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概要

Given a pair of non-negative integers $m$ and $n$ , $P(m, n)$ denotes a subset of 2-dimensional
triangular lattice points defined by $P(m, n)=\mathrm{d}\mathrm{e}\mathrm{f}\{(xe_{1}+ye_{2})$ $|x\in\{0,1, \ldots, m-1\}$ , $y\in$

$\{0,1, \ldots, n-1\}\}$ where $e_{1}\mathrm{d}\mathrm{e}\mathrm{f}=$ $(1, 0)$ , $e_{2}\mathrm{d}\mathrm{e}\mathrm{f}=$
. $(1/2, \sqrt{3}/2)$ . Let $T_{m,n}(d)$ be an undirected

graph defined on vertex set $P(m, n)$ satisfying that two vertices are adjacent if and only if
the Euclidean distance between the pair is less than or equal to $d$ . In this PaPer, we discuss
a necessary and sufficient condition that $T_{m,n}(d)$ is perfect. More precisely, we show that
[$\forall m\in \mathrm{Z}_{+}$ , $T_{m,n}(d)$ is perfect ] if and only if $d\geq\sqrt{n^{2}-3n+3}$ .

Given a non-negative vertex weight vector $w\in \mathrm{z}_{+}^{P(m,n)}$ , a multicoloring of $(T_{m,n}(d), w)$

is an assignment of colors to $P(m,n)$ such that each vertex $v\in P(m, n)$ admits $w(v)$ colors
and every adjacent pair of two vertices does not share a common color. We also give an
efficient algorithm for multicoloring $(T_{m,n}(d), w)$ when $P(m, n)$ is perfect.

In general case, our results on the perfectness of $P(m, n)$ implies a polynomial time ap-
proximation algorithm for multicoloring $(T_{m,n}(d), w)$ . Our algorithm finds a multicoloring
which uses at most $\alpha(d)\omega+\mathrm{O}(d^{3})$ colors, where $\omega$ denotes the weighted clique number.
When $d=1$ , $\sqrt{3},2$ , $\sqrt{7},3$ , the approximation ratio $\alpha(d)=(4/3)$ , (5/3), (5/3), (7/4), (7/4),

respectively. When $d>1$ , we showed that $\alpha(d)\leq(1+\frac{2}{\sqrt{3}+_{H}^{\underline{2\sqrt}\underline{-3}}})$ .

We also showed the $\mathrm{N}\mathrm{P}$-compteteness of the problem to determine the existence of a
multicoloring of $(T_{m,n}(d), w)$ with strictly less than (4/3)cJ colors.

1 Introduction
Given a pair of non-negative integers $m$ and $n$ , $P(m, n)$ denotes the subset of 2-dimensional

integer triangular lattice points defined by

$P(m, n)\mathrm{d}\mathrm{e}\mathrm{f}=$
. $\{(xe_{1}+ye_{2})|x\in\{0, 1, 2, \ldots, m-1\}, y\in\{0,1,2, \ldots, n-1\}\}$

where $e_{1}=\mathrm{d}\mathrm{e}\mathrm{f}$ $(1, 0)$ , $e_{2}=\mathrm{d}\mathrm{e}\mathrm{f}(1/2, \sqrt{3}/2)$ . Given a finite set of 2-dimensional points $P\subseteq \mathrm{R}^{2}$ and

a positive real $d$ , a unit disk graph, denoted by $(P, d)$ , is an undirected graph with vertex set
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$P$ such that two vertices are adjacent if and only if the Euclidean distance between the pair is

less than or equal to $d$ . We denote the unit disk graph $(P(m, n),d)$ by $T_{m,n}(d)$ .
Given an undirected graph $H$ and a non-negative integer vertex weight $w’$ of $H$ , a rrvulticol-

oring of $(H, w’)$ is an assignment of colors to vertices of $H$ such that each vertex $v$ admits $w’(v)$

colors and every adjacent pair of two vertices does not share a common color. A multicoloring

problem on $(H, w’)$ finds a multicoloring of $(H, w’)$ which minimizes the required num ber of

colors. The multicoloring problem is also known as weighted coloring [4], minimum integer

weighted coloring [15] or $w$ coloring [12].
In this paper, we study weighted unit disk graphs on triangular lattice points $(T_{m,n}(d), w)$ .

