ooooooDoon 14260 20050 166-171

166

An approximation algorithm for matroid covering

JI{BF B—ER (Shinichiro Kawano) A% BiA (Yota Otachi) 1Ll #&— (Koichi Yamazaki) *

Department of Computer Science, Faculty of Engineering, Gunma University

BB AL - TR - T 2R

1 Introduction

In this paper we address the following matroid covering problem: Given a matroid M = (S,T)
(S is the ground set and T is the collection of independent set), find to minimum number of
independent sets which cover §. We call the minimum number covering number of M. For
example, let G be a graph and M be the graphic matroid of G. Then the covering number of
M is edge-arboricity of G (the edge-arboricity of a graph is the minimum number of forests
which cover the edge set of the graph). Matroid covering problem has many applications (see
[3] and also Section 5).

It is known that the covering number can be computed in polynomial time, however, the time
complexity is high. For instance the edge-arboricity of a graph can be computed in O(mn logn)
[3], where n and m denote the number of the vertices and the edges, respectively. Our goal in
this paper is to find simple and fast approximation algorithms with small approximation ratios
for the matroid covering problem.

2 Preliminaries

Let M = (S,7) be a matroid. The ground set S and the collection I of independent sets are
denoted by S(M) and Z(M) respectively. The rank function of M is denoted by p. For a subset
T of 8§, M’ = (T,T') is also a matroid where 7’ = {X : X € T, X € Z}. The matroid M’ is
called the restriction of M to T and we denote it by M | T'. A flat F of M is a subset of S such
that p(F U {z}) > p(F) for any z € S — F. A hyperplane is a flat of rank (M) — 1.

3 An approximation algorithm for matroid covering

In this section we present approximation algorithms for matroid covering. For some matroid
classes, the algorithm guarantees the solution to be at most ¢ times the optimal for some
constant ¢ (which depends on the class, see section 5).

3.1 A general algorithm

In this subsection, for the matroid covering problem, we describe a general algorithm which is
designed within a general framework as follows.

Algorithm GA (General Algorithm)
input: a matroid M = (5,7)

*This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-
Aid for Scientific Research (C), 16500008, 2004.

1687

output: an independent partition
1: My:=M; §$1:=8; I1:=T; i:=1;

2: while S; # 0 do

3: begin

4: find a flat S;41 of M;; DE; = 8; — Sit1;
5: M_H_ = Mj, ISH_l; Z.:Z+1,
6: end;

7o enti=1; j:=0;

8: while 3h such that DEp, # 0

9: begin

10: ji=j+1 P=10
11: for i := 1 to cnt do

12: if DE; + {) then
13: begin
14: choose any x € DE;
15: DEi = DEZ' - {iIJ},
16: P = P;U{z};
17: end
18: end;

19: output B, (1 <k <j)

Note that the value of j at the end of the algorithm equals max{|DEy},..., |DEcns|}, we will
refer to it as size of output. Theorem 3.1 shows the correctness of the algorithm GA,

Theorem 3.1 Let M = (S,Z) be a matroid, F be a flat of M, and A is an independent subset
of F. Then AU{z} €T foranyz € S—F.

Proof. Since F is a flat, p(FU{z}) > p(F) for any z € S—F. If AU{z} ¢ T then p(AU{z}) =
p(A). Thus we have p(F U{z}) = p((A u{zhu F) < p(AU{z}) + p(F) — p(A) = p(F). But
this is a contradiction. O

3.2 A handy algorithm

In this subsection, we introduce a handier version of the algorithm GA for the matroid covering
problem. The version takes as input the flat matrix which is defined as follows.

Let A be a matrix and R be a row in A. SM(A, R) denotes the submatrix of A obtained by
deleting the columns C such that the entry in R and C is nonzero. A flat matriz of a matroid
M = (S,T) is defined recursively as follows:

1. The empty 0-by-0 matrix is a flat matrix.
2. It

(a) there is a mapping f such that for any row R in A f assigns SM(4, R) to a flat of
M,

(b) for any row R in A, SM(A, R) is a flat matrix, and

(c) the rank of the f(SM(4, R)) is at most the number of nonzero row vectors in
SM(A, R),

then A is also a flat matrix.

168

Now we are ready to describe the handier version. Using the flat matrix, the algorithm GA
can be modified for more practical use as follows.

Algorithm FMA (Flat Matrix Algorithm)
input: a flat matrix A of a matroid M = (5,7).
output: an independent partition

10 Ap = A4

2: while A; has a nonzero row do
3: begin

4: find a minimum weight

nonzero row vector M R; of A;;
5 Ai-{-l = SM(A@, MR«,),
6: DE; = {e € § | e corresponds to a column
which is in A; but not in 4;41};
7: end;
8 ent:=1; Ji=0
9: while 3h such that DE}y, # ¢

10: begin

11: ji=7+1 Pj:=0

12: for i := 1 to cnt do

13: if DE; # () then

14: begin

15: choose any = € DE;;
16: DE; .= DE; — {z};
17: Pj = P; U {z};

18: end

19: end;

20: output Py (1 <k <j);

Theorem 3.2 Let A be a flat matriz of a matroid M = (S,T) such that each column of A
has at most k nonzero-entries. Then the size of output of the algorithm is at most k times the
covering number of M.

Proof. Let i be an index such that |DE;| = max;|DE;| and let us denote {e € S | e
corresponds to a column in A;} by F;.

Since k|F;| > (the number of nonzero-entries in A4;) > (the number of nonzero rows in
A;)|DE;| > p(F)|DE;|, we have |F|/p(F;) > |DE;|/k = (the size of output)/k. Now the
theorem follows Edmonds’ covering theorem that for a matroid M = (S,Z), the covering number
of M equals maxxcs[|X|/p(X)]. O

4 Straight greedy algorithm

A greedy approach is one of the most simple and faster ways to obtain an approximate solution.
In this section we estimate the performance ratio of the following straight greedy algorithm.

