
32

$O(n^{3})$ で認識される文脈自由木言語のサブクラスについて

電気通信大学大学院 電気通信学研究科 川原田 郁雄 (Ikuo Kawaharada)
Graduate School of Electro-Communications, University of Electro-Communications

ikuo@calvyn.cs.uec.ac.jP

茨城大学 工学部 情報工学科 藤芳 明生 (Akio Fujiyoshi)
Department of Computer and Information Sciences, Ibaraki University

fujiyoshi@cis.ibaraki.ac.jp

Abstract

In this paper, the recognition algorithm for the class of tree languages generated by linear, monadic
context-free tree grammars (LM-CFTGs) is proposed. LM-CFTGs define an important class of tree
languages because LM-CFTGs are closely related to tree adjoining grammars (TAGs). The algorithm
uses the CKY algorithm as a subprogram and recognizes whether an input tree can be derived from
a given LM-CFTG in $O(n^{3})$ time. With this fast recognition algoritm, we think that LM-CFTGs
and spine grammars (an equivalent formalism) are useful in many applications

1 Introduction
Tree structures are used extensively in computer science to represent hierarchical organizations. For
the purpose of formalizing and classifying tree structures, many kinds of formalisms for tree structures
have been proposed. One of the most popular form alisms for tree structures is regular tree grammars
(RTGs)[l]. RTGs are a generalization of regular gramm ars (RGs) from strings to rooted, ordered, labeled
trees. The class of tree languages generated by RTGs coincides with that accepted by deterministic
bottom-up tree automata, and so trees generated by a RTG are recognized in $O(n)$ time, where n is
the number of nodes of a tree. The class of tree languages generated by RTG is closely related to many
applications, e.g., XML document validation and recognition of derivation trees of context-free grammars.
However, for other applications such as representation of RNA secondary structure and formalisms for
natural languages, a larger class of tree structures which includes more complicated sorts of trees needs
to be considered. The generalization of context-free grammars (CFGs) from strings to rooted, ordered,
labeled trees is context-free tree grammars (CFTGs)[7]. Though CFTGs formalize a larger class of tree
structures than RTGs, it is thought that they are too large for application because the string languages
generated by CFTGs are exactly indexed languages, whose emptiness problem and uniform membership
problem are exponential time complete. However, there exists a restricted version of CFTGs which
generates an interesting class of tree languages.

In this paper, the class of tree languages generated by linear, monadic CFTGs (LM-CFTGs) $[2, 4]$ is
considered, and the $O(n^{3})$-time recognition algorithm for trees generated by a LM-CFTG is proposed.
LM-CFTGs are CFTGs with nonterminals of rank 0 and 1 only and with at most one occurrence of a
variable in every right-hand side of a production for a nonterminal of rank 1. It is known that LM-CFTGs
generate the same class of string languages as tree adjoining grammars (TAGs) 6, ?] and a strictly
larger class of trees than TAGs. TAGs are another formalism for tree structures which have been widely
studied relating them to natural languages. It is also noteworthy that LM-CFTGs are equivalent to spine
grammars (SGs) $[2, 3]$, which are also a restricted version of CFTGs but the restrictions are looser.

The recognition algorithm presented in this paper uses the CKY algorithm as a subprogram and
recognizes whether an input tree can be derived from a given LM-CFTG in $O(n^{3})$ time. For the purpose
of easier understanding, an algorithm which recognizes marked trees will be presented first. A marked
tree is a tree with marks on some nodes which are used to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the derivation of the tree by the algorithm.
Because the CKY algorithm can be directly applied to a marked tree, it can be easily confirmed whether
the algorithm works correctly and its run time is $O(n^{3})$ in the worst case. Then, the algorithm will be

数理解析研究所講究録 1426巻 2005年 32-38

33
extended so that it will try to guess which nodes should have been marked and recognizes an input tree
without marks. It is shown that the extended algorithm works correctly and its run time is also $O(n^{3})$.

2 Preliminaries
In this section, terms, definitions, and former results which will be used in the rest of this paper are
introduced.