First, we show a necessary and sufficient condition that $T_{m,n}(d)$ is a perfect graph. If the graph

is perfect, we can solve the multicoloring problem easily. Next, we propose a polynomial time

approximation algorithm for multicoloring $(T_{m,n}(d), w)$ . Our algorithm is based on the well-

solvable case that the given graph is perfect. For any $d\geq 1$ , our algorithm finds a multicoloring

which uses at most

$(1+ \frac{\lfloor\frac{2}{\sqrt{3}}d\rfloor}{\lfloor\frac{3+\sqrt{4d^{\mathrm{Z}}-3}}{2}\rfloor})\omega$ $+( \lfloor\frac{3+\sqrt{4d^{2}-3}}{2}\rfloor-1)\lfloor d+1\rfloor^{2}$

colors, where $\omega$ denotes the weighted clique number. Table 1 shows the values of the above

approximation ratio in case that $d$ is small.

We also show the $\mathrm{N}\mathrm{P}$-completeness of the problem to determine the existence of a multicoloring

of $(T_{m,n}(d),w)$ which uses strictly less than (4/3)w colors.
The multicoloring problem has been studied in several context. When a given graph is the

triangular lattice graph $T_{m,n}(1)$ , the problem is related to the radio channel (frequency) assign-

ment problem. McDiarmid and Reed [9] showed that the multicoloring problem on triangular

lattice graphs is $\mathrm{N}\mathrm{P}$-hard. Some authors $[9, 12]$ independently gave (4/3)-approximation algo-
rithms for this problem. In case that a given graph $H$ is a square lattice graph or a hexagonal

lattice graph, the graph $H$ becomes bipartite and so we can obtain an optimal multicoloring of
$(H,w’)$ in polynomial time (see [9] for example). Halldorsson and Kortsarz [5] studied planar

graphs and partial $k$-trees. For both classes, they gave a polynomial time approximation scheme
(PTAS) for variations of multicoloring problem with min-sum objectives. These objectives ap-
pear in the context of multiprocessor task scheduling. For coloring (general) unit disk graphs,
there exists a 3-approximation algorithm [6, 8, 14], Here we note that the approximation ratio

of our algorithm is less than $1+2/\sqrt{3}<$ 2.155 for any $d\geq 1$ .
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2 Well-Solvable Cases and Perfectness
In this section, we discuss some well-solvable cases such that the multicoloring number is

equivalent to the weighted clique number.
An undirected graph $G$ is perfect if for each induced subgraph $H$ of $G$ , the chromatic number

of $H$ , denoted by $\chi(H)$ , is equal to its clique number $\omega(H)$ . The following theorem is a main
result of this paper.

Theorem 1 When n $\geq 1$ and d $\geq 1_{f}$ we have the following;
[&m $\in \mathrm{Z}_{+}$ , $T_{m,n}(d)$ is perfect ] if and only if $d\geq\sqrt{n^{2}-3n+3}$ .

Table 2 shows the perfectness and imperfectness of $T_{m,n}(d)$ for small $n$ and $d$ .

To show the above theorem, we introduce some definitions. We say that an undirected graph
has a transitive orientation property, if each edge can be assigned a one-way direction in such
a way that the resulting directed graph $(V, F)$ satisfies that [$(a, b)\in F$ and $(b, c)\in F$ imply
$(a, c)\in F]$ . An undirected graph which is transitively orientable is called comparability graph.
The complement of a comparability graph is called $co$-comparability graph. It is well-known
that every $\mathrm{c}\mathrm{o}$-comparability graph is perfect.

Lemma 1 For any integer n $\geq 1$ , if d $\geq\sqrt{n^{2}-3n+3}$ , then $T_{m,n}(d)$ is a co-comparability

graph.

Proof: omitted.
The following lemma deals with the special case that $n=3$ , $d=1$ .

Lemma 2 For any m $\in \mathrm{Z}_{+}$ and $1\leq\forall d<\sqrt{3}$ , the graph $T_{m,3}(d)$ is perfect.

