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1 Introduction.
In the present paper we review a duality result and its applications for a
stochastic control problem with fixed marginals published in [10]. For a few
proofs we do not give all details, rather we prefered to focus on the arguments;
details for these proofs can be found in [10].

The problem were are interested in is defined as follows: given $\epsilon>0$ ,

Ve (Po, $P_{1}$ ) $:= \inf\{E[\int_{0}^{1}L(t, X(t);\beta_{X}(t, X))dt]|$

$PX(t)^{-1}=P_{t}(t=0,1)$ , $X\in A\}$ . (1. i)

where $P_{0}$ and $P_{1}$ are Borel probability measures on $\mathrm{R}^{d}$ and $L(t, x_{\dagger}.u)$ : $[0, 1]$ $\mathrm{x}$

$\mathrm{R}^{d}\mathrm{x}$ $\mathrm{R}^{d}\mapsto[0, \infty)$ is measurable and convex w.r.t. $u$ . The infimum is taken
over the set $A$ of all $\mathrm{R}^{d}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ , continuous semimartingales $\{X(t)\}_{0\leq t\leq 1}$ on
a probability space $(\Omega_{X}, \mathrm{B}_{X}, P_{X})$ such that there exists a Borel measurable
$\beta_{X}$ : $[0, 1]$ $\mathrm{x}$ $C([0,1])\mapsto \mathrm{R}^{d}$ for which
(i) $\omega$ $\mapsto\beta_{X}(t,\omega)$ is $\mathcal{B}(C([0, t]))_{+}$-measurable for all $t$ $\in[0,1]$ , where $B(C([0, t]))$

denotes the Borel a-field of $C([0, t])$ ,
(ii) $\{X(t)-X(0)-\int_{0}^{t}\beta_{X}(s, X)ds:=\sqrt{\epsilon}W_{X}(t)\}_{0\leq t\leq 1}$ where $W_{X}$ is a $\mathrm{a}[X(s)$ :
$0\leq s\leq t]$-Brownian motion (see [7]).

Remark It would appear more natural to consider semi martingales of the
form

$X^{u}(t)$ $=X_{o}+ \int_{0}^{t}u(s)ds+W(t)$ $(t\in[0,1])$ . (1.2)

with $\{u(t)\}_{0\leq t\leq 1}$ a $(\mathrm{B}_{t})$ -progressively measurable stochastic process. How-

ever if we set
$\beta_{X^{u}}(t, X^{u})=E[u(t)|X^{u}(s), 0\leq s\leq t]$ , (1.3)

then using conditional expectations Jensen inequality and convexity of $L$ one
obtains,

$E[ \int_{0}^{1}L(t, X^{u}(t);u(t))dt]\geq E[\int_{0}^{1}L(t, X^{u}(t);\beta_{X^{u}}(t, X^{u}))dt]$ . (1.4)

and therefore it is sufficient to consider drifts of the form $\beta_{X}$ as long as one
is interested in the minimizing problem $V_{\epsilon}(P_{0}, P_{1})$ .
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When $L$ depends only on $u$ , problem $V_{\epsilon}$ has a counterpart in the deter-
ministic setting, this counterpart has been intensively studied since it is the
Monge-Kantorovich problem (for a complete list of references we refer the
reader to [11] and [13] $)$

$\mathrm{T}(\mathrm{P}0, P_{1})$ $:= \inf\{E[\int_{0}^{1}l(\frac{d\phi(t)}{dt})$ dt$]|P\phi(t)^{-1}=P_{t}(t=0,1)$ ,

$t\mapsto\phi(t)$ is absolutely continuous (1.5)

Actually the most usual (and better known) form of the Monge-Kantorovich
problem is

