The Reachability and Related Decision Problems for Semi-Constructor TRSs

Ichiro Mitsuhashi, Michio Oyamaguchi, Toshiyuki Yamada (Faculty of Engineering, Mie University) 三橋一郎, 大山口通夫, 山田俊行 (三重大学工学部)

Abstract

This paper shows that reachability is undecidable for confluent monadic and semi-constructor TRSs, and joinability and confluence are undecidable for monadic and semi-constructor TRSs. Here, a TRS is monadic if the height of the right-hand side of each rewrite rule is at most 1, and semi-constructor if all defined symbols appearing in the right-hand side of each rewrite rule occur only in its ground subterms.

1 Introduction

In this paper, we consider the reachability problem for confluent monadic and semi-constructor TRSs posed by our previous paper [4]. Here, a TRS is monadic if the height of the right-hand side of each rewrite rule is at most 1, and semi-constructor if all defined symbols appearing in the right-hand side of each rewrite rule occur only in its ground subterms. We give a negative answer to this problem. This undecidability result is compared with the decidability results of joinability and unification for the same class [4, 3].

Moreover, we show that joinability and confluence are undecidable for monadic and semi-constructor TRSs.

2 Preliminaries

We assume that the reader is familiar with standard definitions of rewrite systems [1] and we just recall here the main notations used in this paper.

Let F be a finite set of operation symbols graded by an arity function ar: $F o N(=\{0,1,2,\cdots\})$, $F_n = \{f \in F \mid ar(f) = n\}$. We use x, y as variables, f as an operation symbol, r, s, t as terms. Let V(s)be the set of variables occurring in s. The height of a term is defined as follows: height(a) = 0 if a is a variable or a constant and height $(f(t_1, \ldots, t_n)) =$ $1 + \max\{\text{height}(t_1), \ldots, \text{height}(t_n)\}$ if n > 0. The root symbol of a term is defined as root(a) = a if a is a variable and $root(f(t_1, ..., t_n)) = f$.

A position in a term is expressed by a sequence of positive integers, and positions are partially ordered by the prefix ordering \leq . Let $\mathcal{O}(s)$ be the set of positions of s. For a set of positions W, let $\mathsf{Min}(W)$ be the set of its minimal positions(w.r.t. \leq).

Let $s_{|p}$ be the subterm of s at position p. For a sequence (p_1, \dots, p_n) of pairwise parallel positions and terms t_1, \dots, t_n , we use $s[t_1, \dots, t_n]_{(p_1, \dots, p_n)}$ to denote the term obtained from s by replacing each subterm $s_{|p_i|}$ by $t_i (1 \le i \le n)$. For a set of function symbols F, let $\mathcal{O}_F(s) = \{p \in \mathcal{O}(s) \mid \operatorname{root}(s_{|p}) \in F\}$. For a string of unary function symbols $u = a_1 a_2 \cdots a_k$ and a term t, let u(t) be an abbreviation for $a_1(a_2(\dots a_k(t)))$.

A rewrite rule $\alpha \to \beta$ is a directed equation over terms. A TRS R is a set of rewrite rules. Let \leftarrow be the inverse of \rightarrow , $\leftrightarrow = \rightarrow \cup \leftarrow$, and $\downarrow = \rightarrow^* \cdot \leftarrow^*$. t is reachable from s if $s \to^* t$. r is confluent on TRS R if for every $s \leftarrow_R^* r \to_R^* t$, $s \downarrow t$. A TRS R is confluent if every r is confluent on R. Let $\gamma \colon s_1 \xrightarrow{p_1} s_2 \cdots \xrightarrow{p_{n-1}} s_n$ be a rewrite sequence. This sequence is abbreviated to $\gamma \colon s_1 \leftrightarrow^* s_n$. Let $|\gamma|$ be the number of steps of γ . γ is called p-invariant if q > p for any redex position q of γ , and we write $p^{-\text{inv}} \gamma \colon s_1 \leftrightarrow^* s_n$.

The set D_R of defined symbols for a TRS R is defined as $D_R = \{ \operatorname{root}(\alpha) \mid \alpha \to \beta \in R \}$. A term s is semi-constructor if for every subterm t of s, t has no variable or $\operatorname{root}(t)$ is not a defined symbol.

