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Abstract: The Hajos calculus is a nondeterministic procedure which generates the class of non-
3-colorable graphs [3]. If all non-3-co1orab1e graphs can be constructed in polynomial steps by the
calculus, NP $=$ co-NP holds. UP to date, however, it remains open whether there exists a family
of graphs that can be generated in polynomial steps. To attack this problem, we propose two
graph calculi $VHC$ and $P\mathcal{H}C^{*}$ that generate non-3-co1orab1e planar graphs, where intermediate
graphs in the calculi are also restricted to be planar. Then we prove that $P’HC$ and $PHC^{*}$ are
sound and complete. We also show that $PHC^{*}$ can polynomialiy simulate $PHC$ .
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1 Introduction
Graph $k$-coloring problem is the problem to decide whether we can assign one of $k$ colors to each vertex so
that adjacent pairs of vertices are assigned different colors [15]. This problem is one of the most fundamental
$\mathrm{N}\mathrm{P}$-complete problems $[5, 9]$ . Even when $k\geq 3$ , it is $\mathrm{N}\mathrm{P}$ complete. When $k\leq 2$ , we can solve the problem
in polynomial time. If graphs are restricted to be planar, it is believed for a long time that every graph
is 4-colorable [10]. Appel and Haken finally proved the Four-Color Theorem, i.e., every planar graph is
4-colorable $[7_{7}8,12, 19]$ . Therefore, when $k\geq 4$ , we can decide whether given planar graph is $karrow \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$

in polynomial time. When $k=3$ , the problem is still NP-complete.
In order to characterize $k$-colorable graphs, many approaches have been attempted. The most typical

one is Hadwiger’s conjecture to relate the non-&-colorability and the $(k+1)$-cliques [1]. Let $k$ be the fewest
number of colors necessary to color vertices in a given graph. Then, we can obtain a $k$-clique by contracting
adjacent vertices. This conjecture is true for $k$ $\leq 5[1,2, 4]$ .

Another approach is the Hajos calculus. The calculus is a nondeterministic procedure that constructs all
non-fc-colorable graphs from a $(k+1)$-clique [3]. A graph calculus is a collection of initial graphs, together
with a finite set of rules which allows us to derive new graphs. A construction of a graph $G$ is a sequence of
graphs $(G_{1}, G_{2}, \ldots, G_{l})$ such that the sequence ends with $G$ (i.e., $G_{t}=G$) and every graph in the sequence
is one of the initial graphs, or follows from its previous graphs by applying one of the rules.

The complexity of the Haj\’os calculus was first studied by Mansfield and Welsh [11]: If all non-3-co1orab1e
graphs have polynomial size Hajos constructions then, NP $=$ co-NP holds, thus there may exist graphs that
cannot be constructed in polynomial steps. A construction of a graph in the Haj os calculus gives the proof
of the non-k-colorability of the graph.

Our Contribution: Our motivation is to give intermediate subsystems that are more powerful than
bounded-depth Frege system and yet we can prove super-polynomial lower bounds. For this purpose, we
consider the calculus on planar graphs, more precisely, the calculus that generates the class of non-3-co1orab1e
planar graphs, where intermediate graphs in the calculus are also restricted to be planar. Although the
Haj\’os calculus can generate all $\mathrm{n}\mathrm{o}\mathrm{n}rightarrow 3$-colorable planar graphs, intermediate graphs are not guaranteed to

be planar. When restricting the intermediate graphs to be planar, by adding only one new rule, we can
obtain a sound and complete calculus $PHC$ . By modifying the second rule (edge elimination rule) in the
Haj\’os calculus, we can obtain another sound and complete calculus P7{C*. We compare the powers of the

two calculi.
Previous work: It is known that the Hajos calculus is polynomialiy bounded if and only if Extended

Frege proof systems are polynomialiy bounded [16]. This result links an open problem in graph theory to
an important open problem in the complexity of propositional proof systems: Is there a strong system to
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produce a short proof of any tautology? As formalized by Cook and Reckhow [6], there exists a propositional
proof system giving rise to short (polynomial-size) proofs of all tautologies if and only if NP equals co-NP.
Since Extended Frege system is powerful enough that obtaining super-polynomial lower bounds is beyond
our current technique, research interests shift into subsystems of the calculus. For example, Aijtai and others
showed exponential lower bounds for bounded-depth Frege proofs [13, 14, 18], which lead exponential lower
bounds on the subsystems of the Haj\’os calculus $[16, 17]$ .

