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Abstract

The oracle identification problem (OIP) was introduced by Ambainis et. al. [4], which is given as a set $S$

of $M$ oracles and a hidden oracle $f$ . Our task is to figure out which oracle in $S$ is equal to the hidden $f$ by

doing queries to $f$ . OIP includes several problems such as Grover Search as special cases. In this paper, we
design robust algorithms, i.e., those which are tolerant against noisy oracles, for OIP. Our results include:
(i) For any oracle set $S$ such that $|S|$ is polynomial in $N$ , $O(\sqrt{N})$ queries are enough to identify the hidden

oracle, which is obviously optimal since this OIP includes Grover Search as a special case, (ii) For the case
that $|S|\leq 2^{N^{d}}(d<1)$ , we design an algorithm whose query complexity is $O(\sqrt{N\log M/\log N})$ and matches
the lower bound proved in [4]. (Hi) We can furthermore design a robust algorithm whose complexity changes

smoothly between the complexity of (ii) and the complexity of recovering all information about the hidden

oracle whose complexity is $O(N)$ as showed by Buhrman et. al. in [11]. Thus our new algorithms are not
only robust but also their query complexities are even better than the previous noiseless case [4],

1 Introduction

When we solve some problem over an input data of $N$ bits, $\mathrm{g}\mathrm{i}$ , $\ldots$ , $a_{n}$ , we usually need to know all the values

of these $N$ bits. This specific JV-bit data are frequently called an oracle and we can get the value of bit $a_{i}$ by

making a query to the oracle by specifying the $(\log N)$-bit index $\mathrm{i}$ of the target bit. In the case of classical
computation, we usually need all the $N$ bits, which in turn forces us to make at least $N$ queries to the oracle.

(There are rare but interesting exceptions including [12].) By contrast, we need much fewer queries in the case
of quantum computation. For instance, we need only $O(\sqrt{N})$ queries to find an index 2 such that $a_{i}=1$ (Grover

Search [17] $)$ . This is one of the major examples of quantum superiority.
Recently, two papers, by HOyer et. al [20] and Buhrman et. al. [11], raised the question of how to cope with

“imperfect” oracles for the quantum case. This question is not new in the classical case, where the natural

model for such an oracle is the one which returns a wrong value (i.e., returns 0 when 1 is correct and vice

versa) with some probability less than 1/2. Note that we can get all the values of $N$ bit with high probability

by querying each $a_{i}O(\log N)$ times instead of once. Thus, we can make any algorithm robust, i.e., resilient

against imperfect oracles at the cost of an $O(\log N)$-factor overhead. In some cases, this factor of $O(\log N)$ is
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actually needed: Feige et. al. [15] proved that any classical robust algorithm to compute the parity of the $N$

bits needs $\Omega(N\log N)$ queries. On the other hand, the same paper also gives a non-trivial classical algorithm
which computes OR of the $N$ bits with $O(N)$ queries.

For the quantum setting, both papers $[20, 11]$ are based on the following model: The oracle returns, for
the query to bit $a_{i}$ , a quantum pure state ffom which we can measure the correct value of $a_{i}$ with a constant
probability. This noise model naturally fits the motivation that a similar mechanism should apPly when we use
bounded-error quantum subroutines. In [20] Hoyer et. al. gave a quantum algorithm that robustly computes the

Grover’s problem with $O(\sqrt{N})$ queries, which is only a constant factor worse than the noiseless case. Buhrman

et. al. [11] also gave a robust quantum algorithm to output all the $N$ bits by using $O(N)$ queries. This obviously

implies that $O(N)$ queries are enough to compute the parity of the $N$ bits, which contrasts with the classical
$\Omega(N\log N)$ lower bound mentioned earlier. Thus, robust quantum computation does not need a serious overhead
at least for several important problems.

..-
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conquer method. Magniez, Santha and Szegedy [22] showed efficient quantum algorithms to find a triangle in
a given graph by using combinatorical techniques with Grover Search. Diirr, Heiligman, Hoyer and Mhalla [14]
also investigated quantum query complexity of several graph-theoretic problems. In particular, they exploited
Grover Search on some data structures of graphs for their upper bounds.

2 Problem Formulation and Useful Tools

Before describing our results, we need some definitions and previous results which will be used in our algorithms.

