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1 Introduction

Let Q C IRV be an open, connected and possibly unbounded subset of RY, and let u(z) be a
bounded from above and upper semicontinuous function on the closure of Q, in symbols

supu < 400, u e USCE),
Q

satisfying in the viscosity sense a second order fully nonlinear differential inequality of the form
F(z,u, Du,D%) >0 in . (1)

In the recent paper [5], we gave an answer to the following question:

when the Mazimum Principle - MP in short - holds for inequality (1), that is what assumptions
on the domain Q and/or on the operator F' can ensure the validity of the implication

u<0 on 0 = u<0 in Q7

When looking at previous results about MP for unbounded domains, one can distinguish
basically two kinds of results

& general comparison principles, which include MP as a special case, between viscosity
subsolutions and supersolutions of fully nonlinear equations. Within this approach, the
operator F(z,u,p, X) : @ xRxRY xSY — IR is assumed to satisfy, besides the degenerate
ellipticity inequality, some structural growth conditions and the strict monotonicity with
respect to the u variable. On the other hand, no assumptions on the domain {2 are required,
and even the case = RY is allowed.
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& for strong solutions of linear uniformly elliptic second order differential inequalities with
bounded coefficients, that is for functions u satisfying

tr(A(z) D%u) + b(z) - Du+c(z)u =0 ae in §,
uE Wﬁf(ﬂ), supu < +00,
Q

MP has been obtained as a consequence of the (improved) Alexandrov-Bakelman-Pucci
(ABP in short) estimate. In this case, a large monotonicity in the zero order term is
allowed, namely the requirement c(z) < 0 holds, but some geometric restrictions on the
domain } are assumed.

For the former approach, we refer to the results obtained by R. Jensen, P.L. Lions & P.E.
Souganidis [9] and by H. Ishii [8], and included in the celebrated "User’s guide” of M. Crandali,
H. Ishii & P.L. Lions [6]. In the latter case, we refer to the results of H. Berestycki, L. Nirenberg
& S.R.S. Varadhan [1] and of X. Cabré [2], as well as to the further extensions by V. Cafagna
& A. Vitolo [3] and by A. Vitolo [12].

Let us observe that, in general, MP does not hold for even linear uniformly elliptic in-
equality not strictly monotone with respect to the u variable. As a simple example, u(z) =
1—1/|z|N~2, with N > 3, is a bounded subharmonic (actually, harmonic) function in the exte-
rior domain § = IRY \ B;(0) and constantly equals zero on the boundary, while being strictly
positive inside (2. Thus, widely speaking, some extra assumptions are needed in order to obtain

MP .
In this notes, after recalling the method pursued for linear operators, we present the results
obtained in [5], which extend it to viscosity solutions of fully nonlinear inequalities.

2 ABP estimate in the linear case.

Let u be a bounded from above strong solution of the following linear differential inequality

tr(A(z) D?*u) + b(z) - Du+c(z)u > fz) ae in Q,

loc

€ Wz‘N(Q), sgpu < 400,

with bounded coefficients satisfying
My <Alz) <AIy, cz)<0 fora.e. z €9,

and source term such that ‘
feIlMQ).

The ABP estimate assumes different forms according to the boundedness properties of the
domain 2.

2.1 ABP for bounded domains.

In the standard case of a bounded domain, the ABP estimate states that (see e. g. [7])

supu < limsupu + C diam({) | f~ Ly @) »
93 z—

where f~ is the negative part of the function f and C > 0 is a constant depending on N, on

the ellipticity constants A and A, and on the product diam(£2) 1B]l zoo (02)-
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2.2 ABP for domains having finite measure.

In this case, by assuming further that f € L°°(2), H. Berestiycki, L. Nirenberg & S.R.S.
Varadhan [1] proved that :

supu < limsupu + Cmeas(Q)% 1 f [l o) s
2 x—0f]

with C > 0 depending on N, A, A, and on the product meas(Q)T{f' 18]l oo 2y

2.3 ABP for certain unbounded domains.

The general case of an unbounded domain has been considered by X. Cabré [2], under the
following geometric condition that will be referred to as condition (G) :

there ezist constants 0,7 € (0,1) and R(Q) > O such that, for all y € Q, there is a ball Bg,,
containing y and having radius Ry < R(S)), which satisfies

meas (Bg, \ ©y,r) > o meas (Bg,) ,

where §y ; is the connected component of N Bp, r containing y.

Roughly speaking, the requirement R, < R(Q) for all y € ( imposes in a measure theoretic
sense that there is "enough boundary” uniformly near to every point of £2. The positive constant
R(Q) plays the role of the diameter for un unbounded domain. Examples of domains satisfying
condition (G) include all the domain having finite measure, in which case we have R({2) =
(2 meas(£2) /meas(Bl))l/ N and all the cylinders, for which R(f) equals the diameter of their
bounded projections.