2 Haj\’os Calculus
We describe the Haj\’os calculus for $k=3$ . The set of initial graphs in Haj\’os calculus contains all graphs
isomorphic to complete graph $K_{4}$ . There are three rules for generating new graphs:

1. $\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}/\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$ introduction rule: Add (any number of) vertices and edges,

2. Join rule: Let $G_{1}$ and $G_{2}$ be disjoint graphs, $a_{\mathrm{I}}$ and $b_{1}$ adjacent vertices in $G_{1}$ , and a2 and $b_{2}$ adjacent
vertices in $G_{2}$ . Constrct a graph $G_{3}$ from $G_{1}\cup G_{2}$ as follows. First, remove edges (al, bl) and (a2 , $b_{2}$) ;
then add an edge $(b_{1}, b_{2})$ ; lastly, contract vertices $a_{1}$ and a2 into a single vertex, named $a_{1}$ .

3. Contraction rule: Contract two nonadjacent vertices into a single vertex, and remove any resulting
duplicated edges,

$\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{x}/\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$introduction rule implies that if a subgraph of $G$ has a construction, $G$ also has a construction.
Rules 1 and 2 increase vertices $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ edges, but Rule 3 reduces vertices and edges, thus the construction
may not be polynomially bounded.

We consider a minor revision of the Hajos calculus, $?tC$ . The system HC has the same set of initial
graphs, as well as Rules 1 and 3 of the Hajos calculus, but now Rule 2 of the Hajos calculus is replaced by
the following rule:

2. Edge elimination rule: Let $G_{1}$ and $G_{2}$ be two graphs with common vertex set $\{v_{1},$
\ldots ,

$v_{n}\}$ which
are identical except that $G_{1}$ contains edges $(v_{1}, v_{2})$ and $(v_{2}, v_{3})$ and not $(v_{1}, v_{3})$ , whereas $G_{2}$ contains
edges $(v_{1}, v_{2})$ and $(v_{1}, v_{3})$ and not $(v_{2}, v_{3})$ . Then from $G_{1}$ and $G_{2}$ , we can construct a graph $G_{3}$ that
is identical to $G_{1}$ but does not contain $(v_{2}, v_{3})$ .

To associate two calculi, Haj\’os calculus and $\mathcal{H}C$ , we define a binary relation: Let $C$ and $C’$ be two graph
calculus systems, then $Cp$-simulates $C’$ if there is a polynom ial-tim $\mathrm{e}$ computable function $f$ so that for all
graphs $G$ , if $s$ is a graph construction of $G$ in $C’$ , then $f(s)$ is a graph construction of $G$ in C. $C$ and $C’$ are
$p$-equivalent if $C$ psimulates $C’$ and $C’p$-simulates $C$ .

Fact 1 $\mathcal{H}C$ is $p$-equivalent to the Haj\’os calculus.

3 Planar Calculus $P\mathcal{H}\mathrm{C}$

First, we propose planar calculus $P\mathcal{H}C$ . The set of initial graphs in P7{C contains all graphs isomorphic
to $K_{4}$ . There are four rules, where Rules 1 to 3 are same as the system $\prime HC$ , but edge addition and vertex
contraction are restricted so that the resulting graphs are planar. Rule 4 is as follows:

4. Quadrilateral rule: Let $G_{3}$ be a graph with vertex set $\{v_{1},$
\ldots ,

$v_{n}\}$ that contains a face $v_{1}$ , $v_{2}$ , $v_{3}$ , $v_{4}$ .
Let $G_{1}$ be a graph obtained by contracting vertices $v_{1}$ and $v_{3}$ of $G_{3}$ . Let $G_{2}$ be a graph obtained
by contracting vertices $v_{2}$ and $v_{4}$ of $G_{3}$ . Then from G} and $G_{2}$ , we can construct the graph $G_{3}$ (See
Figure 1).

