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1 Introduction
A linkage is a collection of line segments, called bars, possibly joined at their ends, called joints. A
reconfiguration of a linkage is a continuous motion of their bars, preserving the length of each bar and
disallowing bars to cross. A reconfiguration of a linkage is called planar if all bars are in $\mathbb{R}^{2}$ during the
motion. In this PaPer, we consider only a planar reconfiguration of a planar linkage, and we may omit the
word “planar.” Recently, such reconfiguration problems have been attracted special attention[3, 6, 8].

For such planar reconfiguration, there is a fundamental question; whether any tree linkage can be
flattened. The answ er of this question is “no” since there exist several “locked trees” which can not be
flattened in $\mathbb{R}^{2}[1,2,4,7, 8]$ . For instance, Figure 1 illustrates a locked tree[2]. It is desired to characterize
the class of trees which can be flattened, Recently, Kusakari et al. found a class of trees, called monotone
trees, in which any tree can be flattened [6], Figure 2 illustrates a monotone tree[6]. Kusakari et $al$

show that any monotone tree can be flattened, and give a method for flattening monotone trees[6]. Thus,
the monotonicity is the sufficient condition for the class of trees which can be flattened.

In this PaPer, we give a randomized algorithm for generating various kinds of monotone trees. For
characterizing monotone tree $T$ , there are may parameters, such as the number $|J|$ of joints, the distri-
bution of degrees, and the distribution of bar lengths, $\cdots$ . In this paPer, we focus on the number $|J|$ of
joints. Thus, the input of our algorithm is the natural number $n\in \mathrm{N}$ , and the output is a monotone tree
$T=(J, B)$ having $n$ joints and $n-1$ bars. Our algorithm generate a monotone tree of $n$ joints in time
$O(n\log n)$ , using space $O(n)$ .

2 Preliminaries
Let $L=(J, B)$ denote a linkage consisting of a joint set $J$ and a bar set $B$ . A structural graph of a linkage
$L$ is denoted by $G(L)$ . An embedding of a structural graph $G(L)$ is called a configuration of linkage $L$ .

Figure 2: A monotone tree [6].

Figure 1: A locked tree[2].
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A linkage $L=(J, B)$ is simple if nonadjacent bars $b$ , $b’\in B$ do not cross each other. In this paper, we
consider only a simple linkage, and we may omit the word “simple.”

A linkage $L$ is called a (rooted) tree linkage or a (rooted) tree if the structural graph $G(L)$ is a (rooted)
tree. Let $T=(J, B)$ be such a rooted tree linkage, and $r\in J$ be the root of $T$ . For convenience, with
out loss of generality, we may assum $\mathrm{e}$ that the root $r$ has tl$\mathrm{z}\mathrm{e}$ minimum $x$-coordinate. The set of children
of joint $j\in J$ is denoted by $N(j)\subset J$ , and the set of descendant of joint $j\in J$ is denoted by $D(j)\subset J$ .
The degree $d(j)$ of a joint $j$ is the number $|N(j)|$ of neighbors of $j$ . A leaf is a joint having no children.
A join $j$ is inner if $j$ is neither the root $r$ nor a leaf. A linkage $L$ is called a chain if the structural $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}1_{1}$

$G(L)$ is a path. A chain $C$ is monotone (in $x$ direction) if the intersection of $C$ and any vertical line
is either a single point or empty. A tree $T$ is monotone $x$ direction) if every root-leaf chain in $T$ is
monotone in $x$ direction.

For any point $P\in \mathbb{R}_{7}^{2}$ the x-,y- coordinate of $p$ is denoted by $x(p),y(p)$ , respectively. For any vertical
line 1 or any vertical line segment $s$ , the x- coordinate is denoted by $x(l),x(s)$ , respectively. The crossing
point of two segments $s$ , $s’$ is denoted by $c(s, s’)$ . For a point $p\in \mathrm{R}^{2}$ and a direction $d\in(-\pi,\pi]$ , the
ray starting from $p$ and going in the direction $d$ is denoted by $rd(p)$ . In this PaPer, we may denote by
$d=-y,x$, $y,$ $-x$ as the direction $d=- \frac{\pi}{2},0$ , $\frac{\pi}{2}$ , $\pi$ , respectively.

3 An algorithm for Generating Monotone Tree

In this section, we give an algorithm for generating a monotone tree.

3.1 Properties of Monotone Tree

For a monotone tree, the following lemma holds:

Lemma 1 A tree T $=(.7,$B) is a monotone tree if and only if the following tuto condition holds:

(i) (monotonicity) for any joint j $\in J$ and any descendant $j’\in D(j)$ ,

$x(j)\leq x(j’)$ ;

(ii) (simplicity) any tetio bar b, $b’\in B$ do not cross each other .