If ) satisfies (G) , the improved ABP estimate obtained in [2] states that

supu < limsupu + C R(Q) [|f 7|l Ly s
Y] T35

with C > 0 depending on N, A, A, and on the product R() (|5l ()

3 ABP and MP in the fully nonlinear case.

Let u be a bounded from above viscosity solution of the following fully nonlinear differential
inequality

F(x,u,Du,D%u) > f(z) in Q,
{ (P)

u € USC(QY), supu < +oo.
[4]

Here we assume that f € C(Q) N L>(Q). Furthermore, the continuous real valued function
F:OxRx RN xSY —» R (with SV being the set of N x N real symmetric matrices) is
assumed to satisfy, besides the degenerate ellipticity inequality

F(x»tsan) > F(.’E,t,p,Y) (FI)
forallze Q,te R, pe RN and X, Y € SV with X — Y > O, the following bound from above

F(z,t,p, X) < P4 (X) +b(z) Ip| (F2)
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forall z € 2, pe RY, X € 8V and t > 0. We assume that b € C(£2) N L=(Q2) is a nonnegative
function and we denote by 'P;: 4 the Pucci maximal operator, defined as (see {4, 6])

Py p(X) = sup Tr (AX) = ATH{XT) = ATr (X)),
AeAd

where A = A(\A) = {A€SY : IS A<AI}, and X* and X~ are nonnegative definite
matrices such that X = X+ — X~ and XT X~ = 0.

Let us point out that assumptions (F1), (Fa) are satisfied by any uniformly elliptic proper
operator F' having linear growth with respect to first order terms. Furthermore, if F satisfies
(F1) and its principal part F(z,0,0, X) is linear with respect to X, then condition (Fz) implies
the uniform ellipticity of F(z,0,0,X). Indeed, by using (F3) with X = £Q and Q 2 0, it
follows that

F(2,0,0,Q) S P (Q) =ATr(Q), F(2,0,0,-Q) < Py (-Q) = -ATr (Q),
and then, by linearity,
ATr(Q) < F(2,0,0,@) <ATr(Q), VQ20.

On the other hand, assumptions (F1), (F2) include also nonlinear, possibly degenerate, elliptic
operators, such as the following one

N N
F(z,t,p,X) = A (Z w(uf)) - X (Z w(m) + H(z,t,p),

Ni=1 g==1

where p, i = 1,... N, are the eigenvalues of the matrix X eS8V, ¢, v : [0,+00) = [0,4+00)
are continuous and nondecreasing functions such that ¢(s) < s and ¢(s) > s for all s 2 0, and
H{z,t,p) is a continuous function such that H{z, t, p) <b(z)lp|forallz € Q,t >0andp € RN.

3.1 ABP for bounded domains.

When the domain § is bounded, the ABP estimate has also in the fully nonlinear case the form

supu < sup ut + Cdiam{) || f~ Ly @) »
Q z€d}
where C' > 0 is a constant depending on N, on the ellipticity constants A and A, and on the
product diam(€) ||| peo(q)- This has been proved by L. Caffarelli & X. Cabré [4] if the operator
F does not depend on the gradient variable, and then extended by A. Persello [11] to complete
fully nonlinear operators satisfying (F1)—~(F2), and by S. Koike & T. Takahashi [10] to operators
having superlinear growth with respect to the gradient.

3.2 ABP and MP for certain unbounded domains

Here and henceforth we assume that the domain {2 satisfies the following condition, which will
be referred to as (WG)
there ezist constants o, 7 € (0,1) such that, for ally € Q, there is a ball Br, containing y which

satisfies
meas (Bg, \ Qy,r) > 0 meas (Br,) »
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where €, . is the connected component of QN Bg,/r containing y.

Note that condition (wG) is exactly the same as (G) but not requiring any uniform bound on
the radii R,’s. Typical examples of domains satisfying (wG) (and failing (G) ) are cones, for

which R, = O(Jy|) as |y| — oc.
Under assumption (wG) we have the following localized version of ABP estimate.

Theorem 1 (see [5]) Let u be a solution of (P), with F' and Q satisfying respectively assump-
tions (F1)—(F2) and (wG) . Then, for every y € 2, there exists a costant 8y € (0,1), depending
on N, A, A, o, 7 and on y through the quantity Ry ||b||re(q, ,), such that

w(y) < (1 —0) supw* + 6y supwt + By [ oz (2)

If either the operator F does not depend on the gradient or the domain {2 satisfies condition
(G) , then the costant 6, appearing in (2) is independent of y. In this case, from (2) with f =0
we immediately obtain the following

Corollary 2 Assume that F satisfies (F1)—(F2) and that (wG) holds true for Q. If either (Fa)
is satisfied with b = 0 or Q satisfies (G) , then MP holds for the operator F in the domain ().