Rule 4 is important when given graph consists of only triangle and quadrilateral faces.
For example, we show that the graph $G_{3}$ of Figure 2 has a construction in P7{C. Let $G_{1}$ and $G_{2}$ be

the graphs shown in Figure 2. $G_{1}$ contains $K_{4}$ as a subgraph induced by $\{v_{1},v_{2},v_{3},v_{5}\}$ . $G_{2}$ also contains
$K_{4}$ as a subgraph induced by $\{v_{1}, v_{3}, v_{4}, v\mathrm{s}\}$ . Therefore $G_{1}$ and $G_{2}$ can be constructed in $P?tC$ . $G_{1}$ can be
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Figure 1: $G_{1}$ , $G_{2}$ and $G_{3}$ of Rule 4 in $VHC$

Figure 2: Example of the system $P’HC$

constructed from $G_{1}$ and $G_{2}$ by Rule 4, since $v_{1}$ , $v_{2},v_{7},v_{6}$ is a quadrilateral face and $G_{1}$ is identical to $G_{3}$

with $v_{2}$ and $v_{6}$ contracted and $G_{2}$ is identical to $G_{3}$ with $v_{1}$ and $v_{7}$ contracted.
Since $G_{3}$ is edge minimal with respect to the 3-colorability, $G_{3}$ cannot be constructed directly by Rule 1.

Each face of $G_{3}$ is triangle or quadrilateral, thus there is not a triplet of vertices $v$ , $v’$ , $v’$ of satisfying the
condition of Rule 2. This means that $G_{3}$ cannot be constructed directly by Rule 2. Contraction rule cannot
break the structure of non-3-co1orab1i1ity. Therefore, probably $G_{3}$ is an example of graphs that essentially
need Rule 4 in $P\mathcal{H}C$ .

In the rest of this section, we prove the soundness and the completeness of $PHC$ .

Theorem 2 VHC is sound.

Proof: We only need to show that Rule 4 is sound since other rules also appear in $HC$ and are shown to be
sound [3]. Assume that there exists a 3-colorable graph $G_{3}$ generated by Rule 4. Then, its face $v_{1}$ , $v2,$ $v3$ , $v_{4}$

has a coloring satisfying one of the following cases:
Case 1: $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{1})=\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{3})$.
Case 2: $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{2})=$ color(v4).
Note that, if neither of the cases are satisfied, we have color $(v_{1})\neq \mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{3})$ and $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{2})\neq$ color(v4).

In this case, we need more than four colors to the face, which contradicts the $3$-colorability of $G_{3}$ . Cases 1
(Case 2, respectively) implies that $G_{1}$ ( $G_{2}$ , respectively) is 3-colorable. Therefore, only non-3-c1orab1e
graphs are generated. $\square$

Theorem 3 VHC is complete.

Proof: We prove this theorem by induction on the size $n$ of the graph. In case $n<4$ , all graphs are
colorable by at most 3 colors. In case $n=4$ , $K_{4}$ is the initial graph of $P\mathcal{H}C$ . Other graphs of size 4 are all
3-colorable, so we do not care them.

Assume that all non-3-co1orab1e graphs of size n-l can be constructed in P7{C. We assume that there
exists a nonempty set $\mathcal{G}$ of non-3-co1orab1e graphs of size $n$ that cannot be constructed in $PHC$ . Then we
lead a contradiction that edge maximal graph $G\in Ci$ can be constructed. By considering the size of the
faces in $G$ , we have the following three cases.

Case 1: All faces are triangle. According to Theorem 5 (we prove this theorem later), $G$ can be
constructed in $P\mathcal{H}C$ .

Case 2: There is a face $f$ of size $k\geq 5$ . Let $v_{1},v_{2},v_{3},v_{4}$ , $\ldots$ , $vk$ be the vertices of face $f$ . $G’=G+(v_{1},v\mathrm{s})$

and $G’=G+(v_{1}$ , $v_{4}\rangle$ can be constructed, since $G$ is a edge maximal graph in $\mathcal{G}$ . Therefore we can construct
$G$ from $G’$ and $G’$ applying by Rule 2.



1 $\mathrm{G}$

Figure 3: $G_{n}$

Case 3: $G$ is composed of triangle or quadrilateral faces. Let $f=v_{1}$ , $v_{2}$ , $v\mathrm{s}$ , v4 be a quadrilateral face
of $G$ . Let $G’$ be a graph obtained by contracting vertices $v_{1}$ and $v_{3}$ of $G$ . Let $G’$ be a graph obtained by
contracting vertices $v_{2}$ and $v_{4}$ of G. $G’$ and $G’$ can be constructed in $P’HC$ because of the assumption.
Therefore we can construct $G$ from $G’$ and $G’$ aPPlying the Rule 4.