Proof: We only need to consider the case that $d=1$ , since $T_{m,n}(d)=T_{m,n}(1)$ when $1\leq d<$

$\sqrt{3}$. Let $H$ be an induced subgraph of $T_{m,3}(1)$ . When $\omega(H)\leq 2$ , $H$ has no 3-cycle Then

it is easy to show that $H$ has no odd cycle and thus %(H) $=\%(\mathrm{H})$ , since $H$ is bipartite. If
$\omega(H)\geq 3$ , then it is clear that u)(H) $=3$ and $\chi(H)\leq 3$ , since $\omega(T_{m,3}(1))=3$ and $T_{m,3}(1)$ has

a trivial 3-coloring. 1

Note that though the graph $T_{m,3}(1)$ is perfect, the graph $\mathrm{T}\mathrm{m};3(1)$ is not $\mathrm{c}\mathrm{o}$-comparability graph.
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From the above, the perfectness of a graph satisfying the conditions of Theorem 1 is clear.
In the following, we discuss the inverse implication. We say that an undirected graph $G$ has an
odd-hole, if $G$ contains an induced subgraph isomorphic to an odd cycle whose length is greater

than or equal to 5. It is obvious that if a graph has an odd-hole, the graph is not perfect. In

the following, we denote a point $(xe_{1}+ye_{2})$ $\in P(m, n)$ by $\langle x, y\rangle$ .

Lemma 3 If $1\leq d<\sqrt{7}$ , then $\forall m\geq 5$ , $T_{m,4}(d)$ has at least one odd-hole.

Proof: If $1\leq d<\sqrt{3}$ , then a subgraph induced by $\{$ $\langle 2, 0\rangle$ , $\langle 1, 1\rangle$ , $\langle 0, 2\rangle$ , $\langle 0, 3\rangle$ , $\langle 1, 3\rangle$ , $\langle 2, 3\rangle$ ,
$\langle 3, 2\rangle$ , $\langle 3, 1\rangle$ , $\langle 3, 0\rangle$ $\}$ is a 9-hole. If $\sqrt{3}\leq d<2$ , then subgraph induced by $\{$ $\langle 3, 0\rangle$ , $\langle 1, 1\rangle$ , $\langle 0, 2\rangle$ ,
$\langle 1, 3\rangle$ , $\langle 2, 3\rangle$ , $\langle 4, 2\rangle$ , $\langle 4, 1\rangle$ $\}$ is a 7-hole. If 2 $\leq d<\sqrt{7}$ , then a subgraph induced by
$\{\langle 2,0\rangle, \langle 0,2\rangle, \langle 1,3\rangle, \langle 3,2\rangle, \langle 3, 0\rangle\}$ is a 5-hole. When $1\leq d<\sqrt{7}$ , $T_{5,4}(d)$ has at least

one odd-hole, and hence the proof is completed. 1

Lemma 4 if $1\leq d<\sqrt{13}$, then $\forall m\geq 6$ , $T_{m,5}(d)$ has at least one odd-hole.

Proof: If $1\leq d<\sqrt{7}$ , then odd-holes in the proof of Lemma 3 are induced subgraph of $T_{6,5}(d)$ .
If $\sqrt{7}\leq d<3$ , then a subgraph induced by $\{\langle 2, 0\rangle, \langle 0\}2\rangle$ , $\langle 1, 4\rangle$ , $\langle 4, 2\rangle$ , $\langle 4, 0\rangle$ $\}$ is a 5-hole.
If $3\leq d<\sqrt{13}$ , then a subgraph induced by { $\langle 3, 0\rangle_{7}\{0$, $3\rangle$ , $\{2, 4\rangle, \langle 5, 3\rangle, \langle 5,0\rangle\}$ is a 5-hole.

When $1\leq d<\sqrt{13}$, $T_{6,5}(d)$ has at least one odd-hole, and hence the proof is completed.

Lemma 5 For any integer n $\geq 4$ , if $1\leq d<\sqrt{n^{2}-3n+3}$, then $\exists m\in \mathrm{Z}+$ , $T_{m,n}(d)$ is

imperfect

Proof: In the following, we show that $\forall n\geq 4$ , if $1\leq d<\sqrt{n^{2}-3n+3}$, then $\exists m\in \mathrm{z}_{+}$ ,
$T_{m,n}(d)$ has at least one odd-hole, by induction on $n$ . When $n=4,5$ , it is clear from Lemmas 3
and 4, respectively.