(Proof) Obvious. $\square$

We will design a randomized algorithm for generating monotone trees, whose correctness is based

on this Lemma 1. Moreover, our algorithm technically based on so called the plane sweep methods [9].

Thus, our algorithm generates a monotone tree constructing joints ffom the root to leaf by sweeping the

plane $\mathrm{R}^{2}$ from left to right. Note that, on the plane sweep method, it does explicitly not need that the

geometrical data in ahead (right) side of the sweep line $S$ . We aPPly this property of the plane sweep

method to design our algorithm. Thus, our algorithm adequately keeps the bars which intersect the sweep

line $5,\mathrm{a}\mathrm{n}\mathrm{d}$ are called sweeping bars.

3.2 Algorithm
In this subsection, we design an generating algorithm.

We use two data structures:

(1) the sweeping bars $SB_{7}$ in which elements $b_{i}\in SB$ are ordered by the y-coordinate of crossing points
$c(b_{i}, S)$ ; and

(2) the event schedule $BS$ , which keeps two kinds of event, called joint event and crossing point event

Joint Event $JB\langle j$): A joint event $JB(j)$ corresponds to a joint $j$ and a incident bar $b=(j’,j)$ , where
$x(j’)<x(S)<\mathrm{x}(\mathrm{j})$ . Any joint event is executed when the sweep line $S$ reached $x(j)$ .
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Crossing Point Event CE$(b, b’)$ : A crossing point event CE(b, $b’$ ) corresponds to a crossing point
$c(b, b’)$ of successive bars $b$ , $b’\in SB$ , where $x(S)<x(c(b, b’))$ . Any crossing point event CE(b, $b’$ ) is
executed when the sweep line $S$ reached $x(c(b, b’))$ .

We denote by $x(E)$ the $x$-coordinate of event $E$ , which is either a joint event or a crossing point event.
We can adequate update the event schedule ES so that events $E$ in ES are ordered by the x-coordinate.
Note that the order of events by execution may be different from the order of events by generation.

Our algorithm is a randomized algorithm with argum ents the number $n\in \mathrm{N}$ joints and the maximum
degree $\Delta\in \mathrm{N}$ , and generates a monotone tree $T=(J, B)$ with $|J|=n$ joints in which the degree $d(j)$ of
any joint $j\in J$ is at most A.

Algorithm Generate Monotone Tree: GMT(n, $\Delta$ )
Let $B:=\phi$ , $J.’=\{r\}_{)}SB:=\phi$ , $ES:=\{JE(r)\}_{7}x(S):=-\infty$ .
Stepl: Get the event $E$ with the minimum $x$-coordinate from ES,&nd remove $E$ from ES;

Step2: Move the sweep line $S$ to $x(E)$ , thus let $x(S)$ $:=x(E)$ ;

$\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}3$ : Execute adequate event depends on the kind of $E$ , thus execute either a joint event JE or a
crossing point event CE;

$\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}4$ : Go back to Step 1 if $|J|<n$ .
(Joint Event JE(j))

The incident bar $b=(j’,j)$ is in $SB$ (if $j\neq r$). Let $b_{a}$ be the bar successive above $b$ in $SB$ , and let
$b_{b}$ be the bar successive bellow $b$ in $SB$ . Remove $b$ from $SB$ , insert $b=(j’,j\rangle$ into $B$ , and insert $j$ into
$J$ . Next, we choose degree $d(j)$ at random so that $1\leq d(j)\leq$ IS if $ES=$, or $0\leq d_{l}(j)\leq\Delta$ if $ES\neq\phi$ .
Then, the following two cases occur;

{Casel:(d(j) $=0$)} Check whether $b_{a}$ and $b_{b}$ cross each other, and then insert $CE\langle b_{a}$ , $b_{b}$ ) to ES if they
cross.
{Casel:(d(j) $\geq 1$ } $\}$ Generate nesv $\mathrm{d}(\mathrm{j})$ bars $b_{1}=(j,j_{1})$ , $b_{2}=(j,j_{2})$ , $\cdots$ , $d(j)=(j,jd(j))$ , whose slopes
and lengths are selected at random, so that $x(\mathrm{j})\leq x(j_{i})$ . (See Lemma 1(i).)

