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A Hierarchy of Tree Edit Distance Measures
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The notion of trec edit distance provides a unifying framework for measuring distance and finding approximate
common patterns between two trees. A diversity of tree edit distance measures have been proposed to deal with
tree related problems, such as minor containment, maximum common subtree isomorphism, maximum common
embedded subtrce, and alignment of trees. These classes of problems are characterized by the conditions of the
edit mappings, which specify how to accociate nodes in one tree with nodes in the other. In this paper, we study
the relationship between classes of edit distance measures. In prior work, some of the edit mappings have often
been misstated, and not well-formalized. So, we rectify these misstatements, and establish a new hierarchy among
the classes of edit distance measures with a few new classes; for examles, we establish the relationship between tree
edit distance and alignment of trees by showing that the mapping condition for alignment of trees is identical to
that for a variant of edit distance, called less-constrained cdit distance.

1. Introduction

The tree edit distance was introduced in [1, 2] as a natural
generalization of string edit distance (3, 4]. The methods
of comparing and matching tree structures using tree edit
distance enjoy a wide range of applications in computa-
tional biology [5, 6, 7], image analysis (8], pattern recogni-
tion [9], natural language processing [10], information ex-
traction from Web pages [11], and many others.

The tree edit distance between two trees is defined as
the minimum cost of cdit operations to transform one tree
into the other. The standard sct of operations includes: (1)
relabeling a node v; (2) deleting a node v {(and contracting
the edge between v and its parent); (3) inserting a new node
v under a node w (and moving a consecutive w’s children
and all their descendants under v).

Edit distance measures for trees have, in general, two as-
pects in giving the definitions: a sequence of operations,
and an edit mapping. An edit mapping is a collection of
node-to-node correspondences between two trees. The con-
ditions of edit mappings specify the matching semantics in
finding the similarities between two trees, and give declar-
ative definitions of edit distance measures. In prior work, a
hierarchy among the classes of edit mappings is established
[12, 13]. However, a few conditions of edit mappings were
misstated, and not well-defined.

In this paper, we give a new mathematical formulation for
tree edit distance to elucidate the relationships among tree
edit distance measures. By the formulation, we focus on the
definitions of edit mappings, and rectify existing misstate-
ments and redundancies with respect to tree edit distance.
Moreover, we prove the equivalence between alignment of
trees[14] and less-constrained edit distance[15}.
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The rest of this paper is organized as follows: the next
section describes tree edit distance in an operational way,
followed by our new formulation of tree edit distance to give
a declarative semantic in Section 3. In Section 4, we for-
mulate five types of tree edit distance measures based on
our formulation. In Section 5, we establish a new hierarchi-
cal view of tree edit distance measures, which includes our
main theorem, the equivalence between alignment of trees
and less-constrained edit distance.

2. Tree Edit Distance

Unless otherwise stated, all trees we consider in this paper
are rooted, labeled, and unordered trees.

2.1 Operational Definition

The tree edit distance between two trees is defined as the
minimum cost of elementary edit operations to transform
one tree into the other. In transforming one tree to the
other, some elementary edit operations are introduced (1, 2].

Let a be a labeling function which assigns a label from a
set £ = {a,b,¢,...} to each node. Let A denote the unique
null symbol not in .

Definition 1. An edit operation on a tree T is any of the
following three operations:

¢ deletion of a non-root node v € V from T, moving all
children of v right under the parent of v; denoted by
a{v) - A,

o insertion of a ncw node v € V as a child of a node
w € V, moving a consecutive subsequence of w’s chil-
dren {(and their descendants) right under the new node
1}; note that this opecration is the reverse of deletion;
denoted by A — afv),

o relabeling of the label of a node v € V with the label
of a new node w ¢ V; denoted by a{v) — a{w).
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Figure 1: An example: the dashed lines between nodes de-
note an edit mapping.

