Relaxation in the Cauchy problem for Hamilton-Jacobi equations

Hitoshi Ishii* (早稲田大学 教育・総合科学学術院) and Paola Loreti *

1. Introduction. In this note we study a little further the *relaxation* of Hamilton-Jacobi equations developed recently in [4,5]. In [4] we initiated the study of the relaxation of Hamilton-Jacobi equations of eikonal type and in [5] we extended this study to a larger class of Hamilton-Jacobi equations.

Let us recall the relaxation in calculus of variations. In general a non-convex variational problem (P) does not have its minimizer. A natural way to attack such a variational problem is to introduce its relaxed (or convexified) variational problem (RP) which has a minimizer and to regard such a minimizer as a generalized solution of the original problem (P). The main result (or principle) in this direction states that $\min(RP) = \inf(P)$. That is, any accumulation point of a minimizing sequence of (P) is a minimizer of (RP). This fact or principle is called the relaxation of non-convex variational problems. See [3] for a treatment of the relaxation of non-convex variational problems.

Relaxation of Hamilton-Jacobi equations is the principle which says that the pointwise supremum over a suitable collection of Lipschitz continuous subsolutions in the almost everywhere sense of a non-convex Hamilton-Jacobi equation yields a viscosity solution of the equation with convexified Hamiltonian. See [4,5].

Here we are concerned with the Cauchy problem for Hamilton-Jacobi equations and generalize some results obtained in [5].

2. Main result for the Cauchy Problem. We consider the Cauchy Problem

(1)
$$u_t(x,t) + H(x, D_x u(x,t)) = 0$$
 for $(x,t) \in \mathbf{R}^n \times (0,T)$,

$$(2) u|_{t=0} = g,$$

^{*} Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050, Japan. Supported in part by Grant-in-Aid for Scientific Research, No. 15340051 and No. 14654032, JSPS. (ishii@edu.waseda.ac.jp)

^{*} Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università degli Studi di Roma "La Sapienza", Via Scarpa n. 16, 00161 Roma, Italy (loreti@dmmm.uniroma1.it)

where H and g are given continuous functions respectively on \mathbf{R}^{2n} and \mathbf{R}^n , T is a given positive number or $T = \infty$, u = u(x,t) is the unknown continuous function on $\mathbf{R}^n \times [0,T)$, u_t denotes the t-derivative of u, and $D_x u$ denotes the x-gradient of u.

Let \widehat{H} denote the convex envelope of the function H, that is,

$$\widehat{H}(x,p) = \sup\{l(p) \mid l \text{ affine function, } l(q) \le H(x,q) \text{ for } q \in \mathbf{R}^n\}.$$

We also consider the convexified Hamilton-Jacobi equation

(3)
$$u_t(x,t) + \widehat{H}(x, D_x u(x,t)) = 0 \quad \text{for } (x,t) \in \mathbf{R}^n \times (0,T).$$

We use the notation: for $a \in \mathbf{R}^n$ and $r \geq 0$, $B^n(a,r)$ denotes the *n*-dimensional closed ball of radius r centered at a. For $\Omega \subset \mathbf{R}^m$, $\mathrm{BUC}(\Omega)$ and $\mathrm{UC}(\Omega)$ denote the spaces of bounded uniformly continuous functions on Ω and of uniformly continuous functions on Ω , respectively. Furthermore, $\mathrm{Lip}(\Omega)$ denotes the space of Lipschitz continuous functions on Ω . Notice that $f \in \mathrm{Lip}(\Omega)$ is not assumed to be a bounded function.

Throughout this note we assume:

(4) $H, \hat{H} \in BUC(\mathbf{R}^n \times B^n(0, R))$ for all R > 0.

(5)
$$\lim_{R \to \infty} \inf \left\{ \frac{H(x,p)}{|p|} \mid (x,p) \in \mathbf{R}^n \times (\mathbf{R}^n \setminus B^n(0,R)) \right\} > 0.$$

For R>0 we define the function $H_R:\mathbf{R}^{2n}\to\mathbf{R}\cup\{\infty\}$ by

$$H_R(x,p) = \begin{cases} H(x,p) & \text{if } x \in B^n(0,R), \\ \infty & \text{if } x \notin B^n(0,R), \end{cases}$$

and write \widehat{H}_R for \widehat{G} , where $G = H_R$.