Definition 1 A rule $\alpha \to \beta$ is monadic if height(β) ≤ 1 , semi-constructor if β is semi-constructor. A TRS R is monadic if every rule in R is monadic, semi-constructor if every rule in R is semi-constructor.

3 Undecidability of joinability for monadic and semiconstructor TRSs

We have shown that joinability is undecidable for linear semi-constructor TRSs [4]. In this section, we show that joinability for monadic and semi-constructor TRSs is undecidable by a reduction from the Post's Correspondence Problem (PCP). Let $P = \{\langle u_i, v_i \rangle \in \Sigma^* \times \Sigma^* \mid 1 \leq i \leq n\}$ be an instance of the PCP. The corresponding TRS R_P is constructed as follows. Let $F = F_0 \cup F_1 \cup F_2$ where $F_0 = \{0, c, d, \$\}$, $F_1 = \{e_i \mid 1 \leq i \leq n\}$ (= E) $\cup \Sigma$, $F_2 = \{f, g\}$.

$$\begin{array}{rcl} R_P & = & \{0 \rightarrow \mathsf{e_i}(0) \mid 1 \leq i \leq n\} \cup \{0 \rightarrow \mathsf{f}(\mathsf{c},\mathsf{d})\} \\ & \cup & \{b \rightarrow a(b), \ b \rightarrow a(\$) \mid b \in \{\mathsf{c},\mathsf{d}\}, a \in \Sigma\} \\ & \cup & \{\mathsf{f}(x,x) \rightarrow \mathsf{g}(x,x)\} \\ & \cup & \{\mathsf{e_i}(\mathsf{g}(u_i(x),v_i(y))) \rightarrow \mathsf{g}(x,y) \mid 1 \leq i \leq n\} \end{array}$$

 R_P is monadic. Here, $D_{R_P} = \{0, c, d, f\} \cup E$, so R_P is semi-constructor.

Lemma 2 $0 \rightarrow_{R_P}^* g(\$,\$)$ iff PCP P has a solution. Proof. $0 \rightarrow_{R_P}^* g(\$,\$)$ iff there exists $i_1 \cdots i_m \in \{1, \cdots, n\}^*$ such that $0 \rightarrow^{m+1} e_{i_m} \cdots e_{i_1}(f(\mathsf{c},\mathsf{d})) \rightarrow^+ e_{i_m} \cdots e_{i_1}(g(u_{i_1} \cdots u_{i_m}(\$), u_{i_1} \cdots u_{i_m}(\$))) \rightarrow^m e_{i_m} \cdots e_{i_1}(g(u_{i_1} \cdots u_{i_m}(\$), u_{i_1} \cdots u_{i_m}(\$))) \rightarrow^m g(\$,\$)$ iff $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$.

Since g(\$,\$) is a normal form, the following theorem holds.

Theorem 3 Both joinability and reachability for monadic and semi-constructor TRSs are undecidable.

4 Undecidability of reachability for confluent monadic and semi-constructor TRSs

We give a stronger result for reachability, that is, reachability for confluent monadic and semi-constructor TRSs is undecidable. Note that join-ability is decidable for the same class [4, 3]. Let $\hat{F} = F \cup \{1\}$.

$$\begin{split} \hat{R}_P = R_P & \cup & \{\$ \to 1\} \cup \{a(1) \to 1 \mid a \in \Sigma\} \\ & \cup & \{\mathsf{e}_i(\mathsf{g}(1, v_i(y))) \to \mathsf{g}(1, y), \\ & \mathsf{e}_i(\mathsf{g}(u_i(x), 1)) \to \mathsf{g}(x, 1), \\ & \mathsf{e}_i(\mathsf{g}(1, 1)) \to \mathsf{g}(1, 1) \mid 1 \le i \le n\} \end{split}$$

 \hat{R}_P is monadic. Here, $D_{\hat{R}_P} = D_{R_P} \cup \{\$\} \cup \Sigma$, so \hat{R}_P is semi-constructor. First, we show the confluence of \hat{R}_P .