These operations are used to transform a tree 71 to a tree
T,. Note that all the operations are applied to only T1. Let
S be a sequence of edit operations to transform T to To.
Let v be a cost function of edit operations. 7 is defined
to be a distance metric as follows: for a,b,¢c € T U {A},
(@) vla — B) 2 G (i) v = b) = (b — ¢); and (iii)
va — ¢} < v(a — b} + (b — ¢). The cost function v
for edit operations is generalized for sequences S of edit
operations by letting v(S) = Lsegv(s).

The edit distance between T; and 7% is defined [1] as

D(T\,Tz) = méin{’Y(S)}‘

2.2 Edit Mappings

The effect of a sequence of edit operations is reduced to
a structure called edit mapping [1], which is comparable to
trace [3] in string edit distance. An edit mapping depicts
node-to-node correspondences between two trees according
to the structural similarity, or shows how nodes in one tree
are preserved after transformed to the other.

Definition 2. An edit mapping from a trec 71 to a tree

Ty is a set M € V(T1) x V(T2) such that, for all (z1,22),

(y1,y2) E M, 23 = 31 © 22 = Y.

Note that this definition does not require M to prescrve
ancestor-descendant relation. For simplicity, We refer to the
edit mapping as the mapping. The edit mapping provides a
qualitative view of edit distance. Let M be a base mapping.
The mapping cost of M is defined as

y(M) = Z(w.vz)EM y(a(v1) — afv2))+
EUI EIVT\T(TI) ’)’(O((’U} - A)’"
szevﬁ(ﬁ) 'Y()\ - 0(02))'

The following theorem is due to Tai [1].

Theorem 1 ([1]). Let S be a sequence of edit operations
to transform T} to Tk, and M a mapping from 73 to T%.

D(T1,T2) = min{¥(8)} = min{~(M)}.
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This theorem plays the role of a bridge between an op-
erational definition and a declarative definition for the edit
distance. For example, Fig. 1 shows an edit mapping.

The rest of this subsection we show a number of existing
tree edit distance measures by their mapping conditions.
2.2.1 Standard Mapping: S

This mapping characterizes the standard edit distance by
Zhang et al. [16].

Definition 3. A mapping M is standard if the following
condition holds:
(S) Y(z1,22), (¥1,¥2) € Mz1 < 22 & y1 < 12}

Computing the edit distance based on the genealogical
mapping is known to be NP-complete [16], even for binary
trees having a label alphabet of size two.

2.2.2 Top-down Mapping: 7D

This mapping characterizes the edit distance in which
insertion and deletion operations are applied only to leaves.
The top-down mapping originated in Selkow [17], and Yang
[18] gave an algorithm of computing an edit distance based
on the top-down mapping for ordered trees. Our definition
is slightly different from the definition in [12] since it is not
well-defined.

Definition 4. A mapping M = M(T1,T3) is top-down if
the following condition holds:
(TD) M # 8 = [{(r(T1),r(T2)) e M A{(z1,22) € M
Az # (D) A x2 # r{T2) = (p(z1),p(z2)) € M]].

2.2.3 Constrained Mapping: C

The constrained mapping was introduced by Zhang et al.
to circumvent the negative results that computing the edit
distance for unordered labeled trees is NP-complete [16] (in
fact MAX SNP-hard [19]).

Definition 5 {Zhang [20]). A mapping M is constrained if
the following condition holds:
(C) V(z1,z2), (91, ¥2), (z1,22) € M
[21 < z1v & 22 < T2~ 4]

2.2.4 Structure-Respecting Mapping: SR
This mapping was introduced by Richter {21] to deal with
syntactic {rees.

Definition 8 (Richter [21]). A mapping M is structure-
respecting if the following condition holds:
(SR} ¥{(z1,z2), {y1,42), (21, 22) € M,
any of 21,1, 21 is not
an ancestor of any of the others,
g1 wy =1z & T2y = T2 2]

The following proposition asserts that M being con-
strained is equinalent with M being structure-respecting,
which was stated in Lu et. al [15] without proof.