Let $\mathrm{A}’$ be the set of all natural numbers, and let N_{+} be the set of all positive integers. The concate-
nation operator is denoted by ‘. ’. For an alphabet Σ , the set of strings over I is denoted by Σ^{*} , and the
empty string is denoted by A.

2.1 Ranked Alphabets, Trees, Substitution and Context-Free Grammars

A ranked alphabet is a finite set of symbols in which each symbol is associated with a natural number,
called the rank of a symbol. Let Σ be a ranked alphabet. For $a\in\Sigma$, the rank of a is denoted by rank(a).
For $n\geq 0$, it is defined that $\Sigma_{n}=\{a\in\Sigma|rank(a)=n\}$.

A set D is a tree domain if D is a nonempty finite subset of $(\lambda^{\Gamma_{+}})^{*}$ satisfying the following conditions:. For any $d\in D$, if $d’$, $d’\in$ $(\Lambda_{+}’)^{*}$ and $d=d^{f}$. $d’$, then $d’\in D$.. For any $d\in D$ and $\mathrm{i},j\in N_{+}$, if $\mathrm{i}\leq j$ and $d\cdot$ $j\in D$, then $d\cdot$ $\mathrm{i}\in D$.

Let D be a tree domain and $d\in D$. Elements in D are called nodes. A node $d’$ is a child of d if there
exists $\mathrm{i}\in N_{+}$ such that $d’=d\cdot \mathrm{i}$. A node is called a leaf if it has no child. The node A is called the
root A node that is neither a leaf nor the root is called an internal node. A path is a sequence of nodes
with the separator $\#$ such that do#di# \ldots $\# d_{n}$, $n\geq 0$ where d_{0} , d_{1} , \ldots , $d_{n}\in D$ and for $0\leq \mathrm{i}\leq n-1$,
d_{i+1} is a child of d_{i} . Let Σ be a ranked alphabet. A tree over Σ is a function α : $Darrow\Sigma$ where D is a
tree domain. The set of trees over Σ is denoted by Ts. The domain of a tree α is denoted by D_{α} . For
$d\in D_{\alpha}$, $\alpha(d)$ is called the label of d . The subtree of α at d is $\alpha/d=\{(d’, a)\in(N+)^{*}\mathrm{x} \Sigma|(d. d’, a)\in\alpha\}$.

The expression of a tree over I is defined to be a string over elements of Σ , parentheses and commas.
For $\alpha\in T_{\Sigma}$, if $\alpha(\mathrm{d})=b$, $\max\{\mathrm{i}\in N_{+}|\mathrm{i}\in D_{\alpha}\}=n$ and for each $1\leq \mathrm{i}\leq n$, the expression of α/i is α_{i} ,

then the expression of α is $b(\alpha_{1}$, α_{2} , . . . , $\alpha_{\mathrm{n}})$. Note that n is the number of the children of the root. For
$b\in \mathrm{S}\mathrm{o}$, trees are written as b instead of $b().\mathrm{W}\mathrm{h}\mathrm{e}\mathrm{n}$ the expression of α is $b(\alpha_{1}$, α_{2} , . . . , $\alpha_{n})$, it is written
that α

$=6(\mathrm{a}\mathrm{i}, \alpha_{2}, \ldots, \alpha_{n})$, i.e., each tree is identified with its expression.
Let Σ be a ranked alphabet, and let I be a set that is disjoint from X. $T_{\mathrm{L}^{\neg}}(I)$ is defined to be $T_{\Sigma\cup I}$

where I $\cup I$ is the ranked alphabet obtained from I by adding all elements in I as symbols of rank 0.
Let $X=\{x_{1},x_{2}, \ldots\}$ be the fixed countable set of variables. It is defined that $X_{0}=\emptyset$ and for $n\geq 1$,
$X_{n}=\{x_{1}, x_{2}, \ldots, x_{n}\}$. x_{1} is situationally denoted by x . Let α , $\beta\in T_{\Sigma}$ and $d\in D_{\alpha}$. It is defined that
$\alpha\langle darrow\beta$ } $=$ { $(\mathrm{d}^{;},\mathrm{a})|(d^{l},$ $a)\in$ a and d is not a prefix of ci’} \cup { $(d\cdot$ d’ , $b)$ $|(d^{\mathit{1}\prime},$ $b)\in\beta$}, i.e., the tree
$\alpha\langle d\vdash\beta\rangle$ is the result of replacing a/d by !. Let $\alpha\in T_{\Sigma}(X_{n})$, and let β_{1} , β_{2} , $\ldots,\beta_{n}\in T_{\Sigma}(X)$. The