$T(P_{0}, P_{1}):=$ inf$\{E(L(Y-X))$ ; $X\sim P_{0}$ , $Y\sim P_{1}\}$ (1.6)

where $X\sim P_{0}$ (resp. $Y\sim P_{1}$ ) means that the law of $X$ (resp. $Y$ ) is $P_{0}$ (resp.
$P_{1})$ . It is not difficult to show that $T(P_{0}, P_{1})=\mathrm{T}(\mathrm{P}0, P_{1})$ . In the quadratic
case, that is when $L(t, x, u)= \frac{1}{2}|u|^{2}$ , the Monge-Kantorovich problem has
received much attention, in probability as well as in statistics, in particu-
lar because $\sqrt{T(P_{0},P_{1})}$ , called Wasserstein metric, metrizes convergence in
distribution on the set of probability measures on $\mathrm{R}^{d}$ with finite second m\^o

ments. It is not difficult to show that $T$( $P_{0}$ , Px) $=\mathcal{T}(P_{0}, P_{1})$ . More recently
the results obtained by Brenier (cf. [1], [2]) have revived the subject by
enlightening its connection with fluid mechanics and geometry.

Duality results play a fundamental role in the study of Monge Kantorovich
problem. There are two duality results. For the sequel the most important
for us is the duality result due to Evans ([5]):

$T(P_{0}, P_{1})= \sup\{\int_{\mathrm{R}^{d}}\psi(1, x)P_{1}(dx)-\int_{\mathrm{R}^{d}}\psi(0, x)P_{0}(dx)\}$ , (1.7)

where the supremum is taken over all continuous viscosity solutions $\psi$ to the
following Hamilton-Jacobi equation:

$\frac{\partial\psi(t,x)}{\partial t}+\ell^{*}(D_{x}\psi(t, x))=0$ $((t, x)\in(0, 1)\mathrm{x}$ $\mathrm{R}^{d})$ (1.8)

(see $\mathrm{E}$ Chap. 3). Here $D_{x}:=(\partial/\partial x_{i})_{i=1}^{d}$ and for $z\in \mathrm{R}^{d}$ ,
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$\ell^{*}(z):=\sup_{u\in \mathrm{R}^{d}}\{<z, u>-\ell(u)\}$

and $<.$ , $\cdot>$ denotes the inner product in $\mathrm{R}^{d}$ .
The second duality result was chronologically proved before by Kan-

torovich and implies (1.7) (cf. for instance $\mathrm{V}$):

$T(P_{0}, P_{1})$ $:=$ $\sup\{\int_{\mathrm{R}^{d}}\psi(y)P_{1}(dy)+\int_{\mathrm{R}^{d}}\varphi(x)P_{0}(dx)$ ;

$(\varphi, \psi)\in L^{1}(P_{0})\mathrm{x}L^{1}(P_{1})$ , $\varphi(x)+\psi(y)\leq L(y-x)\}.(1.9)$

In the sequel we describet how it is possible to prove a duality theorem
for $V_{\epsilon}$ in the spirit of (1.7) and describe applications. We will not give all
proofs in detail; for detailed proofs we refer the reader to [10].

2 Duality Theorem

For simplicity in what follows we restrict to the case when $L(t, x, u)=L(u)$

(that is $L$ depends only on $u$). However our main result (duality theorem)

and its applications are valid even if $L$ depends on $(t, x)$ (cf. [10]). Let

us recall that $P_{0}$ and $P_{1}$ are given Borel probability measures on $\mathrm{R}^{d}$ , and
$L(u)$ : $\mathrm{R}^{d}\mapsto[0, \infty)$ is a measurable and convex function of $u$ . We moreover
assume that

$V_{\epsilon}(P_{0)}P_{1})<+\infty$ (2.1)

We will need assumptions on $L$ which we denote as follows:
(A. $\mathrm{I}$ ). $L$ is superlinear. for some $\delta$ $>1$ ,

$\lim_{|u|arrow}\inf_{\infty}\frac{L(u)}{|u|^{\delta}}>0$ .