Proposition 2. For a mapping M, the following are equiv-
alent:

1. M is standard and satisfies the following:
(SR’) ¥(z1,22), (y1,42), (21,22) € M

[any of z1,y1,21 is not an ancestor of any of the others,
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1Y < T1VZ &
any of z2,y2, 22 is not an ancestor of any of the others,
Tz~ yp < Tav 2z,

2. M is structure-respecting, and
3. M is constrained.

Proof. (1)=>(2): We prove the contraposition of (SR). If
Ty~ yYs F Tp 22, We IMay assume Tz — y2 < Tz 22 since
o~ yo and Ty - zz arc comparable. z1 v y1 < T1 -2
immediately follows by (SR’). (2)=>(8): Assume that z1 <
1~ y1- If 22 and 22— yo are comparable, 22 < z2~y3 holds
by (S) (if zz > o2~ ys, then 21 > z1 and z; > y1 hold by
(S), which contradicts to the assumption z1 < z1~y1). (i)
If any two of 21,1, 21 are comparable, l.e. 21 is comparable
with z3 or 91 (if 21 < w1, then z1 < @1~y = y1), 22 and
zz ~ y2 are comparable by (S). (ii) Suppose that any of
Z1,91,21 is not an ancestor of any of the others. Since
we may assume that zy — y1 = z1 - 21 without loss of
generality, zz ~ 2z = T2~ y2 holds by (SR). Therefore, 22
and z2 -« y» are comparable, too. (3)=-(1): Assume that
21w~y < 71~ 21 and any of z1,¥1,21 is not an ancestor of
any of the others. By (S), we have any of z2, s, z2 is not an
ancestor of any of the others. We have 2o £ zp -~ y2, since
z1 < 21 follows z2 = 22~ y2 by (S) and 21 < z1 — y1 does
22 < T2 ~y2 by {C). Therefore, 2 y2 < z2~22 holds. O

3. Theoretical Foundation for
Tree Edit Distance

In this section, we give a new formulation of tree edit
distance.

3.1 Rooted Trees

Definition 7. A rooted tree T = (V, <) is a nonempty,
finite, and partially ordered set with the maximum element
r(T) € V called the root, and such that {w € Vv < w} is
a totally ordered subset of V for every v € V.

‘We call the elements of V the nodes of T, and denote the
set of all nodes in T by V(T'). We let E(T) = {(z,y) €
VD) x V(D(z < y) APz e V(T)z < 2 < 3]} The ele-
ment of E(T) is called an edge,of T. A node y such that
z<yisen ancestor of z. fz<yandz#y thenyisa
proper ancestor of z, denoted by z < y. The parent of node
z is the minimum nodes of proper ancestors of z, denoted
by p{()z). A leaf of a treé T is a minimal node in T. The
size of a tree T is the number of nodes in 7", denoted by |T|.

Definition 8. For an arbitrary rooted tree T = (V,<), a
comumon ancestor of U C V is an clement z € V, if exists,
such that for all y € U, y < z. A common ancestor z of
U is the least common ancestor of U if, for any common
ancestor y of U, 2z < y holds. We denote the least common
ancestor of U by lea U, and lea {z,y} by z-—y.

Lemma 3. The following properties hold in terms of the
least common ancestor:

zvmﬁx,

LYy =Y~z
(z~y)vz=a{y—a),

TSy T-Y=Y,

Ty < TwzZ=>ywz=zrwz,and
LYy =Tz = Yy~ z STy

S e

Corollary 4. For any three nodes z, y, z, either of the
following properties holds:

1. zvy<zvzand zwvz=yvz,

2. zvy=zvz,and yvz<zv2,

3. zvy>zvz,andzvy=y-z

Proof. 1t follows straightforwardly from Lemma 3-(5), and
6). |

3.2 Tree Homomorphism and Isomorphism
Definition 9. Let T3 and 72 be two trees. A homomor-
phism from T3 to T is a mapping ¢ from V(T1) to V(T2)
such that

1. ¢(r(Th)) = r(T2), and

2. z<y=d(z) < $y).