Now we consider the case that $n=n’\geq 6$ under the assumption that if
1 $\leq d<$ $(n’-1)^{2}$ - $3(n’-1)+3_{\dot{\mathit{1}}}$ then $\exists m’\in \mathrm{Z}_{+}$ , $T_{mn’-1}/,(d)$ has at least one odd-
hole. If $1\leq d<\sqrt{(n’-1)^{2}-3(n’-1)+3}=\sqrt{n^{\prime 2}-5n’+7}$, then $T_{m’,n’}(d)$ has at least
one odd-hole, since $T_{mn’-1}/,(d)$ is an induced subgraph of $T_{m’,n’}(d)$ . In the remained case
that $\sqrt{n^{\prime 2}-5n’+7}\leq d<\sqrt{n^{\prime 2}-3n’+3}$ , the set of points { $\langle n’-3,0\rangle$ , $\langle 0, n’-2\rangle$ , $\langle$ $n’$ –

4, $n’-1\rangle$ , ( $2\mathrm{n}7-7,$ $n’-2\rangle,$ $\langle$ $2n’-6,0\}$ $\}$ is contained in $P(m’, n’)$ , if $m’=2n’-$ $5$ . It
is easy to see that the above five vertices induces a 5-hole of $T_{m’,n’}(d)$ , when $n’\geq 6$ and
$\sqrt{n^{\prime 2}-5n’+7}\leq d<\sqrt{n^{\prime 2}-3n’+3}$ I

Lemma 5 shows the imperfectness of every graph which violates a condition of Theorem 1.
Thus, we completed a proof of Theorem 1. From the above lemmas, the following is immediate.

Corollary 1 Let d $>1$ be a real number. Then, $T_{m,n}(d)$ is a $co$ -comparability graph, if and
only if n $\leq\frac{3+\sqrt{4d^{2}-3}}{2}$ .

Lastly, we discuss some algorithmic aspects. Assume that we have a $\mathrm{c}\mathrm{o}$-comparability graph
$G$ and related digraph $H$ which gives a transitive orientation of the complement of $G$ . Then
each independent set of $G$ corresponds to a chain (directed path) of $H$ . The multicolorin$\mathrm{g}$
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problem on $G$ is essentially equivalent to the minimum size chain cover problem on $H$ . Every
clique of $G$ corresponds to an anti-chain of $H$ . Thus the equality $\omega(G)=\chi(G)$ is obtained
from Dilworth’s decomposition theorem [2], It is well-known that the minimum size chain
cover problem on an acyclic graph is solvable in polynomial time by using an algorithm for
minimum-cost circulation flow problem (see [13] for example).

Though an weighted graph $(T_{m,3}(1), w)$ is not a $\mathrm{c}\mathrm{o}$-comparability graph, we can construct
exact multicoloring algorithm for the graph. Here we omit the detail.

3 Approximation Algorithm

In this section, we propose an approximation algorithm for multicoloring the graph $(T_{m,n}(d)_{\}w)$ .
When $d=1$ , McDiarmid and Reed [9] proposed an approximation algorithm for $(T_{m,n}$(1) $, w)$ ,
which finds a multicoloring with at most $(4/3)\omega(T_{m,n}(1), w)+1/3$ colors.

In the following, we propose an approximation algorithm for $(T_{m,n}(d), w)$ when $d>1$ . The
basic idea of our algorithm is similar to the shifting strategy [7].

Theorem 2 When $d>1$ , there exists a polynomial time algorithm for multicoloring $(T_{m,n}(d), w)$

such that the number of required colors is bounded by

$(1+ \frac{|_{\llcorner}\frac{2}{\sqrt{3}}d\rfloor}{\lfloor\frac{3+\sqrt{4d^{2}-3}}{2}\rfloor})\omega(T_{m,n}(d),w)+([\frac{3+\sqrt{4d^{2}-3}}{2}\rfloor-1)\chi(T_{m,n}(d))$ .

Proof: We describe an outline of the algorithm. For simplicity, we define $K_{1}= \lfloor\frac{3+\sqrt{4d^{2}-3}}{2}\rfloor$

and $K_{2}= \lfloor\frac{3+\sqrt{4d^{2}-3}}{2}\rfloor+\lfloor\frac{2}{\sqrt{3}}d\rfloor$ .