Definition 1 Oracle Identification Problem (OIP) is defined as follows.. Input :A set $S=\{fi, \ldots, f_{M}\}$ of oracles where each oracle $f_{i}$ is a string of length $N$ over $\{0, 1\}_{r}$ and $a$

black-box oracle $f\in S$ which is not known in advance.. Output :Index $\mathrm{i}$ of the oracle $f_{i}\in S$ which is equal to the unknown $f$ .
Thus OIP is a premise problem for which the candidate set of oracles are known in advance. In this paper,

we consider that the candidates are given as an $M\mathrm{x}$ $N0- 1$ matrix where the element at ci, $j$ ) denotes the value
of $f_{i}(j)$ . Namely, the i-th row corresponds to the $f_{i}$ (the i-th oracle), and the j-th column corresponds to the
output of oracles on input $j$ . For short, we refer to the problem as $M\mathrm{x}$ $N$ OIP

Ambainis et. al. [4] previously considered OIP in the setting where oracles are perfect, i.e., the oracle $f_{l}$

inside the black-box behaves according to the unitary matrix $Uf_{\mathrm{i}}$ such that:

$U_{f_{i}}|x\rangle|0\rangle|0\rangle=|x\rangle|\phi_{i,x}\rangle|f_{i}(x)\rangle$ ,

where $x$ in denotes the input to the oracle, and $|\phi_{i,x}\rangle$ , the content of the working register after calling the oracle.

In this paper, we will be considering an imperfect oracle $f_{i}$ where the corresponding unitary transform than

is as follows.
$U_{f_{i}}|x\rangle|0\rangle|0\rangle=\sqrt{p_{x}}|x\}|\phi_{i,x}\rangle|f_{i}(x)\rangle+\sqrt{1-p_{x}}|x\rangle|\psi_{i,x}\rangle|\neg f_{i}(x)\}$ ,

where $2/3\leq p_{x}\leq 1$ denotes the probability that $f_{i}$ returns the correct answer. This oracle is called a biased

oracle. Although this error model cannot deal with all kinds of physical noises unlike the classical case, the

model has been adopted in the literature. It is considered that any bounded error (quantum) algorithm can be

formulated as this model. Indeed, $[11, 20]$ used the same model as the one assumed in this paper.
Considering the OIP corresponding to Grover Search with an imperfect oracle, a straightforward algorithm

would be by first amplifying the success probability of $f_{i}$ on each input $ to $1-O(1/N)$ and then applying

Grover Search on top of it. The amplification procedure costs $O(1o\mathrm{g}N)$ queries, therefore the total number of

queries is $O(\sqrt{N}\log N)$ . However, Hoyer et. al. [20] showed a robust quantum algorithm which is worse only by

a constant factor compared to the original Grover Search. Their result is summarized in the following lemma.

Lemma 1 (Robust Quantum Search [20]) Given a quantum dgorithm $A$ with input $\mathrm{i}\in\{1, \ldots , N\}$ such

that
$A|\mathrm{i}\rangle|\mathrm{O}\rangle|\mathrm{O}\rangle=\sqrt{p_{i}}|i\rangle|\phi_{i}\rangle|b_{i}\rangle+\sqrt{1-p_{i}}|\mathrm{i}\rangle|\psi_{i}\rangle|\neg b_{i}\rangle$,

where $b_{i}\in\{0, 1\}$ and $2/3\leq p_{i}\leq 1$ , there exists a quantum algorithm outputting $j$ such that $b_{j}=1$ (when there

is such $b_{j}$ ) with probability more than 2/3 and the algorithm uses $O(\sqrt{N})$ queries to $A$ .

Furthermore, when the number of $\mathrm{i}$ such that $b_{i}=1$ is $t$ , the above query complexity can be reduced to
$O(\sqrt{N/t})$ by modifying the algorithm as done in [8]. We refer to this modified algorithm as Multi- Target Robust

Quantum Search.
Buhrman et. al. [11] showed a robust quantum algorithm which retrieves all the values of the imperfect

quantum algorithms with $O(N)$ queries. In this paper, we will use a modified version of their algorithm which

is described as follows.
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Lemma 2 (Robust Quantum Find-Ones Algorithm) Given a quan rum algorithm $A$ with input $\mathrm{i}\in$

$\{1, \ldots, N\}$ such that
$A|\mathrm{i}\rangle|0\rangle|\mathrm{O}\rangle=\sqrt{p_{i}}|i\rangle|\phi_{i}\rangle|b_{i}\rangle+\sqrt{1-p_{i}}|\mathrm{i}\rangle|\psi_{i}\rangle|\neg b_{i}\rangle$ ,

where $b_{i}\in\{0,1\}$ and $2/3\leq p_{i}\leq 1$ , there exists a quantum algorithm outputting all the values of $b_{i}$ with
probability more than 2/3 and the algorithm uses $O(\sqrt{Nt})$ queries of $A$ if the number of $\mathrm{i}$ such that $b_{i}=1$ is

less than $t$ .

3 Robust Quantum Algorithms for OIP

In this section we design three robust algorithms for the cases that the column size of the given matrix is small,

medium and large. Before proving the theorems, we introduce some convenient techniques.
Column Flip. Suppose that $Z$ is any $M\mathrm{x}$ $N0- 1$ matrix (a set of $M$ oracles). Then any quantum

computation for $Z$ can be transformed into a quantum computation for an $M\mathrm{x}$ $N$ matrix $Z^{J}$ such that the
number of 1’s is less than or equal to the number of $\mathrm{O}’ \mathrm{s}$ in every column. (We say that such a matrix is
-sensitive.)