(6) For each R > 0 and $\varepsilon > 0$ there is a constant $\rho \ge R$ such that

$$\widehat{H}_{\rho}(x,p) \le \widehat{H}(x,p) + \varepsilon$$
 for $(x,p) \in \mathbf{R}^n \times B^n(0,R)$.

(7) $g \in \mathrm{UC}(\mathbf{R}^n)$.

Proposition 1. (i) If $u \in USC(\mathbf{R}^n \times [0,T))$ and $v \in LSC(\mathbf{R}^n \times [0,T))$ are a viscosity subsolution and a viscosity supersolution of (3) respectively. Assume that $u(x,0) \leq v(x,0)$ for $x \in \mathbf{R}^n$ and that there is a (concave) modulus ω such that for all $(x,t) \in \mathbf{R}^n \times [0,T)$ and $y \in \mathbf{R}^n$,

$$\begin{cases} u(x,t) \le u(y,0) + \omega(|x-y|+t), \\ v(x,t) \ge v(y,0) - \omega(|x-y|+t). \end{cases}$$

Then $u \leq v$ on $\mathbb{R}^n \times [0,T)$. (ii) There is a (unique) viscosity solution $u \in \mathrm{UC}(\mathbb{R}^n \times [0,\infty))$ of (3) which satisfies (2). If, in addition, $g \in \mathrm{Lip}(\mathbb{R}^n)$, then $u \in \mathrm{Lip}(\mathbb{R}^n \times [0,\infty))$.

We remark that the same proposition as above is valid for (1). We omit giving the proof of the above proposition.

Let \mathcal{V}_T denote the set of functions $v \in \text{Lip}(\mathbf{R}^n \times [0,T))$ such that

(8)
$$v_t(x,t) + H(x, D_x v(x,t)) \le 0$$
 a.e. $(x,t) \in \mathbf{R}^n \times (0,T)$.

The following theorem is the main result in this note.

Theorem 2. Assume that (4)–(7) hold. Let $u \in \mathrm{UC}(\mathbf{R}^n \times [0,T))$ be the unique viscosity solution of (3) satisfying (2). Then, for $(x,t) \in \mathbf{R}^n \times [0,T)$,

(9)
$$u(x,t) = \sup\{v(x,t) \mid v \in \mathcal{V}_T, \ v|_{t=0} \le g\}.$$

Remark. In general the above formula does not give a subsolution of

$$u_t(x,t) + H(x, D_x u(x,t)) = 0$$
 a.e. $(x,t) \in \mathbf{R}^n \times (0,\infty)$.

For instance, let n=2 and define $H\in C(\mathbf{R}^2)$ and $g\in \mathrm{UC}(\mathbf{R}^2)$ by $H(p,q)=(|p|^{\frac{1}{2}}+|q|^{\frac{1}{2}})^2$ and g(x,y)=-|x|-|y|, respectively. Note that $\widehat{H}(p,q)=|p|+|q|$ for $(p,q)\in \mathbf{R}^2$. We set $\rho(x,y,t)=-2t-|x|-|y|$. Then, for instance, by computing $D^{\pm}\rho(x,y,t)$, we infer that ρ is the viscosity solution of

$$\begin{cases} u_t(x,y,t) + |u_x(x,y,t)| + |u_y(x,y,t)| = 0 & \text{in } \mathbf{R}^2 \times (0,\infty), \\ u(x,y,0) = g(x,y) & \text{for } (x,y) \in \mathbf{R}^2. \end{cases}$$

On the other hand, since at any point $(x, y, t) \in \mathbb{R}^2 \times (0, \infty)$, where $x, y \neq 0$, we have

$$H(\rho_x(x, y, t), \rho_y(x, y, t)) = 4, \qquad \rho_t(x, y, t) = -2,$$

 ρ is not a subsolution of

$$u_t(x,y,t) + (|u_x(x,y,t)|^{\frac{1}{2}} + |u_y(x,y,t)|^{\frac{1}{2}})^2 = 0$$
 a.e. $(x,y,t) \in \mathbf{R}^n \times (0,\infty)$.