(A.2). $(\mathrm{i})L\in C^{3}(\mathrm{R}^{d})$ ,
(ii) $D_{u}^{2}L(u)$ is positive definite for all $u\in \mathrm{R}^{\mathrm{d}}\dot,$

We will look for sufficient conditions for $V_{\epsilon}$ to admit a minimizer, unique
$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ Markovian and also for a characterization of minimizers. A duality

theorem will provide such a characterization(the characterization itself will

be obtained in the next section). As already mentioned we focus on the main
steps and articulations of the argument
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2.1 Existence and uniqueness of a minimizer.
Results about existence and uniqueness are gathered in

Theorem 2.1 (t) $V_{\epsilon}(P_{0}, P_{1})$ admits a minimizer.
(ii) if assumpion (A.I) holds with $\delta=2$ , $V_{\epsilon}(P_{0}, P_{1})$ admits a Markovian
minimizer
(iii) If $L$ is strictly convex and assumpion (A.I) holds with $\delta$ $=2$ , then

$V_{\epsilon}(P_{0}, P_{1})$ admits a unique minimizer (which is Markovian from (ii)).

Our tool for the proof of (ii) and (iii) in Theorem 2.1 is the following mini-
mization problem with fixed marginals

$arrow V(P_{0}, P_{1}):=\inf\int_{0}^{1}\int_{\mathrm{R}^{d}}L(b(t, x))P(t, dx)dt$, (2.2)

where the infimum is taken over all $(b(t, x)$ , $P(t, dx))$ for which $P(t, dx)(0\leq$

$t\leq 1)$ are Borel probability measures, on $\mathrm{R}^{d}$ , such that $p(t, x):=P(t, dx)/dx$

exists for all $t\in(0, 1]$ , $P(t, dx)=P_{t}(t=0,1)$ and the following Fokker-
Planck pde

$\frac{\partial P(t,dx)}{\partial t}=\frac{\epsilon}{2}\triangle P(t, dx)-d\mathrm{i}v(b(t, x)P(t, dx))$ (2.3)

is satisfied. Let us notice that $\underline{V}_{\epsilon}$ is a stochastic analog of the problem
onsidered by Benamou and Brenier in [3]. Then

Proposition 2.1 (cf. [10] Lemma 3. 5). Assume (A.I) with $\delta=2$ holds.
Then $V_{\epsilon}(P_{0}, P_{1})=\underline{V}_{\epsilon}(P_{0}, P_{1})$ .

Proof of Theorem 2.1, Proof of (i): Let $(X_{n})$ denote a minimizing se-
quence of processes in the set A; this means that

$\lim_{narrow\infty}E[\int_{0}^{1}L(\beta_{X_{n}}(t, X_{n}))dt]=V_{\epsilon}(P_{0}, P_{1})$ (2.4)

Since $X_{n}\in A$ for all $n$ and assumption (A.I) holds ($L$ is superlinear), it
follows that the sequence $(X_{n})$ is tight: the sufficient condition for tightness
of [14] is satisfied. In particular (A.I) implies that

$E[ \int_{0}^{1}|\beta_{X_{n}}(t, X_{n}))|^{\delta}dt]<+\infty$ (2.5)
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(with $\delta>1$ ). Hence there exists a subsequence $(X_{n_{k}})$ weach converges
weakly; let us denote its limit by $(X(t))$ . The process $X$ belongs to $A$ :
from [14], Theorem 5, we obtain that $\frac{1}{\sqrt{\epsilon}}\{X(t)-X(0)-\mathrm{A}(t)\}_{t\in[0,1]}$ is a stan-
dard Brownian motion and $\{\mathrm{A}(t)\}_{t\in \mathrm{f}0,1]}$ is absolutely continuous. Moreover
$(X(t))$ satisfies

$\lim_{karrow\infty}E[\int_{0}^{1}L(\beta_{X_{n_{h}}}(t, X_{n\mathrm{g}}))dt]$ $(2,6)$

$\geq$ $E[ \int_{0}^{1}L(\frac{d\mathrm{A}(t)}{dt})dt]$ .