In any case, $G(\in \mathcal{G})$ can be constructed in $PHC$ , which contradict to the definition of $\mathcal{G}$ . Thus, any
non-3-co1orab1e graph can be constructed in $PHC$. $\square$

Now, we prove that any triangulate non-3-co1orab1e planar graph can be constructed in polynomial
number of steps. First we prove the following lemma, which construct an essential component of triangulate
planar graphs.

Lemma 4 Lei $G_{n}=(V,$E) be a graph of 3n $+1$ vertices, where n $\geq 1$ ,

$V=\{a\mathrm{o}\}\cup$ $\{a_{i}, b_{t}, c_{i}|\mathrm{i}\in\{1, \ldots, n\}\}$,

$E=\{(a_{\mathit{0}}, a_{n})\}\cup\{(a_{\mathrm{i}-1}, b_{i}), (a_{i-1}, \mathrm{c}_{l}), (a_{i}, b_{i}), (a_{i},c_{i}), (b:, c_{l})|\mathrm{i}\in\{1, \ldots, n\}\}$

then, $G$ has a linear size constr uction in $PHC$ .

PROOF: We prove this lemma by induction on $n$ . In case $n=1$ , the lemma obviously holds since $G_{1}$ is
isomorphic to an initial graph $K_{4}$ .

We prove that $G_{n}$ can be constructed by the assumption that $G_{n-1}$ can be constructed. $G’=G_{n}+$

$(a_{0},a_{n-1})$ can be constructed in $VHC$ since $G_{n-1}$ is subgraph of $G’$ . $G’=G_{n}+(a_{n-1},a_{n})$ can be constructed
in $PHC$ since subgraph of $G’$ induced by $\{a_{n-1}, a_{n}, b_{n}, c_{n}\}$ is isomorphic to $K_{4}$ . Therefore we can construct
$G_{n}$ by applying Rule 2 to $G’$ and $G’$ . Since we apply Rule 1 twice and Rule 2 once at each induction step,
the whole construction is linearly bounded. $[]$

Theorem 5 fflangutate non-3-colorable planar graphs have a polynomial size constr uction in PHC.

Proof: Our goal is to find a structure $G_{n}$ of Lemma 4 as a subgraph of a given graph $G$ . We try to assign
colors to vertices of $G$ . Initially, we choose a triangle face $\mathrm{u}\mathrm{i}$ , $v_{2}$ , $v_{3}$ and assign different color to each vertex,

color$(v_{1})$ $=R$, $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{3})=G$ and $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{3})=B$ . We introduce three trees $T_{R}$ , $Tc$ , $T_{B}$ . The root node of
each tree is one of the vertices $\mathrm{u}\mathrm{i}$ , $v_{2}$ , $v_{3}$ . The face that its vertices are already assigned a color is called
a colored face. Next, we repeat the following procedure until all vertices are assigned a color or adjacent
vertices are assigned the same color. Choose a non-colored triangle face $f’$ adjacent to colored face $f$ . We
need not to think about the case that non-colored faces exist but are not adjacent to colored face because
the given graph is connected and trianglate. Let $v$ be a vertex that belongs to $f$ and does not belong to $f’$ .
Let $v’$ be a vertex that belongs to $f’$ and does not belong to $f$ . Vertices $v$ and $v’$ are uniquely determined.
Then we assign $c=$ color(v) to $v’$ and add the vertex $v’$ to the tree $T_{\mathrm{c}}$ as a child node of $v$ . This replication
stops before all vertices assigned a color because $G$ is non-3-co1orab1e. When the repetition stops, we find
adjacent vertices $v’$ and $v’$ on $G$ that are assigned the same color $c$ . The tree $T_{c}$ includes $v’$ and $v’$ so that
there is a path $p$ from $v’$ to $v’$ in $T_{c}$ . An Edge $(v_{i},v_{j})\in T_{\mathrm{c}}$ corresponds to a subgraph of $G$ as the Figure 4.
Let $G’$ be a subgraph of $G$ that corresponds to path $p$ ($G’$ of Figure 5 is an example) that corresponds to
path $p$ (dotted line of the figure). Let $G’$ be a graph $G|p|$ of Lemma 4. $G’$ can be constructed because of
Lemma 4. $G’$ can be constructed from $G’$ with some vertices contracted. $G$ can be constructed from $G’$ by
Rule 1. Therefore $G$ has a construction in $P\mathcal{H}C$ . $\square$
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Figure 4: Relation between $v_{i}$ and $v_{g}$ in $G$