notion of substitution is defined. The result of substituting each β_{i} for nodes labeled by variable x_{1} in α ,

denoted by $\alpha[\beta_{1}, \beta_{2}, \ldots, \beta_{n}]$, is defined as follows.. If $\alpha=a\in\Sigma_{0}$, then $a[\beta_{1}, \beta_{2}, \ldots, \beta_{n}]=a$.. If α $=x_{i}\in X_{n}$, then $x_{i}[\beta_{1},\beta_{2}, \ldots, \beta_{n}]=\beta_{i}$.. If a $=6(\mathrm{a}\mathrm{i}, \alpha_{2}, \ldots, \alpha_{k})$, $b\in\Sigma_{k}$ and $k\geq 1$, then
$\alpha[\beta_{1},\beta_{2}, \ldots, \beta_{n}]=b(\alpha_{1}[\beta_{1},\beta_{2}, \ldots, \beta_{n}], \ldots, \alpha_{k}[\beta_{1},\beta_{2}, \ldots, \beta_{n}])$.

A context-free grammar (CFG) is a $\not\subset$-tuple ($;=(N, T, P, \mathit{8})$, where: N and T are disjoint alphabets

of nonterminals and terminals, respectively, P is a finite set of productions of the form $Aarrow\gamma$ where
$\gamma\in$

$(N\cup T)^{*}$, and $S\in N$ is the initial nonterminal The language generated by \mathcal{G} , denoted by $L(\mathcal{G})$, is

defined as usual.

2.2 Context-Free Tree Grammars
The context-free tree grammars (CFTGs) were introduced by W. C. Rounds [7] as tree generating systems.

The definition of CFTGs is a direct generalization of context-free grammars

34

Definition 1 A context-free tree grammar (CFTG) is a 4-tuple $\mathcal{G}=(N, \Sigma, P, S)$, where: N and Σ are
disjoint ranked alphabets of nonterminals and $tem\mathrm{i}nalS_{\}}$ respectively, P is a finite set of productions of
the form $A(x_{1}$, x_{2} , . . . , $x_{n})arrow\alpha$, with $n\geq 0$, AeNn, $\alpha\in TN\cup\Sigma(X_{n})$, and $S\in N_{0}$ is the initid nonterminal.

Definition 2 For a CFTG ($;,$
$\Rightarrow \mathcal{G}$

is the relation on $T_{\Sigma\cup N}\mathrm{x}T_{\Sigma\cup N}$ such that for a tree $\alpha\in T_{\Sigma\cup N}$ and a node
$\mathrm{d}\mathrm{e}\mathrm{D}\mathrm{a}$, if ajd-A(ai, $\alpha_{2},$ $\ldots,$

α_{n}) where AeNn, $\alpha_{1},\ldots,\alpha_{n}\in T_{\Sigma\cup N}$, and $A(x_{1}$, x_{2} , . . . , $x_{n})arrow\beta$ is in P , then
$\alpha\Rightarrow\alpha\langle d\mathcal{G}arrow\beta[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}]\rangle$. A derivation is a finite sequence of trees $\alpha_{0}\alpha_{1}\cdots\alpha_{n}$ such that $n\geq 0$ and

$\alpha_{0}\Rightarrow\alpha_{1}\mathcal{G}\Rightarrow\cdots\Rightarrow \mathcal{G}\mathcal{G}$

α_{n} . When there exists a derivation $\alpha_{0}\alpha_{1}\cdots\alpha_{n}$, we write $\alpha_{0}\Rightarrow^{*}\alpha_{n}\mathcal{G}^{\cdot}$ The subscript a on

the relations a and $\Rightarrow^{*}\mathcal{G}$ may be dropped when \mathcal{G} is clearly understood. The tree language generated by \mathcal{G}

is the set $\mathrm{L}(\mathrm{Q})=$ {aETy $|S\Rightarrow^{*}\alpha$}
\mathcal{G}^{\cdot}