Theorem 2 is an easy consequence of the following theorem.

Theorem 3. Assume that (4)-(6) hold. Let $u \in UC(\mathbf{R}^n \times [0,T))$ be a viscosity subsolution of (3). Then, for all $(x,t) \in \mathbf{R}^n \times [0,T)$,

(10)
$$u(x,t) = \sup\{v(x,t) \mid v \in \mathcal{V}_T, \ v \le u \ \text{in } \mathbf{R}^n \times [0,T)\}.$$

Conceding Theorem 3 for the moment, we finish the proof of Theorem 2 as follows.

Proof of Theorem 2. We write w(x,t) for the right hand side of (9). By Theorem 3 we find that $u \leq w$ on $\mathbb{R}^n \times [0,T)$. Let $v \in \mathcal{V}_T$ satisfy $v(\cdot,0) \leq g$ on \mathbb{R}^n . Then, since $\widehat{H} \leq H$, we have

$$v_t(x,t) + \widehat{H}(x, D_x v(x,t)) \le 0$$
 a.e. $(x,t) \in \mathbf{R}^n \times (0,T)$.

Since $\widehat{H}(x,\cdot)$ is convex, v is a viscosity subsolution of (3). By (i) of Proposition 1, we have $v \leq u$ on $\mathbf{R}^n \times (0,T)$, from which we get $w \leq u$ on $\mathbf{R}^n \times (0,T)$. Thus we have u = w on $\mathbf{R}^n \times (0,T)$.

For our proof of Theorem 3, we need several lemmas. For a proof of the next three lemmas, we refer to [5].

Lemma 4. Let K be a non-empty convex subset of \mathbb{R}^m and set

$$L(\xi) = \sup\{\xi \cdot p \mid p \in K\} \in \mathbf{R} \cup \{\infty\} \quad \text{for all } \xi \in \mathbf{R}^m.$$

Let U be an open subset of \mathbf{R}^m and let $v \in C(\overline{U})$ satisfy

$$D^+v(x) \subset K$$
 for all $x \in U$.

Let $x,y \in \overline{U}$, and assume that the open line segment $l_0(x,y) := \{tx + (1-t)y \mid t \in (0,1)\} \subset U$. Then

$$u(x) \le u(y) + L(x - y).$$

In the above lemma and in what follows, for $v \in C(U)$ and $x \in U$, $D^+v(x)$ denotes the superdifferential of v at x.

Lemma 5. Let Ω be an open subset of \mathbb{R}^m and $f_1,...,f_N \in \text{Lip}(\Omega)$, with $N \in \mathbb{N}$. Set

$$f(x) = \max\{f_1(x), ..., f_N(x)\} \quad \text{for } x \in \Omega.$$

Then $f \in \text{Lip}(\Omega)$ and $f, f_1, ..., f_N$ are almost everywhere differentiable. Moreover for almost every $x \in \Omega$,

$$Df(x)\in\{Df_1(x),...,Df_N(x)\},$$

where Df(x) denotes the gradient of f at x.

Lemma 6. Let Z be a non-empty closed subset of \mathbb{R}^m . Define $L: \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ by

$$L(\xi) = \sup\{\xi \cdot p \mid p \in Z\}.$$

Let $\bar{\xi} \in \mathbf{R}^m$ be a point where L is differentiable. Then

$$DL(\bar{\xi}) \in Z \cap \partial(\overline{\operatorname{co}} Z)$$

We introduce the notation: for $(x,r) \in \mathbf{R}^n \times \mathbf{R}$ let

$$Z(x,r) := \{(p,q) \in \mathbf{R}^{n+1} \mid q + H(x,p) \le r\}$$

and $K(x,r) := \overline{\operatorname{co}} Z(x,r)$, the closed convex hull of Z(x,r). We note that

$$K(x,r) = \{(p,q) \in \mathbf{R}^{n+1} \mid q + \widehat{H}(x,p) \le r\}.$$

For $\delta > 0$, let $\Delta(\delta) := \{(x, y) \in \mathbf{R}^{2n} \mid |x - y| \le \delta\}$.