Row-Cover. Row-Cover(Z, $r$) is the basic procedure in our algorithms to construct a set $T$ that covers at
least $M/4$ rows of $Z$ , if there exists such one. Note that $T$ is constructed such that the new element added to
it covers at least $r$ part of uncovered ones in $Z$ . Row-Cover could fail, i.e., it returns $T$ which does not cover
at least $M/4$ rows of $Z$ ; this case will be treated specifically in our algorithms. Note also that these procedures
do not need any query to oracles.

We often use Robust Quantum Search (Lemma 1) to find an index $k$ of the oracle and need to $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\mathfrak{h}^{\gamma}$ its
value by $O(\log N)$ classical queries. This verification is formalized by Majority $m$,$f$), where $m$ is the number
of classical queries to the hidden oracle $f$ on input $k$ .

Now we are ready to introduce our results. The first algorithm is for the case that the matrix is small,
i.e., when the number of possible oracles is poly(N). Due to the space limitation, we only give results without
proving them. Interested readers are directed to quant-ph/0411204 for full details.

Theorem 1 The $M\mathrm{x}$ $N\mathrm{O}IP$ can be solved with a constant success probabil$ity$ by querying the blackbox oracle

for $O(\sqrt{N})$ times if $M=$ poly(N).

Now we show the case for a larger range of $M$ where we still have an optimal algorithm. For ease of notation,
let us define $\log^{(n)}x=\log\log^{(n-1)}x$ .

Theorem 2 The $M\cross$ $N\mathrm{O}IP$ can be solved with a constant success probability by querying the blackbox oracle

for 0 $(\sqrt{N\frac{10}{10}\mapsto M\mathrm{g}N})$ times if poly(Nl) $\leq M\leq 2^{N^{d}}$ for some constant $d(0<d<1)$ .

Next, we consider the case when $M>2^{N^{d}}$ . Note that when $M=2^{d’N}$ , for a constant $d’$ less or equal to 1, the
lower bound of the number of queries is $\Omega(N)$ instead of $\Omega(\sqrt{N\log M}/\mathrm{I}\mathrm{o}\mathrm{g}N)$ . Therefore, it is natural to expect
the increase on the number of queries as $M$ becomes close to $2^{d’N}$ . Indeed, when poly(iV) $<M<2^{N/\log^{3}N}$ ,
the number of queries of ROIPL is bigger than $O(\sqrt{N\log M}/\log N)$ but still better than $O(N)$ .

Remarks. The query complexity of the above corollary changes smoothly from 0 $(\sqrt{\frac{N\log M}{\log N}})$ when $M=2^{N^{d}}$

to $O(N/\log N)$ when $M=2^{N/\log^{3}N}$ .
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What can be expected when $M\geq 2^{N/\log^{3}N}$? Assume that we can design an algorithm such that at each
round the Grover Search spends a constant number of queries to reduce the size of the oracle candidate set
by at least 1/4 ffaction. Since the success probability of the Grover Search is only guaranteed to be constant,
it has to be repeated for $O(\log N)$ times at each round. Therefore, this procedure, which is used in ROIPS,
ROIPM and ROIPL, needs at least $O((O(1)+\log N)\cdot\log N. \log M)$ number of queries, where the first $\log N$

comes from the queries used in Majority and the second one from the repetition of the Grover Search to boost
the success probability. Therefore, we can only expect the algorithm using this procedure to be more efficient
than (the worst case of) Robust Quantum Find-Ones Algorithm when $M<2^{N/\log^{2}N}$ .

Indeed, we can design a more efficient algorithm when $2^{N/\log^{3}N}\leq M<2^{N/\log^{2}N}$ as shown in the following
theorem.

Theorem 3 The $M\mathrm{x}$ $NOIP$ can be solved with a constant success probability by querying the blackbox oracle

for $o(N/\log^{\delta}N)$ times if $2^{N/\log^{3}N}\leq M=2^{N/\log^{2+\delta}N}\leq 2^{N/\log^{2}N}$ .

4 Concluding Remarks

We have showed that for a large range of poly(iV) $\leq M\leq 2^{N^{d}}$ , we can construct an optimal algorithm to identify
the hidden oracle, This results matches the lower bound showed in [4] . Moreover, from the quantum learning
point of view, our results answer affirmatively the question posed by Hunziker et.al. [21] who conjectured that
there is a quantum learning algorithm which learns any concept class of size $M$ with at most $O(\sqrt{M})$ queries. In
fact, our algorithms are much better for large $M$ and resilient to error. It should also be noted that independent
to our work, Atici and Servedio [5] showed a quantum algorithm, which resembles ROIPS, for resolving another
conjecture in [21] .

The next interesting topics are, e.g., to extend the range of $M$ to get the optimal algorithms and to design

algorithms which are not only have small query complexities but also small circuits or execution time.
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