The string language generated by \mathcal{G} is $Ls(\mathcal{G})=$ {yield(a) $|\alpha\in L(G)$ }.
$\mathcal{G}0_{1}$ and \mathcal{G}_{2} are equivalent if $L(\mathcal{G}_{1})=L(\mathcal{G}_{2})$. \mathcal{G}_{1} and \mathcal{G}_{2} are uteakly equivalent if $Ls(\mathcal{G}_{1})=L_{S}(\mathcal{G}_{2})$.

Linear, monadic CFTGs (LM-CFTGs) are CFTGs with two restrictions. One is ’linear’ that requires
the number of occurrences of every variable in the right-hand side of a production be no more than 1,
and the other is ‘monadic’ that requires the rank of nonterminals be either 0 or 1.

Definition 3 A CFTG $\mathcal{G}=(N, \Sigma,P, S)$ is monadic if the rank of any nonterminal is either 0 or 1, i.e.,
$N=$ N_{0} $\cup N_{1}$ and $N_{n}=\emptyset$ for $n\geq 2$. \mathcal{G} is linear if for any production $\mathrm{A}(\mathrm{x}\mathrm{i}, x_{2}, \ldots,x_{n})arrow\alpha$ in P , no
variable occurs more than once in α .

3 Properties of LM-CFTGs
In this section, we discuss formal properties of LM-CFTGs that give us intuition about the class of trees
generated by LM-CFTGs.

First, we introduce normal form of LM-CFTGs, The notion of normal form of LM-CFTGs is analogous
to that of Chomsky normal form of CFGs. For any LM-CFTG, there exists an equivalent LM-CFTG
$\mathcal{G}=(N, \Sigma,P, S)$ that satisfies the following conditions:

1. For each $A\in N_{0}$, if \^A a is in P , then either a-a with $a\in\Sigma_{0}$, or $\alpha=B(C)$ with $B\in N_{1}$ and $C\in N_{0}$.
2. For each AeNu , if $A(x)arrow\alpha$ is in P , then either $\alpha=B(C(x))$ with B , $C\in N_{1}\mathrm{o}\mathrm{r}\alpha=b(C_{1}$, \ldots , C_{i-1} , x ,

C_{i+1} , . . ., C_{m}) with $n\geq 0$, $b\in\Sigma_{n+1}$ and C_{1} , \ldots , $C_{i-1_{\mathrm{t}}}C_{l+1}$, \ldots , $C_{m}\in N_{0}$.
If a LM-CFTG satisfies the above conditions, it is said that the grammar is in normal form. The definition
of normal form is slightly different from the one introduced in [2] but it is easy to obtain this normal
form in the same way as the construction of the Chomsky norm al form of context-free grammars.

For an LM-CFTG in normal form, productions which grow a tree horizontally are only of the form
$A(x)arrow \mathrm{B}(\mathrm{C})\ldots$, $C_{i-1},x,$ C_{i+1} , \ldots , C_{n}). In the right-hand side of the rules, the i-th child of b is different
from the other children. Thus, we introduce modified LM-CFTGs called marking LM-CFTGs whose
productions are with a marker that can be used to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ derivations.

Definition 4 For $\mathcal{G}=(N_{7}\Sigma,P, S)$ be an LM-CFTG in normal form, the marking LM-CFTG associated
with \mathcal{G} , $\mathcal{G}’=$ ($N\cup\overline{N}$, IUZ, $P’$, S), is defined as follows. $\overline{N}=\{\overline{A}|A\in N\},\overline{\Sigma}=\{\overline{a}|a\in\Sigma\}$, and $P’$ is the
smallest set of productions safisfing the following conditions:

1. If $Aarrow a$ is in P for some $A\in N_{0}$ and $a\in\Sigma_{0}$, then $Aarrow a$ and $\overline{A}arrow\overline{a}$ are in $P’$.
2. If $Aarrow B(C)$ is in P for some A , $C\in N_{0}$ and $B\in N_{1}$, then $\overline{A}arrow\overline{B}(\overline{C})$ and $A\prec B(\overline{C})$ are in $P’$.
3. If $A(x)arrow B(C(x))$ is in P for some A , B , $C\in N_{1}$, then $\overline{A}(x)$ $arrow\overline{B}(\overline{C}(x))$ and $A(x)arrow B\langle\overline{C}(x))$ are

in $P’$.
4. If $A(x)arrow b(C_{1}, \ldots , C_{i-1},x, C_{i+1}, \ldots, C_{m})$ is in P for some $m\geq 0$, $b\in\Sigma_{m}$ and C_{1} , \ldots , C_{i-1} , C_{i+1} ,

..., $C_{m}\in N_{1}$, then $\overline{A}(x)arrow\overline{b}(C_{1,\ldots,-1}C_{l},x, C_{i+1}, \ldots, C_{m})$ and $A(x)arrow b$(C_{1} , \ldots , C_{i-1} , x , C_{i+1} ,

.. . , C_{m}) are in $P’$.
Elements in $\overline{N}\cup$ $\overline{\Sigma}$ are called marked, and elements in $N\cup\Sigma$ are called an-marked.

35
Definition 5 Let \mathcal{G} be a marking LM-CFTG. For a tree $\alpha\in L(\mathcal{G}\rangle$ and a node $d_{0}\in D_{\alpha}$, the marked
path starts from d_{0} is a path $d_{0}\# d_{1}\#\cdots\# d_{n}$ such that $n\geq 0$, d_{n} is a leaf, and for $1\leq \mathrm{i}\leq n$, $\alpha(d_{i})$ is
marked. When d_{0} is the root of α , the marked path starts from d_{0} is called the spine of α . When $\alpha(d_{0})$

is un-marked, the marked path starts from d_{0} is called a subspine of α .

From the above definitions, the following claim is immediate.

Claim 1 Let \mathcal{G} be a marking LM-CFTG. For any tree derived by $\overline{\mathcal{G}}$,. each node has exactly one marked child if the node is not a leaf,. an un-marked node is either the root or a child of a marked node, and. there exists exactly one marked path for each node.

Definition 6 For an LM-CF$\mathrm{T}\mathrm{G}$ $\mathcal{G}=(N, \Sigma, P, S)$, the spine producing CFG associated with \mathcal{G} , $\overline{\mathcal{G}}=$

$(N, \Sigma, P’, S)$, is defined as follows. $P’$ is the smallest set of productions satisfying the following conditions:

1. If a production $Aarrow a$ is in P for some A $\in N_{0}$, $a\in\Sigma_{0)}$ then $Aarrow a$ is in $P’$,

2. If a production $Aarrow B(C)$ is in P for some A , $C\in N_{0}$, $B\in N_{1}$, then $Aarrow BC$ is in $P’$,

3. If a production $A(x)arrow B(C(x))$ is in P for some A , B , $C\in N_{1}$, then $Aarrow BC$ is in $P’$, and

4. If a production $A(x)arrow b$(C_{1} , \ldots , Ci-i, x , C_{i+1} , \ldots , C_{m}) is in P for some $m\geq 0$, $A\in N_{1}$, $b\in\Sigma_{m}$

and C_{1} , . . . , Ci-i, C_{i+1} , \ldots , $C_{m}\in N_{0}$, then $Aarrow b$ is in $P’$.

Lemma 1 Let $\mathcal{G}=$ ($N\cup\overline{N}$, IUC, P, S) be a marking LM-CFTG, and let ($j=$ $(N\cup\overline{N}, \Sigma\cup\overline{\Sigma}, P^{l}, S)$ be the
spine producing CFG associated with \mathcal{G} . For any tree $\alpha\in L(\mathcal{G})$, $d_{0}\# d_{1}\#\cdots\# d_{n}$ is a subspine of α if and
only if $\mathrm{a}(\mathrm{d}\mathrm{Q})$. $\alpha(d_{1})\cdot\cdots\cdot$ $\alpha(d_{n})\in L(\overline{\mathcal{G}})$.