4.1 Confluence of \hat{R}_P

To show the confluence of \hat{R}_P , we need some definitions and lemmata.

Definition 4 The set of Σ -strings is defined as follows.

- 1, c, d and \$ are Σ-strings.
- a(t) is a Σ -string if t is a Σ -string and $a \in \Sigma$.

Lemma 5 For any Σ -string s, the following properties hold.

- (1) For any $\gamma: s \leftrightarrow^* t$, t is a Σ -string.
- (2) $s \rightarrow^* 1$.

Proof.

- (1) By induction on $|\gamma|$.
- (2) By induction on the structure of s.

Corollary 6 Every Σ -string is confluent.

Lemma 7 Let $\gamma: u(s) \to^* t$ where $u \in \Sigma^+$. Then, if $\text{root}(s) \notin \{1, c, d, \$\} \cup \Sigma$ and $u(s)|_{p1} = s$ then γ is p-invariant.

Proof. By induction on $|\gamma|$.

Definition 8 The set of E-strings is defined as follows.

- $0, f(t_1, t_2)$ and $g(t_1, t_2)$ are E-strings if t_1, t_2 are Σ -strings.
- $e_i(t)$ is an E-string if t is an E-string and $i \in \{1, \dots, n\}$.

Lemma 9 For any E-string s, the following properties hold.

- (1) For any $\gamma: s \leftrightarrow^* t$, t is an E-string.
- (2) $s \to^* g(1,1)$.

Proof.

- (1) By induction on $|\gamma|$.
- (2) By induction on the structure of s. Basis: For any Σ -strings $s_1, s_2, f(s_1, s_2) \to^* f(1, 1) \to g(1, 1)$ and $g(s_1, s_2) \to^* g(1, 1)$ by Lemma 5(2), and $0 \to f(c, d) \to^* g(1, 1)$. Thus, $s \to^* g(1, 1)$ if $s = f(s_1, s_2), g(s_1, s_2)$ or 0. Induction step: Let $s = e_i(s')$ for some $i \in \{1, \dots, n\}$. By the induction hypothisis, $s' \to^* g(1, 1)$. Thus, $e_i(s') \to^* g(1, 1)$.

Corollary 10 Every E-string is confluent.

The following lemma is used as a component of the proof of Lemma 12.

Lemma 11 For any $i \in \{1, \dots, n\}$ and terms r_1, r_2 , the following properties hold.

- (1) If $s \stackrel{\varepsilon}{\leftarrow} \mathbf{e_i}(\mathbf{g}(r_1, r_2)) \stackrel{\varepsilon \text{inv}}{\rightarrow^*} t$ then there exist terms t_1, t_2 such that $t \rightarrow^* \mathbf{g}(t_1, t_2)$.
- (2) If $g(s_1, s_2) \leftarrow^* e_i(g(r_1, r_2)) \rightarrow^* g(t_1, t_2)$ and $g(r_1, r_2)$ is confluent then $g(s_1, s_2) \downarrow g(t_1, t_2)$.

Proof.

- (1) Let $t = e_i(g(t'_1, t'_2))$. If r_1 is a Σ -string then $t'_1 \to^* 1$ by Lemma 5. Otherwise, $r_1 \neq 1$. Thus, $r_1 = u_i(r'_1)$ for some term r'_1 by $e_i(g(r_1, r_2)) \stackrel{\varepsilon}{\to} s$. By Lemma 7, $t'_1 = u_i(t''_1)$, where $r'_1 \to^* t''_1$. Similarly, $t'_2 \to^* 1$ or $t'_2 = v_i(t''_2)$ for some term t''_2 . Thus, $t \to^* g(t_1, t_2)$, where $t_1 \in \{1, t''_1\}$ and $t_2 \in \{1, t''_2\}$.
- (2) By the definition of R_P , $\mathbf{e}_i(\mathbf{g}(r_1, r_2)) \xrightarrow{\varepsilon \text{inv}} \mathbf{e}_i(\mathbf{g}(s_1', s_2')) \xrightarrow{\varepsilon \text{inv}} \mathbf{g}(s_1', s_2'') \xrightarrow{\varepsilon \text{inv}} \mathbf{g}(s_1, s_2)$ and $\mathbf{e}_i(\mathbf{g}(r_1, r_2)) \xrightarrow{\varepsilon \text{inv}} \mathbf{e}_i(\mathbf{g}(t_1', t_2')) \xrightarrow{\varepsilon \text{inv}} \mathbf{g}(t_1', t_2'') \xrightarrow{\varepsilon \text{inv}} \mathbf{g}(t_1, t_2)$. Thus, $s_1' \leftarrow^* r_1 \xrightarrow{\varepsilon + t_1'} s_1'' \xrightarrow{\varepsilon + s_1} \mathbf{s}_1$ and $t_1'' \xrightarrow{\varepsilon + t_1}$. First, we show that $s_1 \downarrow t_1$.

