e—inv

eig(r1,m2)) —* e(g(t),th)) — g(t!,13) —*
g(ti,t2). Thus, s} «* ry >* ¢}, sf »* s; and
t{ —* t1. First, we show that sy | ;.
Case of s = t{ = 1 : Obviously, s{ = 51 =
t'l' =t = 1.
Case of 5§ = 1 and t| = u;(t{) : Obviously,
s] = s1 = 1. By Lemma 5, ¢, is a ¥-string and
t —-* 1.
Case of s} = u;(s{) and £j =1 : Similar to the
previous one.
Case of sy = wu;{s{) and t} = w(t{) : By
confluence of g(ry,rs), r1 is confluent. Thus,
ui(sy) } ui(ty). If sy is a E-string then sy | 1
by Corollary 6. Otherwise, s; | t; by Lemma 7.

Similarly, s | t2. Thus, g(sy, s2) | g(t1,t2). O
Now, we show the confluence of Rp.

Lemma 12 Rp is confluent.
Proof. We show that for any vy : s «* r —=* ¢,
s | t by induction on height(r).

Basis : If » € {c,d, 1} then s | ¢ by Corollary 6,
else if = 0 then s | £ by Corollary 10. Otherwise,
s=r =t since 7 is a normal form.

Induction step : If 4 is e-invariant then s | t by
the induction hypothesis. So, we consider that
~ has an e-reduction. Let v, :r —*sand vy 17 o* L.
Without lost of generality, we assume that v, has
an e-reduction and root(r) € LU {f}UE.

Case of root(r) € L : v, : 7 = a{ry) iy a(l) —

1= s holds for some a € X and ;. By Lemma 5,
t—-* 1.
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e—inv
Case of root(r) = f : v, : v = f(r1,rg) —*
£—Iinv
f(r',7") — g{=',7") —* g(s1,s2) = s holds for
some terms ry,72,7’, 81, s2. If y; is £-invariant then
t = f(ti,to) where ry —* ¢; and rp —* t5. In
this case, s —=* g(ro,70) +* ¢ for some ry by Fig-
ure 1(i). If + has an e-reduction then v : r =
e—inv e—inv
fri,ra) —* f(r",r") — g(r”,r") =% glt1,ta) =
t holds for some terms r",%;,t3. In this case,
8 —* g(ro,To) «* t for some ro by Figure 1{ii).
Case of root{r) € E : v : 7 = efn) g
g—Inv
ei(g(sh s2) — glst,sf) " glsi,s) = s
holds for some terms r1, s}, 85, s¥, 85,381,832 and i €
{1,---,n}. If v, is e-invariant then ¢t = e;(t;) where
ry —* t;. By the induction hypothesis, there ex-

ists a term ¢/ such that e;(g(s}, & T
i(g(sh, 53)) = ' < L.

By Lemma 11({1}, ¢/ —* g(t},t5) for some t,15.
Here, g(s}, s5) is confluent by the induction hypoth-
esis and r; —* g(s},s5). Thus, s | g(t},%3) by
Lemma 11(2). (See Figure 1(iii).) If v, has an &-

£—nv
reduction then v, : v = e;(r1) —* e;(g(t],t5)) —

g(t?, %) iy g{t1,t2) = ¢t holds for some terms
t),th,t7,ty,t1,t2. There exists a term s’ such that
s —* 8" «* e;(g(t},t})) as shown in Figure 1(iii).
Here, root(s’} = g by root(s) = g. By the induction
hypothesis and 7y —* g(t},5), g(t},t5) is confluent.
Thus, s’ | ¢ by Lemma 11(ii). (See Figure 1(iv).)
O .

4.2 Reachability for confluent
monadic and semi-constructor
TRSs

Lemma 13 For any v : s "*}19 t, if s has 1 as its

subterm then so does 1. . .
Proof. Since for any a — 8 € Rp, V(a) = V(8)
and if o has 1 as its subterm then so does 5. [

Lemma 14 0 —4’;% 2(3,8)iff 0 =%, 2(8,9).

Proof. Only if part: Let v : 0 —»}‘?F g(8,%). We
assume to the contrary that -~ must have Rp\ Rp
reduction, i.e., y:0 —%, s *"Rp\RpAt "'}*.;’tp g(3,%)
for some s,t. By the definition of Rp, t has 1 as
its subterm. By Lemma 13, g(8,8) has 1 as its

subterm, a contradiction. If part : By Rp C Ep.
O

By Lemmata 2, 12, and 14, the following theorem
holds.

Theorem 15 Reachability for confluent monadic
and semi-constructor TRSs is undecidable.
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5 Undecidability of conflu-
ence of monadic and semi-
constructor TRSs

We show that confluence of monadic and semi-
constructor TRSs is undecidable.
Let F’ = F§ U F{ where Fj = {2}, F{ = {h}.