Proof. From the construction of $\overline{\mathcal{G}}$, the lemma clearly holds. \square

4 Recognition Algorithms

4.1 Parsing Algorithms for Marking LM-CFTGs

We assume that a marking LM-CF$\mathrm{T}\mathrm{G}$ $\mathcal{G}=(N\cup\overline{N}, \Sigma\cup\overline{\Sigma}, P, S)$ is given and the CFG $\overline{\mathcal{G}}=(N\cup N,$
$\Sigma\cup\overline{\Sigma}$,

$P’$, $S)$ is constructed from \mathcal{G} . The algorithm consists of three parts: Parse-Tree, Parse and CKY. First,
the function Parse Tree takes an input and initializes variables. Next, the main procedure Parse is
invoked. The procedure Parse is defined recursively and checks a tree in bottom-up by using the function
CKY. For a given tree, the procedure Parse stores a marked path. The function CKY is based on the
CKY algorithm for context-free languages. The function CKY checks whether a subspine stored by the
function Parse could be generated by the CFG $\overline{\mathcal{G}}$.

The Function Parse-Tree
The function Parse Tree takes as input a tree α . This function prepare a variable τ_{d} and a set U_{d} for
each node d in α . The variable τ_{d} stores a marked path of the node d . This string shows the path
with the maxker from some leaf to the node d . In the 5th line of this function, $CKY(\tau_{\lambda}, S)$ is invoked.
$CK\mathrm{Y}(\tau_{\lambda}, S)$ checks whether a spine of the root node τ_{λ} could be derived from initial symbol S by the
CFG $\overline{\mathcal{G}}$.
Parse-Tree:
Input a tree α . Output accept if a $\in L(\mathcal{G})$ otherwise reject.
begin
1 For each node d in D_{α} , we prepare the set U_{d} and

the variable $\mathcal{T}d$ over strings of nodes with the concatenation operator $\#$.
2 Initialize the variable $\tau_{d}:=$ A and the set $U_{d}:=\emptyset$ for each node d in D_{α} .

3 For each node d in α , check that d has exactly one marked child if d is not a leaf,

otherwise reject.
4 Parse(a, A)
5 if $CKY(\tau_{\lambda}, S)=true$, then return accept else return reject.
end

38
The Procedure Parse
The procedure Parse takes as input a tree and a node. The given node shows where the given tree is
located in the whole tree, because this procedure is defined recursively. The algorithm works by parsing
in a bottom-up way. This procedure stores a marked path of the given node. And nonterminals of the
left side symbol of productions which derive the root node and un-marked children are stored.

Parse:
Input a tree α and a node d .
begin
1 Let $\alpha(\lambda)=b$ and rank(b) $=m$.
2 if m $=0$, then
3 $\tau_{d}.=d$ and $U_{d}:=\{A|Aarrow\alpha\in P\}$

else begin
4for $\mathrm{i}:=1$ to m do Parse(a/i, $d\cdot \mathrm{i}$)
5 Let the h-th child of the root be marked.
6for each $A(x)arrow b$ (C_{1} , \ldots , child $x,$ C_{h+1} , \ldots , C_{m}) is in P for some $A\in N_{1}\cup\overline{N}_{1}$,

C_{1} , . . . ’
C_{h-1} , C_{h+1} , . . . ’

$C_{m}\in N_{0}$,
if $CKY(\tau_{d}Cj)J7=$ true, for all $j\in\{1, . . , h-1, h+1, \ldots , m\}$,

then $U_{d}:=U_{d}\cup\{A\}$

7 $\tau_{d}:=d\neq\tau_{dh}$

8 end
end

The Function CKY
The extended CKY takes as an input a path which is a subspine of some node, and check whether the
given path could be derived by the CFG (;. This algorithm is the same way as well-known recognition
algorithm for context-free languages.