Lemma 7. Assume that (4) holds. For any R > 0 and $\varepsilon > 0$ there exists a constant $\delta > 0$ such that for any $(x, y) \in \Delta(\delta)$ and $r \in \mathbf{R}$,

$$Z_R(x,r) + B^{n+1}(0,\delta) \subset Z_{R+1}(y,r+\varepsilon),$$

where, for R > 0, $Z_R(x,r) = Z(x,r) \cap B^{n+1}(0,R)$.

Proof. Fix $\varepsilon > 0$ and R > 0. Let ω denote the modulus of continuity of H on $\mathbf{R}^n \times B^n(0, R+1)$.

Fix a constant $\delta \in (0, 1)$ so that $\delta + \omega(2\delta) \leq \varepsilon$. Fix $(\xi, \eta) \in B^{n+1}(0, \delta)$, $(x, y) \in \Delta(\delta)$, $(p, q) \in Z_R(x, 0)$, and $r \in \mathbf{R}$.

Noting that $(p,q) + (\xi,\eta) \in B^{n+1}(0,R+1)$, we observe that

$$q+\eta+H(y,p+\xi)\leq q+H(x,p)+\eta+\omega(|x-y|+|\xi|)\leq r+\delta+\omega(2\delta)\leq r+\varepsilon.$$

Thus we have

$$(p+\xi, q+\eta) \in Z_{R+1}(y, r+\varepsilon),$$

which concludes the proof.

Lemma 8. Assume that (4)–(6) hold. For any R > 0 and $\varepsilon > 0$ there exists a constant $M \ge R$ such that for any $x \in \mathbb{R}^n$,

$$K_R(x,0) \subset co Z_M(x,\varepsilon),$$

where $K_R(x,r) = K(x,r) \cap B^{n+1}(0,R)$.

Proof. For R > 0 and $\varepsilon > 0$ let $\rho \equiv \rho(R, \varepsilon) \geq R$ be the constant from (6). That is, $\rho = \rho(R, \varepsilon)$ is a constant for which

$$\widehat{H}_{\rho}(x,p) \le \widehat{H}(x,p) + \varepsilon \quad \text{for } (x,p) \in \mathbf{R}^n \times B^n(0,R).$$

In view of (4), for R > 0 let $M_R \ge 0$ be the constant defined by

$$M_R = \sup\{|H(x,p)| \mid (x,p) \in \mathbf{R}^n \times B^n(0,R)\}.$$

Fix R > 0, $\varepsilon > 0$, $x \in \mathbf{R}^n$, and $(p,q) \in K_R(x,0)$. We have

$$\widehat{H}(x,p) + q \le 0,$$

and hence

$$\widehat{H}_{\rho}(x,p) + q \le \varepsilon.$$

Choose sequences $\{\lambda_i\}_{i=1}^m \subset (0,1]$ and $\{p_i\}_{i=1}^m \subset B^n(0,\rho)$, with $m \in \mathbb{N}$, so that

$$\sum_{i=1}^{m} \lambda_i p_i = p, \qquad \sum_{i=1}^{m} \lambda_i = 1,$$
$$\sum_{i=1}^{m} \lambda_i H(x, p_i) + q \le 2\varepsilon.$$

(See the proof of Lemma 10 below.) Setting

$$h = q + \sum_{i=1}^{m} \lambda_i H(x, p_i), \qquad q_i = h - H(x, p_i) \quad \text{ for } i = 1, 2, ..., m,$$

we observe that

$$\begin{split} h &\leq 2\varepsilon, \qquad h \geq -|q| - M_{\rho} \geq -R - M_{\rho}, \\ |q_i| &\leq |h| + M_{\rho} \leq 2\varepsilon + R + 2M_{\rho} \quad \text{ for } i = 1, 2, ..., m, \end{split}$$

and that

$$(p_i, q_i) \in Z(x, h) \subset Z(x, 2\varepsilon)$$
 for $i = 1, 2, ..., m$,

$$\sum_{i=1}^{m} \lambda_i q_i = h - \sum_{i=1}^{m} \lambda_i H(x, p_i) = q,$$

$$\sum_{i=1}^{m} \lambda_i (p_i, q_i) = (p, q).$$

These together show that $(p,q) \in \operatorname{co} Z_M(x,2\varepsilon)$, with $M = (\rho^2 + (2\varepsilon + R + 2M_\rho)^2)^{1/2}$.