First, we construct $K_{2}$ vertex weights $w_{k}’$ for $k\in$ { $0,$ 1, $\ldots$ , K2 –1} by setting

$w_{k}’(x, y)=\{$

0, $y\in\{k$ , $k+1$ , $\ldots$ , $k+ \lfloor\frac{2}{\sqrt{3}}d\rfloor-1\}$ (mod A2),

$\lfloor\frac{w(x,y)}{K_{1}}\rfloor$ , otherwise.

Next, we exactly solve $K_{2}$ multicoloring problems defined by $K_{2}$ pairs
(Tmjn $(\mathrm{d})\mathrm{y}w_{k}’$ ), $k\in\{0, 1, \ldots, K_{2}-1\}$ and obtain $K_{2}$ multicolorings. We can solve each problem

exactly in polynomial time, since every connected component of the graph induced by the

set of vertices with positive weight is a perfect graph discussed in the previous section. Thus
$\chi(T_{m,n}(d),w_{k}’)=\omega(T_{m,n}(d), w_{k}’)$ for any $k\in\{0,1, \ldots, K_{2}-1\}$ . Put $w’=w- \sum_{k=0}^{K_{2}-1}w_{k}’$ .
Then each element of $w$

’ is less than or equal to $K_{1}-1$ . Thus we can find a multicoloring

of $(T_{m,n}(d),w’)$ from the direct sum of $K_{1}$ – 1 trivial colorings of $T_{m,n}(d)$ . The obtained
multicoloring uses at most $(K_{1}-1)\chi(T_{m,n}(d))\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{r}\mathrm{s}$ . Lastly, we output the direct sum of
$K_{2}+1$ multicolorings obtained above. The definition of the weight vector $w_{k}’$ implies that
$\forall k\in\{0,1, \ldots, K_{2}-1\}$ , $K_{1}\omega(T_{m,n}(d), w_{k}’)\leq\omega(T_{m,n}(d), w)$ . Thus, the obtained multicoloring

uses at most $(K_{2}/K_{1})\omega(T_{m,n}(d), w)+(K_{1}-1)\chi(T_{m,n}(d))$ colors.
The following lemma gives the chromatic number of $T_{m,n}(d)$ .
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Lemma 6 if $m$ , $n$ are sufficiently large, then $\chi(T_{m,n}(d))=\hat{d}^{2}$ where $\hat{d}$ is the minimum Eu-
clidean distance between ttao points in $P(m, n)$ subject to that distance being greater than $d$ .
Clearly, $d<\hat{d}\leq\lfloor d+1\rfloor$ .

Proof: See McDiarmid [9] for example. I
When $d$ is small, Table 1 shows the approximation ratio. The following corollary gives a

simple upper bound of the approximation ratio.

Corollary 2 For any d $\geq 1$ , we have 11 $\leq 1+\frac{2}{\sqrt{3}+\frac{2\sqrt{3}-3}{d}}$ .

Here we note that if we apply our algorithm in the case that $d=1$ , then the algorithm finds
a multicoloring which uses at most $(4/3)\omega(T_{m,n}(1), w)+6$ colors.

4 Discussion
In this paper, we dealt with the triangular lattice. In the following, we discuss the square

lattice. Given a pair of non-negative integers $m$ and $n$ , $Q(m, n)\mathrm{d}\mathrm{e}\mathrm{f}=\{0,1, 2, \ldots , m-1\}\cross$

$\{0,1, 2, \ldots, n-1\}$ denotes the subset of 2-dimensional integer square lattice points. We de-
note the unit disk graph $(Q(m, n)$ , $d)$ by $S_{m_{J}\sim n}(d)$ . In case that $d<\sqrt{2}$ , it is clear that
$S_{m,n}(d)=S_{m,n}(1)$ and the graph is bipartite for any $m$ and $n$ . If $d=\sqrt{2}$ , we proposed a
(4/3)-approximation algorithm for multicoloring $(S_{m,n}(\sqrt{2}), w)$ in our previous paper [11]. We
also showed the $\mathrm{N}\mathrm{P}$-hardness of the problem.

Unfortunately, Theorem 1 is not extensible to the square lattice case. Table 3 shows
the perfectness and imperfectness of unit disk graphs on the square lattice for small $n$ and
$d$ . The perfectness of $T_{m,3}(\sqrt{2})$ was shown in [11]. The graph $S_{m,3}(2)$ contains a 5-hole:
$\{(0,0), (2, 0), (2, 1), (1, 2)_{7}(0.2)\}$ .
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