CKY:
Input a path τ and a nonterminal A . Output true or false.
begin
1 The path τ can be written as $d_{1}\# d_{2}\#\cdots\# d_{m}$ where d_{1},d_{2} , . . . , $d_{m}\in D_{\alpha}$ and $m\geq 1$.
2 Let V be an $m\mathrm{x}$ m matrix.
3 for i $:=1$ to m do
4 $V_{\mathrm{i},1}:=U_{d}$.
5 for $j:=2$ to m do
6 for $\mathrm{i}:=1$ to m - $j+1$ do begin
7 $V_{i,j}:=\emptyset$

8 for $k:=1$ to $j-1$ do
9 $Vi,i.–V_{\mathrm{z},\mathrm{j}}\mathrm{U}$ {A $|Aarrow BC\in P’$, $B\in V_{t,k}$, $C\in V_{i+k,j-k}$ }

end
10 if A $\in V_{1,m}$, then return trwe else return false
end

From above algorithms, we obtain the following results. We leave these proofs of theorems to the
reader .

Theorem 1 $A\Rightarrow^{*}\alpha\in T_{\Sigma}$ if and only if $CKY(\tau_{\lambda}, A)$ $=true$ after applying Parse(a, λ).

Theorem 2 Our recognition algorithm runs in 0 (n^{3}) time where n is the number of nodes of the input
tree.

4.2 Parsing Algorithms for general LM-CFTGs
In this section, we present algorithms for tree languages generated by general LM-CFTGs, In above
section, LM-CFTGs are marked. So, we can distinguish paths which generated by using productions of
the form $Aarrow B(C)$ and $A(x)arrow B(C(x))$, and check these paths in the CKY style algorithm. The new
algorithm should guess these marked paths

37

Figure 1: The CKY algorithm for parsing the tree

Since there is no danger of confusion, we use the same labels for functions and procedures. The
function Parse-Tree takes an input and initializes variables. For each node d in the input tree, the
function prepare a set U_{d} . The set U_{d} will be set by the procedure Parser. At the node d , if the algorithm
guess i-th child to be marked, then nonterminals will be added to the set $U_{d\cdot i}$. So, this function prepare
another sets for nodes of leaves.

Parse tree
Input a tree α . Output accept if cx $\in \mathrm{L}(\mathrm{Q})$ otherwise reject.
begin
1 For all node d in Da, we prepare the set U_{d} $:=\emptyset$ and the tree $\tau_{d}:=$ A.
2 For each leaf d in D_{a} , we prepare the set $U_{d}’:=\emptyset$.
3 Parse(a, A)
4 if $CKY(\tau_{\lambda}, S)=true$, then return accept else return reject,
end

The procedure Parse behaves in the same way of above marked version, but nonterminals is added
to the set U_{di} , if this procedure guess i-th child to be marked. If the input tree has no child, then
nonterminals which derived this node are stored in the set $U_{d}’$. This extension algorithm needs at most
constant times of above version.

Parse:
Input a tree α and a node d .
begin
1 Let $\mathrm{a}(\mathrm{A})=b$ and rank(b) $=m$.
2 if m $=0$, then
3 $U_{d}’:=$ {A|A $arrow\alpha\in P\}$

else begin
45

for $\mathrm{i}:=1$ to m do Parse(\mbox{\boldmath α}/i, $d\cdot \mathrm{i}$)
for each $A(x)arrow b(C_{1}, \ldots , C_{i-1}, x, C.\cdot+1, \ldots, C_{m})$ is in P for some $A\in N_{1}$,

C_{1} , . . . , $C_{\mathrm{i}-1}$, $C_{+1}.\cdot$, \ldots , $C_{m}\in N_{0}$, and $1\leq \mathrm{i}\leq m$,
if $CKY(\alpha/j, C_{j})=$ true, for all $\mathrm{j}\in\{1, \ldots, \mathrm{i}-1,\mathrm{i}+1, \ldots , m\}$

then $U_{d\cdot \mathrm{i}}:=U_{d\cdot i}\mathrm{U}\{A\}$

end
end

We extend CKY to parsing the tree structure. The function CKY takes as input a tree τ and checks
whether there exists a path from the root to a leaf derivable by CFG $\overline{\mathcal{G}}$. The following algorithm search
the input tree in the depth-first search and construct a matrix V . This algorithm sets result to set W

whenever reaching a leaf of the tree. And last, CKY checks whether the nonteminal A is in the set
W . This algorithm reuse cells corresponded to prefix path and for each node d , sets cells to upper left
neighbor (see Figure 1). Let n be a number of nodes of the input tree. For each node, this algorithm sets

sells at most n times. Each cell needs to set in $O(n)$ time. This algorithm constructs cells exactly once
for same node, because this algorithm visits nodes in depth-first search. So, the total time complexity is
$O(n^{3})$.