Proof of Theorem 3. We write $Q = \mathbf{R}^n \times (0,T)$ and $Q_{\delta} = \mathbf{R}^n \times (-\delta, T+\delta)$ for $\delta > 0$. Firstly, without loss of generality we may assume that u is defined and Lipschitz continuous on Q_{δ} for some constant $\delta > 0$ and that

(11)
$$u_t(x,t) + \widehat{H}(x, D_x u(x,t)) \le 0 \quad \text{in } Q_\delta$$

in the viscosity sense. Indeed, we have

(12)
$$u(x,t) = \sup\{v(x,t) \mid v \in \text{Lip}(Q_{\delta}) \text{ for some } \delta > 0,$$
$$v \text{ is a viscosity solution of (11), } v \leq u \text{ on } Q\}.$$

To see this, assuming $T < \infty$, we solve the Cauchy problem

$$w_t(x,t) + \widehat{H}(x, D_x w(x,t)) \le 0$$
 in $\mathbf{R}^n \times (T, T+1)$

with the initial condition

(13)
$$w(x,T) = \lim_{t \nearrow T} u(x,t) \quad \text{for } x \in \mathbf{R}^n.$$

In view of (4) and (5), there is a constant C > 0 such that $\widehat{H}(x,p) \geq -C$ for all $(x,p) \in \mathbf{R}^{2n}$, which shows that u is a viscosity solution of $u_t \leq C$ in $\mathbf{R}^n \times (0,T)$. This monotonicity of the function u(x,t) in t and the uniform continuity of u guarantee that the limit on the right hand side of (13) defines a uniform continuous function on \mathbf{R}^n .

By (ii) of Proposition 1, there is a unique viscosity solution $w \in UC(\mathbf{R}^n \times [T, T+1))$ for which (13) holds. We extend the domain of definition of w to $\mathbf{R}^n \times (0, T+1)$ by setting

$$w(x,t) = u(x,t)$$
 for $(x,t) \in \mathbf{R}^n \times (0,T)$.

It is easy to see that $w \in UC(\mathbf{R}^n \times (0, T+1))$ that w is a viscosity subsolution of

$$w_t(x,t) + \widehat{H}(x, D_x w(x,t)) = 0$$
 in $\mathbf{R}^n \times (0, T+1)$.

Now, if $T = \infty$, we define $w \in \mathrm{UC}(\mathbf{R}^n \times [0, \infty))$ by setting w = u.

Fix any $\varepsilon > 0$. Since $w \in UC(\mathbf{R}^n \times (0, T+1))$, there is a constant $\delta \in (0, 1/2)$ such that

(14)
$$u(x,t) - 2\varepsilon \le w(x,t-\delta) - \varepsilon \le u(x,t) \text{ for } (x,t) \in \mathbf{R}^n \times (0,T).$$

It is clear that the function $z(x,t) := w(x,t-\delta) - 2\varepsilon$ is defined and uniformly continuous on Q_{δ} and is a viscosity solution of (11).

Now, we take the sup-convolution of z in the t-variable. That is, for $\gamma > 0$, we consider the function

$$z^{\gamma}(x,t) = \sup\{z(x,s) - \frac{1}{2\gamma}(t-s)^2 \mid s \in (-\delta, T+\delta)\}$$
 for $(x,t) \in \mathbf{R}^{n+1}$.

If $\gamma > 0$ is small enough, then z^{γ} is a viscosity solution of (11) in $Q_{\delta/2}$ and

(15)
$$z(x,t) \le z^{\gamma}(x,t) \le z(x,t) + \varepsilon \quad \text{for } (x,t) \in Q_{\delta}.$$

Note also that, for each $\gamma > 0$, the collection of functions $z^{\gamma}(x, \cdot)$, with $x \in \mathbf{R}^n$, is equi-Lipschitz continuous on $(-\delta/2, T + \delta/2)$. By virtue of (5), we may choose constants $c_0 > 0$ and $C_1 > 0$ such that

$$\widehat{H}(x,p) \ge c_0|p| - C_1$$
 for $(x,p) \in \mathbf{R}^{2n}$.