 Case of $s_1' = t_1' = 1$: Obviously, $s_1'' = s_1 = t_1'' = t_1 = 1$.

Case of $s_1' = 1$ and $t_1' = u_i(t_1'')$: Obviously, $s_1'' = s_1 = 1$. By Lemma 5, t_1 is a Σ -string and $t_1 \to^* 1$.

Case of $s_1' = u_i(s_1'')$ and $t_1' = 1$: Similar to the previous one.

Case of $s_1' = u_i(s_1'')$ and $t_1' = u_i(t_1'')$: By confluence of $g(r_1, r_2)$, r_1 is confluent. Thus, $u_i(s_1) \downarrow u_i(t_1)$. If s_1 is a Σ -string then $s_1 \downarrow t_1$ by Corollary 6. Otherwise, $s_1 \downarrow t_1$ by Lemma 7. Similarly, $s_2 \downarrow t_2$. Thus, $g(s_1, s_2) \downarrow g(t_1, t_2)$. \square

Now, we show the confluence of \hat{R}_P .

Lemma 12 \hat{R}_P is confluent.

Proof. We show that for any $\gamma: s \leftarrow^* r \rightarrow^* t$, $s \downarrow t$ by induction on height(r).

Basis: If $r \in \{c, d, 1\}$ then $s \downarrow t$ by Corollary 6, else if r = 0 then $s \downarrow t$ by Corollary 10. Otherwise, s = r = t since r is a normal form.

Induction step: If γ is ε -invariant then $s\downarrow t$ by the induction hypothesis. So, we consider that γ has an ε -reduction. Let $\gamma_s:r\to^*s$ and $\gamma_t:r\to^*t$. Without lost of generality, we assume that γ_s has an ε -reduction and $\mathrm{root}(r)\in\Sigma\cup\{\mathsf{f}\}\cup E$.

Case of $\operatorname{root}(r) \in \Sigma : \gamma_s : r = a(r_1) \overset{\varepsilon - \operatorname{inv}}{\to^*} a(1) \to 1 = s$ holds for some $a \in \Sigma$ and r_1 . By Lemma 5, $t \to^* 1$.