which implies that it is a minimizer of $V_{\epsilon}$ . Inequality $(2,6)$ may be proved fol-
lowing the argument of $[9]\mathrm{i}\mathrm{n}$ the proof of Theorem 1, which is here simplified
since $L$ depends on $u$ only.
Proof of (ii): we now assume that (A.I) holds with $\mathit{5}=2$ . Using the same
argument as in the proof of (i) one can show that $\underline{V}(P_{0}, P_{1})$ admits a mini-
mizer. From Proposition 2.1 this minimizer also is a minimizer of $V_{\epsilon}$ ( here

it is actually sufficient that $V_{\epsilon}\geqarrow$ )$V$ .
Proof of (ii): we moreover assume that $L$ is strictly convex. From Proposition

(actually it is sufficient that $V_{\epsilon}\leq\underline{V}_{\epsilon}$ ) it is enough to show uniqueness for $arrow V$

(cf. [10] proof of Proposition 2.2 where we use the strict convexity of $L$ and
the linearity of Fokker-Planck $\mathrm{p}\mathrm{d}\mathrm{e}$) . Q.E.D.

2.2 Dua lity Theorem.

Theorem 2.2 Suppose that (A.I) and (A.2) are satisfied. Then

$V_{\epsilon}(P_{0}, P_{1})= \sup\{\oint_{\mathrm{R}^{d}}\varphi(1, y)P_{1}(dy)-\int_{\mathrm{R}^{d}}\varphi(0, x)P_{0}(dx)\}$, (2.7)

where the supremum is taken over all classical solutions $\varphi$ , to the following
$HJB$ equation, for which $\varphi(1, \cdot)\in C_{b}^{\infty}(\mathrm{R}^{d})$ :

$\frac{\partial\varphi(t,x)}{\partial t}+\frac{\epsilon}{2}\triangle\varphi(t, x)+H(D_{x}\varphi(t, x))=0$ $((t, x)\in(0, 1)\mathrm{x}\mathrm{R}^{d}1$, (2.8)

Proof of 2.2 The two main arguments of the proof are:
1. A property of the Legendre transform: on a Banach space if $f$ is a lower

semi continuous function not identically equal to $+\infty$ , then $f^{**}=f$ where $*$

denotes Legendre transform
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2. A representation of the value function of a stochastic control problem
(with sufficiently regular terminal cost) by a solution of an Hamilton-Jacobi-
Bellman $\mathrm{p}\mathrm{d}\mathrm{e}$ .

For point 1., we rely on results of [4] ( namely Theorem 2.2.15 and Lemma
3.2.3). To apply these results, one has to prove first that $P\mapsto V(P_{0}, P)$ is
lower semicontinuous and convex. This is proved in detail in [10] Lemmas
3.1 and 3.2. It follows that

$\mathrm{V}(\mathrm{P}\mathrm{o}, P_{1})=\sup_{f\in C_{b(\mathrm{R}^{d})}}\{\int_{\mathrm{R}^{d}}f(x)P_{1}(dx)-V_{P_{0}}^{*}(f)\}$, (2.9)

where for $f\in C_{b}(\mathrm{R}^{d})$ ,

$V_{P_{0}}^{*}(f):= \sup_{1P\in \mathrm{A}\mathrm{t}(\mathrm{R}^{d})}\{\int_{\mathrm{R}^{d}}f(x)P(dx)-V(P_{0}, P)\}$ ,

and $\mathcal{M}_{1}(\mathrm{R}^{d})$ denotes the complete separable metric space, with a weak topol-
ogy, of Borel probability measures on $\mathrm{R}^{d}$ .