Since z^{γ} is a viscosity solution of

$$|c_0|D_x z^{\gamma}(x,t)| \leq C_1 + L_{\gamma} \quad \text{in } Q_{\delta/2},$$

where $L_{\gamma} > 0$ is a uniform Lipschitz bound of the functions $z^{\gamma}(x, \cdot)$ on $(-\delta/2, T + \delta/2)$, we see that the functions $z^{\gamma}(\cdot, t)$ are Lipschitz continuous on \mathbf{R}^n , with a Lipschitz bound independent of $t \in (-\delta/2, T + \delta/2)$.

Now, using (14) and (15) and writing U(x,t) for the right hand side of (12), we see that for sufficiently small $\gamma > 0$ and for all $(x,t) \in Q$,

$$u(x,t) \ge z(x,t) + \varepsilon \ge z^{\gamma}(x,t),$$

and hence,

$$U(x,t) \ge z^{\gamma}(x,t) \ge z(x,t) \ge u(x,t) - 3\varepsilon,$$

which proves (12).

Henceforth we assume that, for some constant $\delta > 0$, u is a member of $\text{Lip}(Q_{\delta})$ and satisfies (11) in the viscosity sense.

Let R > 0 be a Lipschitz bound of the function u. Fix any $\varepsilon \in (0, 1)$. Due to Lemma 8, there is a constant $\rho \geq R$ such that for all $x \in \mathbb{R}^n$,

$$K_R(x,0) \subset \operatorname{co} Z_{\rho}(x,\varepsilon).$$

In view of Lemma 7, there is a constant $\gamma \in (0,1)$ such that for any $(x,y) \in \Delta(\gamma)$,

$$Z_{\rho}(x,\varepsilon) + B^{n+1}(0,\gamma) \subset Z_{\rho+1}(y,2\varepsilon).$$
$$Z_{\rho+1}(y,2\varepsilon) \subset Z_{\rho+2}(x,3\varepsilon).$$

Consequently, for $(x, y) \in \Delta(\gamma)$, we have

(16)
$$K_R(x,0) + B^{n+1}(0,\gamma) \subset \operatorname{co} Z_{\rho+1}(y,2\varepsilon),$$

(17)
$$Z_{\rho+1}(y,2\varepsilon) \subset Z_{\rho+2}(x,3\varepsilon).$$

We may assume that $\gamma < \delta$. Let $\mu \in (0, \gamma)$ be a constant to be fixed later. We choose a set $Y_{\mu} \subset Q_{\delta}$ so that

(18)
$$\#(Y_{\mu} \cap B^{n+1}(0,r)) < \infty \quad \text{for all } r > 0,$$

We set

$$L(\xi, \eta; y) = \sup\{\xi \cdot p + \eta q \mid (p, q) \in Z_{\rho+1}(y, 2\varepsilon)\} \quad \text{for } \xi, y \in \mathbf{R}^n, \, \eta \in \mathbf{R}$$

and

$$v(x, t; y, s) = u(y, s) + L(x - y, t - s; y)$$
 for $(x, t) \in \mathbf{R}^{n+1}$, $(y, s) \in Q_{\delta}$.

By Lemma 6, we get for $(x, y) \in \Delta(\gamma)$,

(20)
$$D_{\xi,\eta}L(\xi,\eta;y) \in Z_{\rho+1}(y,2\varepsilon) \subset Z_{\rho+2}(x,3\varepsilon)$$
 a.e. $(\xi,\eta) \in \mathbf{R}^{n+1}$.