Figure 5: Subgraph of $G$ and its structure

4 Planar Calculus PHC’
In this section, we propose another planar calculus $P\mathcal{H}C^{*}$ . The set of initial graphs in $PHC^{*}$ contains all
graphs isomorphic to $K_{4}$ . There are three rules for generating new graphs. Rule 1 and Rule 3 are same as
the system $P?\{C$ . Our new Rule 2 is as follows:

2. Vertex $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$ elimination rule: Let $G_{1}$ be a graph with $n$ vertices $\{v_{1}, \ldots, v_{n}\}$ that
contains an edge $(v_{1},v_{2})$ , and $G_{2}$ be the graph obtained by contracting $v_{1}$ and $v_{2}$ of $G_{1}$ .Then from $G_{1}$

and $G_{2}$ , we can construct a graph $G_{3}$ graph that are identical to $G_{1}$ but does not contain $(v_{1}, v_{2})$ .

Rule 2 is simple but powerful $|\mathrm{t}\mathrm{o}$ generate non-3-co1orab1e graphs. This rule means that none adjacent
vertices $v1$ and $v_{2}$ can be assigned the same color or different colors.

In the rest of this section, we prove the soundness and the completeness of $P\mathcal{H}C^{*}$ .

Theorem 6 $PHC^{*}$ is sound.

Proof: We only need to show the soundness of Rule 2 since other rules also appear in $HC$ and are shown
to be sound [3], Assume that there exists a 3-colorable graph $G_{3}$ generated by Rule 2. Then, its vertices $v_{1}$

and $v_{2}$ has a coloring satisfying one of the following two cases:
Case 1: $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{1})\neq \mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{2})$ .
Case 2: $\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{1})=\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}(v_{2})$ .
In Case 1, the coloring is also valid for $G_{1}$ , i.e., $G_{1}$ is 3-colorable. In Case 2, we can contract vertices

$v_{1}$ and $v_{2}$ in $G_{3}$ , i.e., $G_{2}$ is also 3-colorable. Therfore, in $VHC$ , all graphs generated by Rule 2 are
non-3-co1orab1e $\square$

Theorem 7 $PHC^{*}$ is complete.

Proof: All non-3-co1orab1e planar graphs can be constructed in $VHC$ . We can simulate $P\mathcal{H}C$ by $P\mathcal{H}\mathrm{C}^{*}$ ,

so that $P\mathcal{H}C^{*}$ is complete. $\square$

5 Polynomial-Time Simulation
We show the relationship between P7{C and P7{C*. First direction is that we simulate VHC by $P\mathcal{H}C^{*}$ .

Theorem 8 $PHC^{*}p$ -simulates VHC.

Proof: Rules 1 and 3 are common in $P\mathcal{H}C^{*}$ and $PHC$ . We only need to simulate Rule 2 and Rule 4 in
$PHC$ by $P$}$tC^{*}$ . According to Lemma 9 Rule 2 can be simulated. According to Lemma 10, Rule 4 can be

simulated. In each case the series of simulating steps can be constructed in polynomial time. Therefore,
$PHC$ ’ $P$-simulates $VHC$ . $\square$

Lemma 9 $PHC^{*}p$ -sirnulates Rule 2 of PHC.

Proof: We prove that a graph $G_{3}$ can be constructed from $G_{1}$ and $G_{2}$ in $PHC^{*}$ . Let $G_{1}$ and $G_{2}$ be two
graphs with common vertex set $\{v_{1}, \ldots, v_{n}\}$ which are identical except that $G_{1}$ contains edges $(v1, v2)$ and
$(v_{2}, v_{3})$ and not $(v_{1},v_{3})$ , whereas $G_{2}$ contains edges $(v_{1}, v_{2})$ and $(v_{1},v_{3})$ and not $(v_{2},v_{3})$ . $G_{3}$ is identical to
$G_{1}$ but does not contain $(v_{2}, v_{3})$ . Let $G_{1}’$ be a graph identical to $G_{1}$ with vertices $v_{1}$ and $v_{3}$ are contracted.
$(G_{1}, G_{1}’, G_{2}, G_{3})$ is a subsequence of a construction in $P?t\mathrm{C}^{*}$ since $G_{1}’$ can be constructed from $G_{1}$ by Rule 3
and $G_{3}$ can be constructed from $G_{1}’$ and $G_{2}$ by Rule 2 with paticular vertices $v_{1}$ and $v_{3}$ . [Il
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Figure 6: $G_{1}$ , $G_{2}$ and $G_{3}$ of Rule 4 in $P\mathcal{H}C$

Figure 7: Intermediate graphs of simulation in $PHC^{*}$

Lemma 10 $P\mathcal{H}C$ ”
$p$-sirrvulates Rule 4 of PHC.