For point 2., we refer the reader to [$6|$ : for $f\in C_{b}^{\infty}(\mathrm{R}^{d})_{1}$

$V_{P_{0}}^{*}(f)= \sup\{E[f(X(1))]-E[\int_{0}^{1}L(t, X(t)_{\mathrm{i}}\beta_{X}(t, X))dt]$ :

$X\in A$ , $PX(0)^{-1}=P_{0}\}$

$=$ $\int_{\mathrm{R}^{d}}\varphi_{f}(0, x)P_{0}(dx)$ , (2.10)

where $\varphi_{f}$ denotes the unique classical solution to the HJB equation (2.3)
with $\varphi(1, \cdot)=f(\cdot)$ . Using both identities (2.9) and (2.10), we obtain

$V_{\epsilon}(P_{07}P_{1}) \geq\sup_{f\in C_{b}^{\infty}(\mathrm{R}^{d})}\int_{\mathrm{R}^{d}}\varphi(1, y)P_{1}(dy)-\int_{\mathrm{R}^{d}}\varphi(0, x)P_{0}(dx)$, (2.11)

To prove the converse inequality we have to pass from $C_{b}(\mathrm{R}^{d})$ to $C_{b}^{\infty}(\mathrm{R}^{d})$

with the help of a mollifier sequence. Take $\Phi\in C_{o}^{\infty}([-1,1]^{d};[0, \infty))$ for which
$\int_{\mathrm{R}^{d}}\Phi(x)dx=1$ , and for $\delta$ $>0$ , and define

$\Phi_{\delta}(x):=\delta^{-d}\Phi(x/\delta)$ .
For $f\in C_{b}(\mathrm{R}^{d})$ , we set
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$f_{\delta}(x):= \int_{\mathrm{R}^{d}}\mathrm{f}(\mathrm{v})6(\mathrm{x}-y)dy$ . (2.12)

Then $f_{\delta}\in C_{b}$
’ $(\mathrm{R}^{d})$ and

$\sup_{j\in c_{\mathrm{b}}\infty\langle \mathrm{R}^{d})}\int_{\mathrm{R}^{d}}\varphi(1, y)P_{1}(dy)-\oint_{\mathrm{R}^{d}}\varphi(0, x)P_{0}(dx)$

$\geq$ $\int_{\mathrm{R}^{d}}f_{\delta}(x)P_{1}(dx)-V_{P_{0}}^{*}(f_{\delta})$

$\geq$ $\int_{\mathrm{R}^{d}}f(x)\Phi_{\delta}*P_{1}(dx)-V_{\Phi_{\delta}*P_{0}})^{*}(f)$ .

Indeed, for any $X\in A$

$E[f_{\delta}(X(1))]= \int_{\mathrm{R}^{d}}\Phi(z)dzE[f(X(1)-\delta z)]$ (2.13)

Then identity (2.9) implies that

$\sup_{f\in c_{b}\infty(\mathrm{R}^{d})}\int_{\mathrm{R}^{d}}\varphi(1, y)P_{1}(dy)-\int_{\mathrm{R}^{d}}\varphi(0, x)P_{0}(dx)$

$\geq$ $V(\Phi_{\delta}*P_{0}, \Phi_{\delta}* P_{1})$

It remains to let $\delta$ go to 0 and use the lower semi-continuity of $(P, Q)\mapsto$

$V(P, Q)$ proved in [10]. Q.E.D.

3 Applications.

3.1 Characterization,

We first recall the following property of Legendre transform which we will
use repeatedly: if $L$ is strictly convex, superlinear ( $\mathrm{i}\mathrm{e}$ . satisfies (A. $\mathrm{I}$ )) and
smooth (for instance belongs to $C^{2}(\mathrm{R}^{d})$ ) then $L^{**}=L;\nabla L:\mathrm{R}^{d}arrow \mathrm{R}^{d}$ is $\mathrm{a}$

bijection from $\mathrm{R}^{d}$ onto itself and $\nabla H=\nabla L^{-1}$ where $H=L^{*}$ . If moreover
$D^{2}L$ is positive definite, $H$ is twice differentiate and