Wo refer to ¢ V(T1) — V(T2) as ¢ : T1 — T3 if there is
no confusing.

Proposition 5. The composition of homomorphisms is a
homomorphism.

Definition 10. Let T} and 7% be two trecs. An isomor-
phism from T to T» is a bijection ¢ from V(T1) to V(Tz)
such that

(z,y) € E(Th) & ($(x), 6(v)) € E(T2).

Proposition 6. Every isomorphism is also a homomor-
phism.

Proposition 7. Let 71 and 75 be two trees. Suppose that
¢ is a bijection from T3 to T3, then the following conditions
are equivalent:

1.~ ¢ is an isomorphism, and

2. ¢lx)<o(y)=z<y

Proposition 8. A mapping ¢ from a tree T to T is an iso-
morphism if and only if ¢ is an identity mapping on V(T1).

3.3 Embedding and Insertion

We first define an embedding, which is regarded as con-
secutive insertions of nodes into a tree.
3.3.1 Embedding

Definition 11. Let Ty and T% be two trees. An embedding
¢ from T to T3 is an injection from V{T1) to V{T3) such
that

1. ¢ is & homomorphism, and

2. dlz)<dly) =z <y
We define red(¢) = [V(T2) \ #(V(T1))| as the redundancy
of the embedding ¢ from 71 to T3.



Proposition 9. Suppose that ¢ be a mapping from

a tree Ti to a tree T2, and ¥ be an embedding from

T» to a tree 73, then the following conditions hold:
1. if ¢ is an embedding, ¥ o ¢ is also an embedding, and
2. if Yo ¢ is an embedding, ¢ is also an embedding.

In both cases, red(v o ¢) = red{¢) + red{(¢).

3.3.2 Insertion
Now, we are ready to give a declarative definition of the
insertion operation.

Definition 12. Let 71 and 72 be two trees, and v a node
in 72. An embedding ¢ from Ti to T% is an insertion of v
into Ty if o(V{(Th)) = V(T2) \ {v}.

Proposition 10. Let ¢ be an embedding from a tree T1
to a tree T2, and ¢ also an insertion of a node v into 73. If
v be a node in T2 such that v # 7(T%), then there exists an
ingertion of v to Ti.

Any insertion of v is uniquely determined except that the
insertion is an isomorphism. Hence, by i,, we denote the
insertion of v.

The following theorem proves that Definition 12 of the
insertion is equivalent to the operational definition of the
insertion.

Theorem 11. Let ¢ be an embedding from T1 to T with
V(Tu) \ ¢(V(T1)) = {v1,...,vn}. There exist a sequence
of trees Sp,81,...,8n, and insertions ¢; : S; — 8 — 1
(i € {1,...,n}) such that

1. S =175,
2. S,=T, .
3. ¢ro---0¢(V(S)) = V(T2)\ {v1,..., v}, and ’
4, ¢=¢no---0¢1
n b 5 P
Sn Sn-1 o : 51 - So
NS, Insg,, . Insg. Insg
" E 1 2 r
4
Ty T .

3.4 Degeneration and Deletion

We define a degeneration, which is regarded as consecu-
tive deletions of nodes from a tree.
3.4.1 Degeneration
Definition 13. Let T3 and T be two trees. A degeneration
¢ from T1 to T» is a surjection from V(T1) to V(T2) such
that

L (z) = d(y) = dla-y) = ¢(z) = ¢(y), and

2. ¢(z) < $(y) = I [b(z) = ¢(y') A z <yl
We define Dup(¢) = {z € V(Th)lé{z) = #(p(z))} as the
duplication of the degencration ¢ from T3 to T.