CKY:
Input a tree τ and a nonterminal A . Output true or false.
begin
1 Let m be the number of nodes in τ .

38

Prepare the $m\mathrm{x}$ m matrix V and the set W .
2Initialize $W:=\emptyset$

3This algorithm visits each node in the tree τ in the depth-first search
and sets the matrix V in the following way:

4for each node d (whose depth is $i=|d|+1$)
begin

5if d has no child then, $V_{i,1}:=U_{d}’$

else
6Let the next visiting node be Z-th child of d .
7 $V_{\iota,1}:=U_{d\ell}$

8for $j:=1$ to $i-1$ do begin
9 $V_{i-j,j+1}:=\emptyset$

10 for $k:=1$ to 7 do
li $V_{i-j,i+1}:=V_{i-\mathrm{j},j+1}\cup\{A|Aarrow BC\in P’, B\in V_{i-j_{\mathit{3}}-k+1},, C\in V_{\mathrm{j}-k+1,k}\}$

end
12 if d is a leaf, then $W:=W\mathrm{U}\mathrm{V}\mathrm{i},\mathrm{i}$

end
13 if $A\in W$, then return true else return false
end

The complexity does not increase by extension of algorithms. Thus, we have the following result.

Theorem 3 A recognition of tree languages generated by LM-CFTGs is in time $O(n^{3})$, where n is the
number of nodes of the input tree.

5 Conclusion
In this paper, we present an $O(n^{3})$ time algorithm for recognition tree languages generated by LM-
CFTGs. This algorithm arise from properties of LM-CFTGs such that a set of subspines and the other
productions rewrite a nonterminal on the paths is a context-free lanuage. Thus, we can apply a CKY-like
algorithm to these paths. Our recognition algorithm might be a little slow in an actual application.
However, we conjecture that a limitation could be introduced into LM-CFTGs as in the case of LR-
grammars to construct more faster recognition algorithms, i.e., productions which derive subspines are
limited to generate a ‘deterministic’ context-free lanuage. In this paper, we have not be able to present
recognition algorithms for linear CFTGs. The class of tree sets generated by linear CFTGs is closely
related to that of multicomponent TAGs. How order time is necessary for recognition of tree languages
generated by linear CFTGs? We believe that a solution for these questions will make the notion of the
tree language recognitions more interesting.

References
[1] W. S. Brainerd, Ttee generating regular systems, Information & Control 14 (2) (1969) 217-231.

[2] A. Fujiyoshi, T. Kasai, Spinal-formed context-free tree grammars, Theory of Computing Systems
33 (1), 2000, pp. 59-83.

[3] A. Fujiyoshi, Epsilon-free grammars and lexicalized grammars that generate the class of the mildly
context-sensitive languages, in: $\mathrm{T}\mathrm{A}\mathrm{G}+7$, Vancouver 2004, pp. 16-23.

[4] A. Fujiyoshi, Linearity and nondeletion on monadic contex-free tree grammars, in: Information
Processing Letters, 2004, Pp. 103-107.

[5] A. K. Joshi, L. S. Levy, M. Takahashi, Tree adjunct grammars, J. Computer & System Sciences
10 (1), 1975, pp. 136-163.

[6] A. K. Joshi, Y. Schabes, Handbook of Formal Languages, Vol. 3, Springer, Berlin, 1996, Ch. Tree-
adjoining grammars, pp. 69-124.

[7] W. C. Rounds, Mapping and grammars on trees, Mathematical Systems Theory 4 (3), 1970, pp.
257-287.