$D^{2}H(\nabla L(u))=D^{2}L(u)^{-1}$ (3.1)
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Theorem 3.1 Suppose that (A.I) and $(\mathrm{A},2)$ hold. Then for any mini-
mizer $\{X(t)\}_{0\leq\ell\leq 1}$ of $V_{\epsilon}(P_{0}, P_{1})$ , there exists a sequence of classical solutions
$\{\varphi_{n}\}_{n\geq 1}$ to the $HJB$ equation (2.8), such that $\varphi_{n}(1, \cdot)\in C_{b}^{\infty}(\mathrm{R}^{d})(n\geq 1)$

and that the following holds:

$\beta_{X}$ $(t, X)$ $=b_{X}(t, X(t)):=E[\beta_{X}(t, X)|(t, X(t))]$ (3.2)

$= \lim_{narrow\infty}D_{z}H(?, X(t);D_{x}\varphi_{n}(t, X(t)))$ dtdPX$(\cdot)^{-1}-a.e.$ .

Proof of Theorem 3.1 Prom Theorem 2.2 here exists a sequence of classical
solutions $\{\varphi_{n}\}_{n\geq 1}$ to the HJB equation (2.8), such that $\varphi_{n}(1, \cdot)\in C_{b}^{\infty}(\mathrm{R}^{d})$

$(n\geq 1)$ and

$\lim_{narrow\infty}\int_{\mathrm{R}^{d}}\varphi_{n}(1, y)P_{1}(dy)-\int_{\mathrm{R}^{d}}\varphi_{n}(0, x)P_{0}(dx)=V_{\epsilon}(P_{0}, P_{1})$ (3.3)

Therefore, for $X$ a minimizer of $V_{\epsilon}$ , it holds

$\lim_{narrow\infty}\int_{\mathrm{R}^{d}}\varphi_{n}(1,y)P_{1}(dy)-\int_{\mathrm{R}^{d}}\varphi_{n}(0,x)P_{0}(dx)=E[\int_{0}^{1}L(\beta_{X}(t,X))dt](3.4)$

Since $X(0)\sim P_{0}$ (resp. $X(1)$ – $P_{1}$ ) and $\{\varphi_{n}\}_{n\geq 1}$ solves the HJB pde (2.8),
Ito formula yields

$\lim_{narrow\infty}E\int_{0}^{1}<\beta_{X}(t, X)$ , $\nabla\varphi_{n}(t, X(t))>-L(\beta_{X}(t, X))-H(\nabla\varphi_{n}(t, X(t))dt=0$

(3.5)
Moreover by definition of $H$ as the Legendre transform of $L$ , the integrand
in (3.5) is positive, Hence the sequence

$(<\beta_{X}(t, X)$ , $\nabla\varphi_{n}(t, X(t))>-L(\beta_{X}(t, X))-H(\nabla\varphi_{n}(t, X(t)))$ (3.6)

converges to 0 in $L^{1}(dtdP)$ and admits a subsequence which converges $\mathrm{a}.\mathrm{s}$ .
For simplicity we still denote this subsequence by $(\varphi_{n})$ . Let $(t,\omega)$ be such
that the sequence $(<\beta_{X}(t, X),$ $\nabla\varphi_{\mathrm{n}}(t, X(t))>-H(\nabla\varphi_{n}(t, X(t)))$ converges
to $L(\beta_{X})=H^{*}(\beta_{X})$ . The supremum in the definition of

$H^{*}(u)=$ $\sup(<p, u>-H(p))$ (3.7)

is attained at $p^{*}=\nabla L(u)$ . We therefore obtain that

hm $\nabla\varphi_{n}(t, X(t))=\nabla L(\beta_{X}(t, X))$ (3.2)
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or equivalently $\beta_{X}(t, X)=\lim\nabla H(\nabla\varphi_{n}(t, X(t)).$ Q.E.D.
We would like to show now that a minimizer solves a stochastic equation.

We were able to prove such a result under the additional assumption:
(A.3). $D^{2}L(u)$ is bounded.