Proposition 12. Let Ti and T2 be two trees, and ¢ be
a degeneration from 7% to Tp. There exists a unique em-
bedding ¢ from T to T} such that ¢ o ¢ is the identity
mapping on V(T1), and ¢ o ¢ is the identity mapping on
V(T2) \ Dup(4)-

We denote the degeneration corresponding to an cmbed-
ding ¢ denoted by ¢.
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3.4.2 Deletion

Definition 14. Let 7% and T% be two trees, and v a node
in T3. A degeneration ¢ from 71 to T3 is deletion of v from
Ty if Dup(¢) = {v}.

Theorem 13. Let ¢ be a degeneration from 71 to T%
with Dup(¢) = {v1,...,vn}. There exist a sequence of
trees Sg, S1,..., 8, and doletions ¢; : S; — S;—1 (i €
{1,...,n}) such that

1. So=Ti,
_2. Sn =15,
3. Dup{¢no---o¢1)={vi,..., v}, and
4 ¢ =n-1060;
b0 (2% bn-2 Pn—1
Sg o & —— s — S —— S,
I Del¢0 Delgzy Delz,, o Delg,, 4
Il
[-J
T Tz .

4, Characterization of Edit Distance
Measures

In this section, we consider the edit mapping conditions
for unordercd treecs, and introduce a few of new edit map-
ping conditions to investigate the relationship among known
classes of edit mappings. Due to space limitation, most of
the proofs are omitted.

For an edit mapping M from Ti to T, we define:

Viu(Th) ={z € V(T1)[3z € V(T2) s.t. (z,y) € M},
V'M(T2) = {y eV(T)Fy € V(Tl) st. (z,y) € M}7
Ve (Th)y = V(T \ Vu(Th),
VerT2) = V(T2) \ Vae(T2).

4.1 Alignable Mapping: A

The alignment of trees was introduced by Jiang et al. [14],
and efficient algorithm for similar trees were proposed for
orderod trees [22] and unordered trees [23]. The definition
of the alignment has been given in an operational way (14,
12, 13).

We give a new definition of alignment of trees.
Definition 15. A mapping M from T to 7% is alignable if
and only if there exists a triplet (U, ¢, ) such as

1. ¢:Ty — U is an cmbedding,

2. 4 :Tp — U is an embedding, and

3. Y(z,y) € Mlp(z) = Y(a)};

/\

Ts.
Figure 2 illustrates an example of an alignable mapping.

Lemma 14. Suppose that 71 and T arc two trees, and
M C V(T1) x V(Tz) is an alignable mapping (U, ¢, %), then
the following condition holds:

M = {(z,9(¢(z)))|z € Var(T1)}.
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Figure 2: An alignable mapping from 7T} to T3: the lines
between two trees indicate an alignable mapping.

We give a few properties of alignable mappings.

Lemma 15. Let T1 and T: be two trees. Any singleton
mapping M = {(z,y)} from T} to T3 is alignable.

Lemma 16. Let T1, 7Y, To and T3 be four trees, and
M an alignable mapping from 71 to T». For two inser-’
tions ¢ : Ty - T{ and ¢ : T» -~ T§ which both do
not necessarily preserve their roots, the mapping M’ =
{(¢(2),¥(y)) (2, %) € M} is an alignhable mapping from TY
to T4.

Lemma 17. Let Tv = {r(T1)}{T1.1,T12}} and
Ty = {r(Tx){T2:1,T22}} be two trees, M a map-
ping from Ty to To. The mapping M is alignable
from Th to Tp if the following conditions hold:
1. ¥Yz,y) e Mz e V(Th:) &y e V(T2,)], fori € {1,2},

2. M;=MNO(V(T1;) x V(T3,)) is an alignable mapping

from T1,; to Ta .

4.2 Less Constrained Mapping: £

The less-constrained mapping was introduced in [15] to
relax the condition of the constrained mapping. The defi-
nition of the mapping in [15] is not correct. We rectify it
and give a new mapping definition as follows.