Noting that

$$D^+u(x,t) \subset K_R(x,0)$$
 for $(x,t) \in Q_\delta$,

and setting $\tilde{u}(x,t) := u(x,t) + \gamma |(x,t) - (y,s)|$ for $(x,t), (y,s) \in Q_{\delta}$, we find that for $(x,t), (y,s) \in Q_{\delta}$, if $0 < |x-y| \le \gamma$, then

$$D^+\tilde{u}(x,t) \subset D^+u(x,t) + B^{n+1}(0,\gamma) \subset \operatorname{co} Z_{\rho+1}(y,2\varepsilon).$$

Hence, by Lemma 4, we get

(21)
$$u(x,t) + \gamma |(x,t) - (y,s)| \le v(x,t;y,s)$$
 for $(x,t), (y,s) \in Q_{\delta}$, with $|x-y| \le \delta$.

Set $\beta = \gamma/5$ and define the function $w: Q_{2\beta} \to \mathbf{R}$ by

$$w(x,t) = \min\{v(x,t;y,s) \mid (y,s) \in Y_{\mu} \cap B^{n+1}((x,t),3\beta)\}.$$

Now, we show that if μ is sufficiently small, then for $(\bar{x},\bar{t}) \in Q_{\beta}$ and $(x,t) \in B^{n+1}((\bar{x},\bar{t}),\beta)$

(22)
$$w(x,t) = \min\{v(x,t;y,s) \mid (y,s) \in Y_{\mu} \cap B^{n+1}((\bar{x},\bar{t}),2\beta)\}.$$

To do this, fix $(\bar{x},\bar{t}) \in Q_{\beta}$ and $(x,t) \in Y_{\mu} \cap B^{n+1}((\bar{x},\bar{t}),2\beta)$. Noting that $Y_{\mu} \cap B^{n+1}((x,t),\mu) \neq \emptyset$ and $B^{n+1}((x,t),\mu) \subset B^{n+1}((x,t),5\beta)$ and choosing a point $(y,s) \in Y_{\mu} \cap B^{n+1}((x,t),\mu)$, we see that

$$w(x,t) \le v(x,t;y,s) \le u(y,s) + (\rho+1)|(x,t) - (y,s)|$$

$$\le u(x,t) + (R+\rho+1)|(x,t) - (y,s)|.$$

Here we have used the fact that the functions $L(\xi, \eta; y)$ of (ξ, η) are Lipschitz continuous functions with $\rho + 1$ as a Lipschitz bound. Fix now $\mu \in (0, \gamma)$ by setting

$$\mu = \frac{1}{2} \min\{\gamma, \frac{\gamma\beta}{R+\rho+1}\}$$

and observe that

(23)
$$w(x,t) < u(x,t) + \gamma \beta.$$

Fix $(y,s) \in Q_{\delta} \setminus B^{n+1}((\bar{x},\bar{t}),2\beta)$ and note that $|(y,s)-(x,t)| \geq \beta$. Using (21), we have

$$v(x, t; y, s) \ge u(x, t) + \gamma \beta.$$

From this and (23), we conclude that (22) holds.

Next, we observe from (22) that the function w is Lipschitz continuous on $B^{n+1}((\bar{x},\bar{t}),\beta)$ for all $(\bar{x},\bar{t}) \in Q_{\beta}$, with $\rho+1$ as a Lipschitz bound, which guarantees that $w \in \text{Lip}(Q_{\beta})$. Applying Lemma 5 and using (20), we observe that w is almost everywhere differentiable on Q_{β} and, at any point $(x,t) \in Q_{\beta}$ where w is differentiable,

$$Dw(x,t) \in \bigcup \{D_{x,t}v(x,t;y,s) \mid (y,s) \in Y_{\mu} \cap B^{n+1}((\bar{x},\bar{t}),2\beta)\} \subset Z_{\rho+2}(x,3\varepsilon),$$

which yields readily

$$w_t(x,t) + H(x, D_x w(x,t)) \le 3\varepsilon$$
 a.e. $(x,t) \in Q_\beta$.

Setting

$$z(x,t) = w(x,t) - \gamma\beta - 3\varepsilon t$$
 for $(x,t) \in Q_{\beta}$,

we have

$$z_t(x,t) + H(x,D_x z(x,t)) \le 0$$
 a.e. $(x,t) \in Q_\beta$.