The following lemma will be useful below:

Lemma 3.1 Let L $\in C^{2}(\mathrm{R}^{d})$ be strictly convex and superlinear such that

$C:=$ $\sup\{<D^{2}L(u)z, z>:(u, z)\in \mathrm{R}^{d}\mathrm{x} \mathrm{R}^{d}, |z|=1\}<+\infty$ (3.9)

Then

$\forall(u, z)\in \mathrm{R}^{d}\mathrm{x}\mathrm{R}^{d}$ $||z-\nabla L(u)||^{2}\leq C|L(u)-(<u, z>-H(z))|$ (3.10)

Proof of Lemma 3.1. By definition of $H=L^{*}$ , for all $(u, z)$ , $L(u)-(<$
$u$ , $z>-H(z))\geq 0$ . The assumptions of the lemma ensure that for all
$u$ , $u=\nabla H(\nabla L(u))$ and $H(p)=<p$ , $\nabla H(p)>-L(\nabla H(p))$ for all $p$ . We
therefore have

$L(u)-(<u, z>-H(z))=H(z)-H(\nabla L(u))-<\nabla H(\nabla L(u))$ , $z-\nabla L(u)>$

(3.11)

The conclusion follows from identity (3.1). Q.E.D.

Theorem 3,2 Suppose that (A. 1) holds with $\delta=2$ as will as (A.I) and
$(\mathrm{A}$ . 3$)$ . Then for the unique minimizer $\{X(t)\}0\leq t\leq 1$ of $V_{\epsilon}(P_{0}, P_{1})$ ,

(1) there exist $f(\cdot)\in L^{1}$ ( $\mathrm{R}^{d},$ $P_{1}$ (d$)) and a $\sigma[X(s) : 0\leq s\leq t]-$ continuous
semimartingale $\{Y(t)\}_{0\leq t\leq 1}$ such that

$\{(X(t), Y(t), Z(t):=D_{u}L(b_{X}(t, X(t))))\}_{0\leq t\leq 1}$

satisfies the following FBSDE in a weak sense: for $t\in[0,1]_{r}$

$X(t)$ $=X(0)+ \int_{0}^{t}D_{z}H(Z(s))ds+\sqrt{\epsilon}W(t)$ , (3.12)

$Y(t)$ $=$ $f(X(1))- \int_{t}^{1}L(D_{z}H(Z(s)))ds$

$- \int_{\ell}^{1}<Z(s)$ , $dW(s)>$ .
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(2) there exist $f_{0}(\cdot)\in L^{1}(\mathrm{R}^{d}, P_{0}(dx))$ on $d\varphi(\cdot, \cdot)\in L^{1}([0,1]\mathrm{x}\mathrm{R}^{d}$ , $P((t, X(t))\in$

dtdx)) such that $Y(0)=f_{0}(X(0))$ and such that

$Y(t)-Y(0)=\varphi(t, X(t))-\varphi(0, X(0))$ dtdPX $(\cdot)^{-1}-\mathrm{a}.\mathrm{e}$ , (3.13)

that is, $Y(t)$ is a continuous version of $\varphi(t, X(t))-\varphi(0, X(0))+f_{0}(X(0))$ .

Proof of Theorem 3.2 Let $(\varphi_{n})$ be a sequence satisfying the same con-
ditions as in the proof of Theorem 3.1 and $X$ a minimizer of $V_{\epsilon}$ . From Ito
formula,

$\varphi_{n}(t, X(t))-\varphi_{n}(0, X(0))$ (3.13)

$= \int_{0}^{t}\{<b_{X}(s, X(s))\}D_{x}\varphi_{n}(s, X(s))>-H(D_{x}\varphi_{n}(s, X(s)))\}ds$

$+ \int_{0}^{t}<D_{x}\varphi_{n}(s, X(s))$ , $\sqrt{\epsilon}dW(s)>$ .