Definition 16. A mapping M is less-constrained if the
following conditions hold:
(LO) V(z1,22), (y1,92) € M |11 < 22 & y1 < 2],
(Ll) v(x11$2)> (ylv yz), (211, Zz) eEM
friwy <mi~z = oy = 2229,
(L2) Y21, 22}, (y1,42), (21,22) EM
B2~y < 2o~ zg = 21y = 11— 2]

4.3 Confucianistic Mapping: CF

We introduce a new mapping, the confucianistic map-
ping, which lives up to its name since this mapping respects
ancestor-descendant relation between two trees.

Definition 17. A mapping M is confucianistic if the fol-
lowing conditions hold:
(CF1) Y(wy,wa), (z1,72), {(¥1,92), (z1,22) € M
{wl w1 <Y1z =S~y < y2v22]
(CF2) V(WL’LUQ),(H}I,QJQ), (y17y2)7(21122) eEM
[we~ze < yaza = wi~xs < Y1 21)

4.4 Triangular Mapping: 7

We introduce the triangular mapping as follows.

Definition 18. A mapping M is triangular if the following
condition holds:
(T) V(zlvz?)’ (yl’yl’)y (z17z2) eM

[z <21z & za~ye < 2222

4.5 Quasi-Triangular Mappingﬁ QT

This mapping is obtained by relaxing the condition of the
triangular mapping.

Definition 19. A mapping M is quasi-triangular if the
following condition holds:
{(QT1) Y(z1,22), (y1, ¥2), (21, 22) € M

[z1—y1 < 2121 = 2 ~y2 = T2~ 22|, and
(QT2) ¥(z1,22), (1, 92), (21, 22) € M

[xzvyz LT~z = 1Y =21 VZI]-

5. Hierarchy of the Mapping Classes

Proposition 18. If the condition of the triangular map-
ping holds, then that of the constrained mapping also holds,
and not vice versa.

Proof. From the premise 21 < x1 -~ y1, we may assume,
without loss of generality, z; -~ 21 = z1 -~ 1. Hence, we have
21 < &y~ 21. By 21 = 21 ~2z; and the condition (T), we have
23w z2 < To—z2. It follows that z2 < x5 z2. Moreover,
by the condition (S), which is equivalent to the condition
{T), we have 2~ 22 = x2~12. Therefore, 22 < zowy. O

Lemma 18. The constrained mapping implies the
ancestor-descendant relation.

Proof. According to the condition (C), for all
(z1, 2], (yry2) € My 21 <y~ & 22 < 2~y
Hence, we immediately have r1 < 11 < 22 < 32. O

Proposition 20. A mapping M is confucianistic if and
only if M is genealogical and quasi-triangular, and the fol-
lowing conditions hold:
1. V(wl’m2)7 (311,112), (Z],zz) €M
[Bi~y =i~z = zivm € {zny, 0}
=LY = Yoz = 22 V:C'z}
2. ¥(z1, z2), (y1,y2),(21,22) eEM
vy =yaw 2o = 2o o & {22,902, 22}
= T1Y = YR = 21Ty

Theorem 21. The condition of the alignable mapping is
equivalent to that of the less-constrained mapping.

The following hierarchy of the mapping classes is estab-
lished.

Theorem 22.
LIDCTCSR=CCA=L=(QTNSCS
2.CFCA

Figure 3 shows that the hierarchy of tree edit distance
measures.
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Figure 3: A hierarchy of tree edit distance measures

Conclusion

In this paper, we introduced a new theoretical formula-
tion of tree edit distance, and investigated the relationship
among the classes of tree edit distance. We then rectified
some misstatements and redundancies in prior work, and
established a new hierarchy among the edit mapping condi-
tions. Moreover, we showed that the mapping condition for
alignment of trees is identical to that for a variant of edit
distance, called less-constrained edit distance.
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