PROOF: Let Gi, $G_{2}$ and $G_{3}$ be graphs as Figure 6. $G_{3}$ is a graph with vertex set $\{v_{1}, \ldots,v_{n}\}$ that contains
a face $v1$ , $v_{2}$ , $v_{3}$ , $v_{4}$ . $G_{1}$ is a graph obtained by contracting vertices $v_{1}$ and $v3$ of $G_{3}$ . $G_{2}$ is a graph obtained
by contracting vertices $v_{2}$ and $v_{4}$ of $G_{3}$ . We prove that a graph $G\mathrm{s}$ can be constructed from $G_{1}$ and $G_{2}$ in
$PHC^{*}$ . Let $G_{1}’$ be the graph as Figure 7. $G_{1}’$ is identical to $G_{1}$ , but has two additional vertices $u$ and $w$

and three additional edges $(v_{1}, u)$ , $(v_{1}, w)$ , $(u, w)$ . $G_{1}’$ can be constructed ffom $G_{1}$ by Rule 1, since $G_{1}’$ is a
subgraph of $G_{3}’$ . Let $G_{3}’$ , $G_{3}’$ and $G_{3}’$ be graphs as Figure 7 that are identical to $G_{3}$ but some vertices and
edges in the figure is different from $G_{3}$ . $G_{3}’$ can be constructed from $K_{4}$ by Rule 1 since a subgraph induced
by $\{v_{1}, v_{3}, u, w\}$ is isomorphic to $K_{4}$ . $G_{3}’$ can be constructed from $G_{1}’$ and $G_{3}’$ by Rule 2 in $PHC^{*}$ with
paticular vertices $v_{1}$ and $v_{3}$ ( $G_{3}’$ has an edge ( $v_{1}$ , $v_{3}$ ) and $G_{1}’$ is identical to $G_{3}’$ with $v_{1}$ and $v_{3}$ contracted).
$G_{3}’$ can be constructed from $G_{3}’$ by contracting two pairs of vertices $(v_{2}, u)$ and $(v_{4}, w)$ . This construction
needs twice of applying Rule 3 in $P\mathcal{H}C^{*}$ . Then $G_{3}$ can be constructed from $G_{3}’$ and $G_{2}$ by Rule 2 in $P\mathcal{H}C^{*}$

with paticular vertices u2 and $v_{4}$ . Thus Rule 4 in $PHC$ can be psimulated by $P\mathcal{H}C^{*}$ . $\square$

Theorem 8 implies that the modified rule (Rule 2) is at least as powerful as the original one in $HC$ .

Corollary 11 $\mathcal{H}C$ can be p simulate by $PHC^{*}$ without planarity ristiction on the inter mediate graphs.

It is difficult to show that $VHC$ psimulates $PHC^{*}$ . For example, as shown in Figure 8, Rule 2 in $PHC$ ”

can generate a new quadrilateral of $G_{3}$ from $G_{1}$ and $G_{2}$ . To simulate this construction we must remove an
edge $(v_{2}, v_{4})$ of $G_{1}$ by rules in $VHC$ , but edge elimination rule cannot be applied since ($v_{2}$ , V4) are sandwiched
between triangle faces and the other rules cannot elim inate edges.

Figure 8: Rule 2 in $P\mathcal{H}C^{*}$



19

6 Concluding Remarks
We show that there exist a system of generating non-3-co1orabIe planar graphs, where intermediate graphs
in the system are restricted to be planar. Two calculi $PHC$ and $P\mathcal{H}C^{*}$ are sound and complete graph
construction system that generates the class of non-3-co1orab1e planar graphs. $PHC^{*}$ is simple but powerful
calculus, since $PHC$” psimulates $VHC$.

Relationship between construction in planar graph calculus and general graph calculus may be inter-
esting. There is a structure that can replace crossing edges keeping the colorability condition, so that
non-planar graphs can be mapped to planar graphs. Thus a class of graphs that have super-polynomial
lower bound in $HC$ may be associated with a class of graphs in a planar calculus. For future discussion,
we would like to consider polynomial-time simulation of $P\mathcal{H}C^{*}$ by $PHC$ . Also lower bound of planar graph
calculus is an interesting work.
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