In order to obtain a global ABP estimate for fully nonlinear inequalities in unbounded
domains we need to assume, besides condition (wG) on  and assumptions (F1)-(Fg) on F,
a further requirement coupling the geometry of the domain with the growth of the first order
coefficients. Precisely, we have the following result.

Theorem 3 (see [5]) Let Q, F and u be as in Theorem 1. If further

sup Ry ||b]lz=(q, ) < 00, (%)
=

where Ry and §y, , are as in (WG) and b is as in (F2), then

supw < supw’ + C sup v, .
u Ul yenRy”‘f iz~ iay,

for some positive constant C' depending on N, A, A, o, T and sup Ry [|bl|z=(q, ,)-
yeN '

For f > 0, Theorem 3 immediately yields the following

Corollary 4 Under the same assumptions of Theorem 3, the Mazimum Principle holds for the
operator F' in the domain §}.
4 Examples and further extensions.

4.1 On the necessity of condition (x) for MP .

For a complete second order operator condition (wG) alone is in general not enough for MP to
hold. A counterexample (see [12]) is given by the function

u(@) = u(zy,z) = (1 - ™2) (1-€%),
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with 0 < a < 1. Indeed, u is bounded and strictly positive in the plane cone
Q={m=(m1,x2)€1R2 T3 > 1, :1:2>1} ,

and it satisfies
u=0 ond, Au+b(z)-Du=0 inf2,

where the vector—field b is given by

o -« o 1—-o
b(z) = b(z1,22) = , .
be) = oman) = (5 + 152 T+ ")

Notice that €} satisfies (wG) with R, = O(Jy|) as |y| — oo and, on the other hand, condition
(F2) holds with b(z) = |b(z)|. Since for every y € §I and for any choice of Br, we have
[|blizoo (g, ,) = 1 and supyeq Ry = +oo, condition (*) clearly fails in this example.

4.2 An application.

Let us look at some special non trivial cases in which condition (x) is fulfilled.

(a) Consider the half cylinder @ = {(z/,an) e R¥ "' xR : 2| < 1, zn > 0}. Since {2 satis-
fies condition (G) , then () is satisfied if b in assumption (F2) is any nonnegative bounded
and continuous function.

(b) Q is a convex set with "parabolic” boundary, i.e.
0={(,zy) e BN xR : zy > [2'|}

with g > 1. Then, £ satisfies assumption (wG) with radii Ry = O (]y]lf 9) as |y| = oo. In
this case, requirement (*) imposes to the function b a rate of decay b(y) = O (1 /[ytl/fI) as
ly| = 0o. If so, the balls Bp, in (wG) can be chosen in such a way that [|b]2(q,,.) =
O (1/[y]/9) as ly| — oo and (x) is fulfilled.

(c) Q is the strictly convex cone {z € RV \ {0} : z/lz| € I'} where I is a proper subset of
the unit half-sphere .S’f“1 = {a: = (z,zN) € RY-1xR: |z|=1, a2y > O}. In this case,
condition (wG@) is satisfied with R, = O(Jy|) for [y| — oo and condition (%) requires on
the coefficient b the rate of decay b(y) = O (1/|y|) as y| — oo

Note that cases (a) and {c) can be seen as limiting cases of situation (b) when, respectively,
g— +ooand g = 1.

4.3 MP for domains not satisfying (wG) .

The validity of MP can be extended to even more general domains, not satisfying (wG) , by
repeatedly applying the argument of Corollary 4.

More precisely, let F' be a second order operator satisfying (F1)-(F2) and assume that there
exists a closed set H C € with the following properties

(i) MP holds for F' in each connected component of O\ H;
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(i) (wG) holds for all points of H, i.e. there exist constants o,7 € (0,1) such that for all
y € H there is a ball Bg, of radius Ry containing y such that

‘BRy \ Q| 2 UiBRyi,
where €, ; is the connected component of N B, /r containing y;

(iif)

sup R, “b”Lco(Qv,T) <00,
yeH

where R, and §,, are as in (ii) and b is as in (Fa).
In this situation we have the following

Theorem 5 (see [3, 5, 12]) Assume that F satisfies conditions (F1)-(F2) and that assumptions
(i), (ii) and (iii) above hold for 1. Then, MP holds for operator F in §}.

As a consequence of the above result, MP can be obtained in non-convex, perhaps degen-
erate cones. For instance, if F satisfies (F2) with a coefficient b(z) such that b(z) = O(1/|z|) as
2| — oo, then MP holds for F in the cat plane ) = le\{(a:l,O) eR? : 2 < 0}, as it follows
from Theorem 5 with e.g. H = {(z1,-21) € R? : z; < 0}.
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