Algorithm straight greedy algorithm

input: a matroid M = (8,7)

output: an upper bound of the covering number of M
1 m:=0

(‘ 169

2: while S(M) # 0 do
3: begin
4: find a maximum independent set T of M;
5: M = M|(S(M)-T)

(i.e. the restriction of M to S(M) —T);
6: m:=m+ 1;
7. end;

8: output m;
How good is the straight greedy algorithms? What is the performance ratio of the straight
greedy algorithm? Let us analyze the worst case behavior of the straight greedy algorithm

for the edge-arboricity problem. Consider the edge-arboricity of the graph in Figure 1. The
edge-arboricity of the graph is 2 as shown in Figure 2, but the straight greedy algorithm may

output 4 as illustrated in Figure 3.

Figure 1: A graph for which the straight greedy algorithm may yield a bad solution.

1D ¢

Figure 2: An optimal partitioning.

[] .
® 4 ®

Figure 3: A worst case behavior.

From the above observation, it is not difficult to see that we can make a graph G with 2"
vertices such that the edge-arboricity of G is 2 and the straight greedy algorithm may produce
n partitions. As we will see (Section 5), the performance ratio of algorithm FMA for the problem

is 2.

5 Applications

5.1 Graphic matroid

It is known that the covering problem on a graphic matroid corresponds to the problem com-
puting the edge-arboricity of a graph. Let us adapt the algorithm FMA to the edge-arboricity

110

problem. H is a hyperplane iff § — H is a cocircuit. In a graphic matroid, a cocircuit is a
minimal cutset. Thus, we have the following algorithm from the algorithm FMA.

Algorithm ARBOR-MINCUT

input: a graph G = (V,E)

output: an upper bound of the edge-arboricity of G

1: find a minimal cutset C of G;

2. compute the connected components
Gy and Go of G — C;

3: /* Note that G — C has two components
because C is minimal. */

4: ARBOR-MINCUT :=
max{|C|, ARBOR-MINCUT(G1),

ARBOR-MINCUT(G2)};

One of cheapest way to find a cutset (not necessary minimal) is to search for the edges
incident to a vertex of minimum degree (because such a set of edges is a disjoint union of
cutsets). The algorithm FMA algorithm derives the following algorithm, which is the same as
the algorithm proposed in [1]. The algorithm can be easily implemented and its running time
is O(V(Q)] + | E(@)).

Algorithm ARBOR-MINDEG
input: a graph G = (V, E)
output: an upper bound of the edge-arboricity of G

11 m:=0

2: while E(G) # 0 do

3: Dbegin

4: find a vertex v with minimum degree of G;
5: if dg(v) > m then m = dg(v);

6: G = GV(G) — {v}];

7: end;

8 output m;

Take the incident matrix of G for the flat matrix, it is then clear that the approximation
ratio is 2. By a simple observation, we have the following resul.

Lemma 5.1 If the edge-arboricity of a graph G is at most k, then any subgraph H of G has a
vertez of degree at most 2k — 1.

Proof. From Edmonds’ covering theorem, if the edge-arboricity of a graph G is at most &,
then [T,%%%] < k holds for any subgraph H of G. So for any subgraph H of G, the average

degree of H is less than 2k (note that 2%%1 <2f ‘J,?—ISI;_%] < 2k), which completes the lemma.
O

Corollary 5.2 For a planar graph G, if ARBOR-MINDEG outputs 4 or 5 for G then the edge-
arboricity of G is 3.

Proof. It is well-known that the edge-arboricity of any planar graph is at most 3. If ARBOR-
MINDEG outputs 5 for G, then the edge-arboricity of G is at least [5/2] = 3. If ARBOR-MINDEG
outputs 4 for G, then there exists a subgraph which has no vertices of degree less than 4. From
the above lemma, the edge-arboricity of the input graph is at least 3. =]

17

5.2 Transversal matroid

Let us consider the following scheduling problem. There are jobs and machines. Each job can
be processed on at least one machine, and processed in a unit time (on any available machine).
Each round has a unit time, so each machine processes at most one job in each round. Then
problem is to find the minimum number of rounds needed to process the all jobs. This scheduling
problem can be viewed as a covering problem on a transversal matroid.

Let us consider the example shown in Table 1. A straight greedy strategy (i.e. taking
& maximum matching in each round) might output ”3 rounds” (See Figure 4). However, as
shown Figure 5, the minimum number of rounds is 2, and algorithm FMA can achieve the
optimal rounds in the example. If for any job J; the number of machines which can process J;
is at most &, then algorithm FMA for the problem has performance ratio of at most & (for the

example, k is 2).

[Ji | Ja | Js [Js | Js | Je | Jv
My 1 0 0 0 1 1 0
Mo, 1 1 0 b 0 0 0
M 0 1] 1 0 0 1 1
MglloJol1]1]0]|0]|0

Table 1: The relationships between jobs and machines.

Figure 5: An optimal scheduling.

Figure 4: A bad scheduling.

References

[1] S.Arikati, A.Maheshwari and C.Zaroliagis, Efficient Computation of Implicit Representa-
tions of Sparse Graphs, Discrete Applied Mathematics Vol. 78 (1997) 1-16.

[2] J.Edmonds, Lehman’s switching game and a theorem of Tutte and Nash-Williams, J. Res.
Nat. Bur. Standards Sect. B 69B (1965) 73-77.

[3] H.N.Gabow and H.H.Westermann, Forests, Frames, and Games: Algorithms for Matroid
Sums and Applications, Algorithmica Vol.7 (1992) 465-497.