R = {h(z) — h(0), h(g(8,$)) — 2}

RP U R is monadic. Here, Dg = {h}, so RpURis
semi-constructor.

Lemma 16 For any s with root(s) € F/, the fol-
lowing properties hald.

(1) If s >, 5 t then root(t) € F'.

(2) 0 —%, g(8,8) then s =%, g 2.

The proof is straightforward, so omitted.

Lemma 17 Let s —p p % Mm(Opr(s))
{p1,-- ,pm}, and Min(Op () = {q- -,qn}

Then’ 8[2' ](pll :Pm) -H) p 12 ' 72}(91 ,“'»?n)
or s[2,- - ’2](?1y"'va) =2, g, qm)-
Proof. Let s 5 BoUR b If there ex-

ists ¢ € {1,---,m} such that pi < p then
{ph'” :Pm} = {QI,"'yq‘n} by Lemma 16(1)'

Thus, s2,--, 2y, pm) = t12, -+, 2l(qr, - \qn)-
Otherwise, obviously s —jz . Since every

function symbol in F” does not occur in Rp,
s2, Ay o) ~Rp 2 i) B

Lemma 18 RpU R is confluent iff 0 —%, &($,$).
Proof. Onlyifpart: By h(0) «5_ h(g(8,%)) 3,
2, confluence ensures that h(0) 5,5 2- Since 21s
a normal form, h{0) —% pU R2 ’I‘hus there eXJ.st;s

a shortest sequence v that satlsﬁes ~:h{0) — R UR

h(g($,8)) —r 2. Since v is shortest, h{0) — q UR
h(g(3,$)). Thus, there exists 7' : 0 —RsUR g($
Obviously, every function symbol occuring in v/ be—
longs to F'. Thus, 0 _)}21: g($,8). By Lemma 14,
0 —%, &(8,9).

If part: Let s 4——R UR —~BpUR t. By Lemma 17,

3[21‘ a2](p1,<“,pm) ‘_'R? ""[2:"' ’2}(01,«-,01) _'),;QP
12, Ao gy Where  Min(Opi(r)) =
{o1,-++ a1}, Min(Op(s)} = {p1,*-+,Pm}, and
Min(Op/(t)) = {q1, - ,qn}. Since Kp is con-
fluent by Lemma 12, 5[2,---,2](,,1,...’?,“) 1}%
t[z,---,Z](ql,...,qﬂ). By 0 -—3}? g($,$) and
Lemma 16(2), 5 =% ur s{2,--+,2)(p; - pm) and
t —"*I‘QPUR t[2, ces ,2}(,11,...1%). Thus, s -LRPUR t. O

By Lemmata 2 and 18, the following theorem
holds.

Theorem 19 Confluence of monadic and semi-
constructor TRSs is undecidable.

6 Confluence of flat TRSs

In [2], the undecidability of confluence of flat TRSs
has been claimed, but we found that the proof is
incorrect. In this section, we explain its flaw.

Definition 20 [2] A rule « — f is flat if
height(a) < 1 and height(8) <1.

In [2], first the undecidability of reachability has
been obtained by showing that 0 —% 1 iff there



exists a solution for PCP for the following TRS R;.

Ry = RpU
{0 545,045,490, 452, 59,49, 457, 45,

f(z1, 2, 21,911, Y12, T2, Y11, Y12) —
g($1, x9,Z1, Y11, Y12, T2, Y11, ylz)’
g(zo, 2o, Y17, Y17, Y18, Y18, Y10, ¥10) — 1}

Here, Ry has many rules, so omitted (see
([2],p-267]).

Next, the undecidability of confluence has been
obtained by showing the claim that Ry U R3 is con-
fluent iff O —+}‘.h 1 for the following TRS R,.

Ry = {2-0,2-51}U{c—0]ceEs\{0,1}}
U {d(z)—0,d(1)—>1|deE}
U {f(z1, - ,28) = 1, glz1,-+- ,28) = 1}
one of the z;is 1,
* the others are distinct variables}

Here, 2 = EgUE; U{f, g}, which is a set of function
symbols occuring in R;. Zg,Zi have many sym-
bols, so omitted (see [[2],p.267]). Note that E¢ has

3) (4) (5) (8) (13) (14) (15) (16
§,09,09.99,45%, 489 o9, o,

However, the proof of the only-if part of the
claim is incorrect. The proof claims that if
0 —%, 1 does not hold then R; U R, is not con-
fluent because of the peak 0 «~pg, 2 —pg, 1.

But, the claim overlooks that 0 —p,
f(q(3),q5f),q(5) (13),qg4) (6) (15) (16)) _,%
(0,0,0,0,0,0,0,0) —p, & (00000000) —R,
1. Thus, the undecidability of confluence of flat
TRSs has not been shown. Now, Jacquemard

claims that the proof can be corrected.
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