Case of root(r) = f: γ_s : $r = f(r_1, r_2) \stackrel{\varepsilon - \text{inv}}{\rightarrow}^*$ $\mathsf{f}(r',r') \to \mathsf{g}(r',r') \overset{arepsilon -\mathrm{inv}}{\to^*} \mathsf{g}(s_1,s_2) = s \text{ holds for }$ some terms r_1, r_2, r', s_1, s_2 . If γ_t is ε -invariant then $t = f(t_1, t_2)$ where $r_1 \rightarrow^* t_1$ and $r_2 \rightarrow^* t_2$. In this case, $s \to^* g(r_0, r_0) \leftarrow^* t$ for some r_0 by Figure 1(i). If γ_t has an ε -reduction then γ_t : r= $s \to^* g(r_0, r_0) \leftarrow^* t$ for some r_0 by Figure 1(ii). Case of root $(r) \in E$: γ_s : $r = e_i(r_1) \xrightarrow{\varepsilon - \text{inv}} e_i(g(s'_1, s'_2)) \rightarrow g(s''_1, s''_2) \xrightarrow{\varepsilon - \text{inv}} g(s_1, s_2) = s$ holds for some terms $r_1, s'_1, s'_2, s''_1, s''_2, s_1, s_2$ and $i \in$ $\{1, \dots, n\}$. If γ_t is ε -invariant then $t = \mathbf{e}_i(t_1)$ where $r_1 \rightarrow^* t_1$. By the induction hypothesis, there exists a term t' such that $\mathbf{e}_i(\mathbf{g}(s_1', s_2')) \xrightarrow{\varepsilon - \text{inv}} t' \xleftarrow{\varepsilon - \text{inv}} t$. By Lemma 11(1), $t' \to^* \mathbf{g}(t_1', t_2')$ for some t_1', t_2' . Here, $g(s'_1, s'_2)$ is confluent by the induction hypothesis and $r_1 \to^* g(s'_1, s'_2)$. Thus, $s \downarrow g(t'_1, t'_2)$ by Lemma 11(2). (See Figure 1(iii).) If γ_t has an ε reduction then $\gamma_t: r = \mathsf{e}_i(r_1) \overset{\epsilon-\mathrm{inv}}{\to^*} \mathsf{e}_i(\mathsf{g}(t_1',t_2')) \to$ $\mathbf{g}(t_1'',t_2'') \stackrel{e-\mathrm{inv}}{
ightharpoonup^*} \mathbf{g}(t_1,t_2) = t \text{ holds for some terms}$ $t_1', t_2', t_1'', t_2'', t_1, t_2$. There exists a term s' such that $s \to^* s' \leftarrow^* e_i(g(t'_1, t'_2))$ as shown in Figure 1(iii). Here, root(s') = g by root(s) = g. By the induction hypothesis and $r_1 \to^* g(t'_1, t'_2), g(t'_1, t'_2)$ is confluent. Thus, $s' \downarrow t$ by Lemma 11(ii). (See Figure 1(iv).)

4.2 Reachability for confluent monadic and semi-constructor TRSs

Lemma 13 For any $\gamma: s \to_{\hat{R}_P}^* t$, if s has 1 as its subterm then so does t.

Proof. Since for any $\alpha \to \beta \in \hat{R}_P$, $V(\alpha) = V(\beta)$ and if α has 1 as its subterm then so does β .

Lemma 14 $0 \to_{\hat{R}_P}^* g(\$,\$)$ iff $0 \to_{R_P}^* g(\$,\$)$. Proof. Only if part: Let $\gamma: 0 \to_{\hat{R}_P}^* g(\$,\$)$. We assume to the contrary that γ must have $\hat{R}_P \setminus R_P$ reduction, i.e., $\gamma: 0 \to_{R_P}^* s \to_{\hat{R}_P \setminus R_P} t \to_{\hat{R}_P}^* g(\$,\$)$ for some s,t. By the definition of \hat{R}_P , t has 1 as its subterm. By Lemma 13, g(\$,\$) has 1 as its subterm, a contradiction. If part: By $R_P \subseteq \hat{R}_P$.

By Lemmata 2, 12, and 14, the following theorem holds.

Theorem 15 Reachability for confluent monadic and semi-constructor TRSs is undecidable.

5 Undecidability of confluence of monadic and semiconstructor TRSs

We show that confluence of monadic and semiconstructor TRSs is undecidable.

Let
$$F' = F'_0 \cup F'_1$$
 where $F'_0 = \{2\}, F'_1 = \{h\}.$

$$R = \{h(x) \rightarrow h(0), h(g(\$,\$)) \rightarrow 2\}$$

 $\hat{R}_P \cup R$ is monadic. Here, $D_R = \{h\}$, so $\hat{R}_P \cup R$ is semi-constructor.

Lemma 16 For any s with $root(s) \in F'$, the following properties hold.

(1) If
$$s \to_{\hat{R}_P \cup R} t$$
 then $root(t) \in F'$.

(2) If
$$0 \rightarrow_{R_P}^* g(\$,\$)$$
 then $s \rightarrow_{R_P \cup R}^* 2$.

The proof is straightforward, so omitted.