We first consider convergence of the martingale part. By Doob’s inequality

$E( \sup_{0\leq t\leq 1}|\oint_{0}^{t}<D_{x}\varphi_{n}(s, X(s))-D_{u}L(b_{X}(s, X(s))),$ $dW(s)>|^{2})$

$\leq$ $4E( \oint_{0}^{1}|D_{x}\varphi_{n}(s, X(s))-D_{u}L(b_{X}(s, X(s)))|^{2}ds)$ (3.15)

By Lemma 3.1 it follows that

$E( \sup_{0\leq t\leq 1}|\oint_{0}^{t}<D_{x}\varphi_{n}(s, X(s))-D.$ $L(b_{X}(s, X(s)))$ , $dW(s)>|^{2})$

$\leq$ $4CE( \int_{0}^{1}|L(b_{X}(s, X(s)))-(<b_{X}(s, X(s)),$ $D_{x}\varphi_{n}(s, X(s))>$

$-H(D_{x}\varphi_{n}(s, X(s))))|ds)$

which converges to 0 by Theorem 3.1. This theorem also implies that

$\int_{0}^{t}\{<b_{X}(s, X(s)), D_{x}\varphi_{n}(s, X(s))>-H(D_{x}\varphi_{n}(s, X(s)))\}ds$ (3.16)

converges in $L^{1}$ to $\int_{0}^{1}L(b_{X}(s, X(s)))ds$ . We therefore obtain that $\varphi_{n}(1, y)-$

$\varphi_{n}(0_{1}x)$ and $\varphi_{n}(t, y)-\varphi_{n}(0, x)$ are convergent in $L^{1}(\mathrm{R}^{d}\mathrm{x}\mathrm{R}^{d}, P((X(0), X(1))\in$
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$dxdy))$ and $L^{1}(\mathrm{R}^{d}\mathrm{x}[0,1]\mathrm{x} \mathrm{R}^{d}, P((X(0), (t, X(t)))\in dxdtdy))$ , respectively.
The question is whether the limit is still of the separable form $\psi(1, y)-\psi(0, x)$

and $\psi(t, y)-\psi(0, x)$ respectively. From [12] this is indeed the case pro-
vided that the law of $(X(0), X(1))$ (resp. $(X(0),$ $X(t))$ ) is absolutely contin-
uous with respect to $P_{0}(dx)P_{1}(dy)$ ( resp. $P_{0}(dx)P_{t}(dy)$ ) where $P_{t}$ denotes
the law of $X_{t}$ . These conditions are satisfied here since (A.I) holds with
$\delta=2$ and consequently the process $X$ has finite entropy w.r.t. the Wiener
measure on $C(\mathrm{R}^{d})$ with initial law $P_{0}$ . Hence, from [12], Prop. 2, there
exist $f\in L^{1}(\mathrm{R}^{d}, P_{1}(dx))$ , $f\mathrm{o}\in L^{1}(\mathrm{R}^{d}, P_{0}(dx))$ , $\varphi_{0}\in L^{1}(\mathrm{R}^{d}, P_{0}(dx))$ and
$\varphi\in L^{1}([0, 1] \mathrm{x} \mathrm{R}^{d}, P((\mathrm{f}, X(t))\in dtdy))$ such that

$\lim_{narrow\infty}E[|\varphi_{n}(1, X(1))-\varphi_{n}(0, X(0))-\{f(X(1))-f_{0}(X(0))\}|]=0$ , (3.17)

and

$\lim_{narrow\infty}E[\int_{0}^{1}|\varphi_{n}(t_{7}X(t))-\varphi_{n}(0, X(0))-\{\varphi(t, X(t\})-\varphi_{0}(X(0))\}|dt]=0$ .
(3.18)

It is easy to check that $(Y(t))$ defined by

$Y(t)$ $:=$ $f_{0}(X(0))+ \int_{0}^{t}L(s, X(s),\cdot b_{X}(s, X(s)))ds$ (3.19)

$+ \int_{0}^{t}<D_{u}L(s, X(s);b_{X}(s, X(s)))$ , $dW(s)>$ .

satisfies the statement of Theorem 3.2. Q.E.D.
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