Note that the bar set $B$ is not updated at this time. With out loss of generality, we may assume
that the indices are sticked on bars by the order of bars lighted by the ray $r_{d}(j)$ from $d=- \frac{\pi}{2}$ to $d= \frac{\pi}{2}$ .
Then, insert sweeping bars $b_{1}$ , $b_{2_{7}}\cdots$ , $d(j)$ into $SB$ so that the order is kept, and insert joint events
$JE(j_{1})$ , $JE(j_{2})$ , $\cdots$ , $JE(j_{d(j)})$ into ES. Furthermore, insert $CE(b_{a}, b_{1})$ into ES if $b_{a}$ and $b_{1}$ cross each

$\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r},\mathrm{a}\mathrm{n}\mathrm{d}$ insert $CE(b_{d(j)}, b_{b})$ into ES if $b_{d(j)}$ and $b_{b}$ cross each other. Figure 3 illustrates a joint event.
(Crossing point event CE(b, $\mathrm{b}\mathrm{f})$ )

For two bars $b=(j\iota,j_{\mathrm{r}})$ and $b’=(j_{l}’,j_{r}’)$ , without loss of generality, we assume that $y(j\iota)>y(j_{l}’)$

and $y(j_{r})<y(j’)$ . Let $b_{a}$ be the bar successively above $b$ in $SB$ , and $b_{b}$ be the bar successively below $b’$

in $SB$ . Then, either $b$ or $b’$ is chosen at random, and the chosen bar generate no descendant. We call
such chosen bar a cut bar. We assume that $b’$ is such a cut bar. Then, remove $b’$ from $5\mathrm{B},\mathrm{a}\mathrm{n}\mathrm{d}$ $JE(j_{r}’)$

form ES. Furthermore, remove all crossing point event $CE(b’, b’)$ for any pair of $b’$ , $b’\in SB$ if they
remain ES, Next, we choose a scale $s\in(0,1)$ at random. Then, generate a new bar $b^{*}=(J_{l}’,j^{*})$ so that
$|b^{*}|=s\mathrm{x}$ $|j_{l}’\mathrm{c}(b,$ &’ $)$ |, and insert $b^{*}$ into $B$ and insert $j^{*}$ into $J$ .

We may call the process above cut. One can easily observe that the cut operation ensures simplicity
of the tree. (See Lemm a 1(ii).) Figure 4 illustrates a crossing point event.

3.3 Analysis

In this subsection, we analyze the algorithm $GMT(n, \Delta)$ .
Let $T=$ $(J, B)$ be a tree generated by $GMT(n, \Delta)$ . Then, $|J|$ $=n$ and $|B|=n-$ $1$ . Moreover, let

$J_{i}\subset J$ be the set of inner joints, and $J_{l}\subseteq J$ be the set of leaves. Any inner joint $ji\in J_{i}$ is generated by
a joint event. On the other hand, a leaf is generated by the following (a),(6),or(c):

(a) Zero is chosen for the degree $d(j)$ at joint event$\mathrm{n}\mathrm{t}$ JE(j) $)$
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$s$

Figure 4: Crossing point event CE$(b, b’)$ .
Figure 3: Joint event JE(j).

(b) A bar is cut at a crossing point event CE $\langle$ b, $b’$ );

(c) When $n$ joints are generated, then the algorithm $GMT(n_{7}\Delta)$ is $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}_{?}\mathrm{a}\mathrm{n}\mathrm{d}$ all joint events
rem ained in ES are removed. The parent joints of these removed joint events make leaves of $T$ .

For $p\in\{a, b, c\}$ , let $Jip\subset J$ be the set of joints generated by above (p). Then, the following equation
holds.

$|J|=|J_{t}|+|J_{l}|$

$=|J_{i}|+|J_{l_{a}}|+|J\iota_{b}|+|J_{l_{\mathrm{c}}}|$ (1)

$=n$ .

Let $\mathcal{E}$ , $J\mathcal{E}$ , and ce be the set of events $E$ , joint events JE, and crossing point events CE, respectively,
which are generated during the execution of $GMT(n, \Delta)$ . On the other hand, there are three kinds of

event. Let $\mathcal{E}^{\mathrm{e}}$ , $\mathcal{E}^{c}$ , and $\mathcal{E}^{r}$ be the set of events executed during $GMT(n, \Delta)$ , removed by cuts, and
remained ES at the end of the algorithm, respectively. Then, the following equation holds,

$|\mathcal{E}|=|J\mathcal{E}|+|C\mathcal{E}|$

(2)
$=|\mathcal{E}^{e}|+|\mathcal{E}^{\mathrm{c}}|+|\mathcal{E}^{r}|$ .

$\mathrm{T}\mathrm{n}\mathrm{e}\mathrm{n},\mathrm{t}\mathrm{h}\mathrm{e}$ following lemmas holds for the number of events, the proofs of which are omitted in this

extended abstract.

Lemma 2 The number $|J\mathcal{E}|$ of joint events is $O(n)$ .

Lemma 3 The number $|C\mathcal{E}|$ of crossing point events is $O(n)$ .

Lemma 4 Th $e$ number $|\mathcal{E}|$ of events is $O(n)$ .

Thus, the following theorem holds, the proofs of which are omitted in this extended abstract.