Lemma 17 Let $s \to_{\hat{R}_P \cup R} t$, $Min(\mathcal{O}_{F'}(s)) = \{p_1, \dots, p_m\}$, and $Min(\mathcal{O}_{F'}(t)) = \{q_1, \dots, q_n\}$. Then, $s[2, \dots, 2]_{(p_1, \dots, p_m)} \to_{\hat{R}_P} t[2, \dots, 2]_{(q_1, \dots, q_n)}$ or $s[2, \dots, 2]_{(p_1, \dots, p_m)} = t[2, \dots, 2]_{(q_1, \dots, q_n)}$.

Proof. Let $s \xrightarrow{p}_{\hat{R}_P \cup R} t$. If there exists $i \in \{1, \dots, m\}$ such that $p_i \leq p$ then $\{p_1, \dots, p_m\} = \{q_1, \dots, q_n\}$ by Lemma 16(1). Thus, $s[2, \dots, 2]_{(p_1, \dots, p_m)} = t[2, \dots, 2]_{(q_1, \dots, q_n)}$. Otherwise, obviously $s \to_{\hat{R}_P} t$. Since every function symbol in F' does not occur in \hat{R}_P , $s[2, \dots, 2]_{(p_1, \dots, p_m)} \to_{\hat{R}_P} t[2, \dots, 2]_{(q_1, \dots, q_n)}$.

Lemma 18 $\hat{R}_P \cup R$ is confluent iff $0 \to_{R_P}^* g(\$,\$)$. Proof. Only if part: By $h(0) \leftarrow_{\hat{R}_P} h(g(\$,\$)) \to_{\hat{R}_P} 2$, confluence ensures that $h(0) \downarrow_{\hat{R}_P \cup R} 2$. Since 2 is a normal form, $h(0) \to_{\hat{R}_P \cup R}^* 2$. Thus, there exists a shortest sequence γ that satisfies $\gamma: h(0) \to_{\hat{R}_P \cup R}^* 2$. Since γ is shortest, $h(0) \to_{\hat{R}_P \cup R}^* 2$. Since γ is shortest, $h(0) \to_{\hat{R}_P \cup R}^* 2$. Obviously, every function symbol occurring in γ' belongs to \hat{F} . Thus, $0 \to_{\hat{R}_P}^* g(\$,\$)$. By Lemma 14, $0 \to_{R_P}^* g(\$,\$)$.

 $\begin{array}{lll} 0 \to_{R_{P}}^{\bullet} \mathsf{g}(\$,\$). \\ & \text{If part: Let } s \leftarrow_{\hat{R}_{P} \cup R}^{*} r \to_{\hat{R}_{P} \cup R}^{*} t. \text{ By Lemma } 17, \\ s[2,\cdots,2]_{(p_{1},\cdots,p_{m})} \leftarrow_{\hat{R}_{P}}^{*} r[2,\cdots,2]_{(o_{1},\cdots,o_{l})} \to_{\hat{R}_{P}}^{*} \\ t[2,\cdots,2]_{(q_{1},\cdots,q_{n})}, & \text{where} & \text{Min}(\mathcal{O}_{F'}(r)) &=\\ \{o_{1},\cdots,o_{l}\}, & \text{Min}(\mathcal{O}_{F'}(s)) &= \{p_{1},\cdots,p_{m}\}, \text{ and} \\ & \text{Min}(\mathcal{O}_{F'}(t)) &= \{q_{1},\cdots,q_{n}\}. & \text{Since } \hat{R}_{P} \text{ is confluent by Lemma } 12, & s[2,\cdots,2]_{(p_{1},\cdots,p_{m})} \downarrow_{\hat{R}_{P}} \\ t[2,\cdots,2]_{(q_{1},\cdots,q_{n})}. & \text{By } 0 &\to_{R_{P}}^{*} \text{ g}(\$,\$) & \text{and} \\ & \text{Lemma } 16(2), & s \to_{R_{P} \cup R}^{*} s[2,\cdots,2]_{(p_{1},\cdots,p_{m})} & \text{and} \\ & t \to_{R_{P} \cup R}^{*} t[2,\cdots,2]_{(q_{1},\cdots,q_{n})}. & \text{Thus, } s \downarrow_{\hat{R}_{P} \cup R}^{*} t. & \Box \\ \end{array}$

By Lemmata 2 and 18, the following theorem holds.

Theorem 19 Confluence of monadic and semiconstructor TRSs is undecidable.

6 Confluence of flat TRSs

In [2], the undecidability of confluence of flat TRSs has been claimed, but we found that the proof is incorrect. In this section, we explain its flaw.

Definition 20 [2] A rule $\alpha \rightarrow \beta$ is flat if height(α) ≤ 1 and height(β) ≤ 1 .

In [2], first the undecidability of reachability has been obtained by showing that $0 \to_{R_1}^* 1$ iff there

exists a solution for PCP for the following TRS R_1 .

$$\begin{split} R_1 &= R_0 \cup \\ \{0 \to \mathsf{f}(q_A^{(3)}, q_A^{(4)}, q_A^{(5)}, q_B^{(13)}, q_B^{(14)}, q_A^{(6)}, q_B^{(15)}, q_B^{(16)}), \\ \mathsf{f}(x_1, x_2, x_1, y_{11}, y_{12}, x_2, y_{11}, y_{12}) \to \\ \mathsf{g}(x_1, x_2, x_1, y_{11}, y_{12}, x_2, y_{11}, y_{12}), \\ \mathsf{g}(x_0, x_0, y_{17}, y_{17}, y_{18}, y_{18}, y_{10}, y_{10}) \to 1 \} \end{split}$$

Here, R_0 has many rules, so omitted (see [2], p.267).

Next, the undecidability of confluence has been obtained by showing the claim that $R_1 \cup R_2$ is confluent iff $0 \to_{R_1}^* 1$ for the following TRS R_2 .

$$R_{2} = \{2 \rightarrow 0, 2 \rightarrow 1\} \cup \{c \rightarrow 0 \mid c \in \Xi_{0} \setminus \{0, 1\}\}$$

$$\cup \{d(x) \rightarrow 0, d(1) \rightarrow 1 \mid d \in \Xi_{1}\}$$

$$\cup \{f(z_{1}, \dots, z_{8}) \rightarrow 1, g(z_{1}, \dots, z_{8}) \rightarrow 1 \mid$$
one of the z_{i} is 1 ,
the others are distinct variables}

Here, $\Xi=\Xi_0\cup\Xi_1\cup\{\mathsf{f},\mathsf{g}\}$, which is a set of function symbols occurring in R_1 . Ξ_0,Ξ_1 have many symbols, so omitted (see [[2],p.267]). Note that Ξ_0 has $q_A^{(3)},q_A^{(4)},q_A^{(5)},q_A^{(6)},q_B^{(13)},q_B^{(14)},q_B^{(15)},q_B^{(16)}$. However, the proof of the only-if part of the

However, the proof of the only-if part of the claim is incorrect. The proof claims that if $0 \to_{R_1}^* 1$ does not hold then $R_1 \cup R_2$ is not confluent because of the peak $0 \leftarrow_{R_2} 2 \to_{R_2} 1$. But, the claim overlooks that $0 \to_{R_1} f(q_A^{(3)}, q_A^{(4)}, q_A^{(5)}, q_B^{(13)}, q_B^{(14)}, q_A^{(6)}, q_B^{(15)}, q_B^{(16)}) \to_{R_2}^8 f(0,0,0,0,0,0,0,0) \to_{R_1} g(0,0,0,0,0,0,0,0) \to_{R_1} 1$. Thus, the undecidability of confluence of flat TRSs has not been shown. Now, Jacquemard claims that the proof can be corrected.

Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research 15500009 from Japan Society for the Promotion of Science.

References

- F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
- [2] F. Jacquemard. Reachability and confluence are undecidable for flat term rewriting systems. *Inf.Process.Lett.*, 87:265-270, 2003.
- [3] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada. The joinability and related decision problems for confluent semi-constructor TRSs. Submitted for publication.

[4] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada. The joinability and unification problems for confluent semi-constructor TRSs. In V. van Oostrom, editor, *Proc.15th RTA*, pages 285–300. LNCS 3091, 2004.