Theorem 1 $GMT(n, \Delta)$ generate a monotone tree T $=\langle J$, B) with n joints in time $O(n1o\mathrm{g}n)$ , using

space $O(n)$ .

4 Experimental Results

We implemented our algorithm $GMT(n, \Delta)$ in previous section by Java language. For the implemen-

tation, vve add parameters other than the parameters $n$ and $\Delta$ of the algorithm, such as the maximum

length $m$ of bars, and the range $[s_{m\tau n}, s_{\max}]$ of slopes of bars. When we execute the joint event JE(j)y $\mathrm{t}\iota^{\gamma}\mathrm{e}$

generate the new bars $b_{\mathrm{s}}=(j_{1}j:)$ so that the bar length $|b_{i}|$ is uniformly chosen from $(0, m]$ at random
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Figure 5: An example of the output obtained by $GMT(20,2)$ .

and the slope $s(b_{\mathrm{t}})$ of bar $b_{i}$ is uniformly chosen from $[s_{\min)}s_{\max}]$ at random. Figure 5 illustrates an
example of the output obtained by $GMT(n, \Delta)$ , each part eters of which is assigned as follows:

$n=20$ , A $=2$ , $m=10$ ,

$s_{\min}=-0.8\mathrm{x}$ $\frac{\pi}{2}$ , $s_{\max}=0.8\mathrm{x}$ $\frac{7}{2}\ulcorner$ .
(3)

We give additional definition for evaluating monotone trees.
The (proPerly) inner part of line segment $s$ is the open line segment obtained by removing both ends

from $s$ . The line segment $s$ is visible in $d$ direction from a point $p\in \mathbb{R}^{2}$ (for a linkage $L=(J_{;}B)$) if the
ray $/\cdot d(p)$ pass through the inner part of $s$ and does not intersect any bars in $B$ . For two line segments
$s$ , $s’$ , $s$ is visible in $d$ direction from $s’$ if the inner part of $s’$ has a point $p$ from which $s$ is visible in
#direction. Obviously, $s$ is visible in $d$ direction from $s_{\mathrm{I}}’$ if and only if $s’$ is visible in $(d+\pi)$ direction
from $s$ . The visible pair $vp(b, b’)$ is the pair of bars $b,$ $b’\in B$ such that $b\in B$ is visible in $x$ direction from
$b’\in B-\{b\}$ . The number of the visible pairs of bars $b$ , $b’\in B$ mainly depends on the time complexity
of the algorithm for flattening monotone trees in [6]. Thus, one may observe that the number of visible
pairs is significant feature of monotone tree. Therefore, we evaluate the number of visible pairs for the
monotone trees generated by our algorithm. For a tree $T=(J, B)$ , we denote by $VP(T)$ the set of visible
pairs. We denote by $VP(n)$ the maximum $|VP(T)|$ for the any trees $T=(J, B)$ of $n$ joints. For the
upper limit of the number of visible pair, the following lemmas holds, the proofs of which are om itted in
this extended abstract.

Lemma 5 Let $K$ be the number of joints which is visible in $x$ or-x direction from the point at infinity.
Then, the following equation holds:

$\overline{VP(n})\leq\frac{1\mathrm{O}n-4K-13}{3}$ .

On the experiment, the parameters other than $n$ are fixed the values as follows:

$\Delta=2$ or 3, $m=10$ ,

$s_{\min}=-0.8\mathrm{x}$ $\frac{\pi}{2}$ , $s_{\max}=0.8\mathrm{x}$ $\frac{\pi}{2}$ .
(4)

Then, we generate 10 monotone trees of $n$ joints from $n=10$ to 100 by 10, and evaluate the average
number of visible pairs $\overline{VP(n)}$ of $n$ joint linkage. Figure 6 shows the the average number of visible pairs
for the case A $=2$ , and Figure 7 show $\mathrm{s}$ for the case A $=3$. Rom these figures, one can observe that the
number of visible pairs linearly increase for the number of joints, and does not mainly depends on the
maximum degree.
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5 Conclusion
In this paper, we design an algorithm GET$(n, \Delta)$ for generating monotone tree $T=(J, B)$ with $n=|J|$

joints, and the degree of each joint $j\in J$ is at most $\Delta$ . Our algorithm uses so called plane sweep
technique, and runs in time $O(n\log n)$ if the generate tree has $n$ joints. Furthermore, We implemented
our algorithm by Java language.

The following future works remain.

(i) From the Figures 6 and 7 one can observe that the coefficient of linear term is between 1.4\sim 1.6.

However, the theoretical upper bound of the coefficient is $\frac{10}{3}$ . Thus, there is a large difference
between them. Find the reason of this difference.

(ii) Find another class of trees in which tree can be flattened other than monotone tree.
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