By (23), we have $z(x,t) \leq u(x,t) - 3\varepsilon t$ for $(x,t) \in Q_{\beta}$ and, by (21), we have $z(x,t) \geq u(x,t) - \gamma\beta - 3\varepsilon t$ for $(x,t) \in Q_{\beta}$. In the above two inequalities, we may take $\gamma > 0$ as small as we wish. Thus we get

$$u(x,t) = \sup\{z(x,t) \mid z \in \mathcal{V}_T, \ z \le u \text{ on } Q\} \quad \text{ for } (x,t) \in Q,$$

which completes the proof.

3. Examples. In this section we consider some examples of Hamiltonians H and examine if H satisfies conditions (4)–(6) or not.

Let $H \in C(\mathbf{R}^{2n})$ be a function of the form

$$H(x,p) = G(x,p)^m + f(x),$$

where $G \in C(\mathbf{R}^{2n})$ satisfies

(24)
$$G \in \mathrm{BUC}(\mathbf{R}^n \times B^n(0,R)) \quad \text{for } R > 0,$$

(25)
$$G(x, \lambda p) = \lambda G(x, p) \quad \text{for } \lambda \ge 0, (x, p) \in \mathbf{R}^{2n},$$

(26)
$$\delta_G := \inf_{\mathbf{R}^n \times \partial B^n(0,1)} G > 0.$$

m is a constant satisfying $m \ge 1$, and $f \in BUC(\mathbf{R}^n)$.

Proposition 9. The function H given above satisfies (4)–(6).

We need the following Lemma.

Lemma 10. For all $(x,p) \in \mathbb{R}^{2n}$, we have

(27)
$$\widehat{G}(x,p) = \min\{r \in \mathbf{R} \mid p = \sum_{i=1}^{k} \lambda_i p_i, \ \lambda_i > 0, \ \sum_{i=1}^{k} \lambda_i = 1, \ G(x,p_i) = r\}.$$

Proof. We fix $x \in \mathbb{R}^n$ and write G(p) for G(x,p) for notational simplicity. By using the separation theorem and Carathéodory's theorem in convex analysis, we see easily that

(28)
$$\widehat{G}(p) = \inf\{\sum_{i=1}^{n+1} \lambda_i G(p_i) \mid \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1, \sum_{i=1}^{n+1} \lambda_i p_i = p\} \text{ for } p \in \mathbf{R}^n.$$

It is clear from the above representation formula that

$$\widehat{G}(\lambda p) = \lambda \widehat{G}(p)$$
 for $(\lambda, p) \in [0, \infty) \times \mathbf{R}^n$,
 $G(p) \ge \widehat{G}(p) \ge \delta_G|p|$ for $p \in \mathbf{R}^n$.

Fix $p \in \mathbf{R}^n$. If p = 0, then it is clear that (27) holds. We may thus assume that $p \neq 0$. For any $r > \widehat{G}(p)$, by the above formula, there are $\{\lambda_i\}_{i=1}^{n+1} \subset [0,1]$ and $\{p_i\}_{i=1}^{n+1} \subset \mathbf{R}^n$ such that

$$r > \sum_{i=1}^{n+1} \lambda_i G(p_i), \quad \sum_{i=1}^{n+1} \lambda_i = 1, \quad \sum_{i=1}^{n+1} \lambda_i p_i = p.$$

Set

$$s = \sum_{i=1}^{n+1} \lambda_i G(p_i), \qquad \mu_i = s^{-1} G(p_i).$$

Notice that $s \geq \widehat{G}(p) > 0$ by (28). By rearranging the order in i if necessary, we may assume that

$$\lambda_i \mu_i > 0$$
 for $i \le k$, $\lambda_i \mu_i = 0$ for $i > k$

for some $k \in \{1, ..., n+1\}$. Note that if i > k and $\lambda_i > 0$, then $p_i = 0$. We now have

$$\sum_{i=1}^{k} \lambda_i \mu_i = s^{-1} \sum_{i=1}^{n+1} \lambda_i G(p_i) = 1,$$

$$\sum_{i=1}^{k} \lambda_i \mu_i (\mu_i^{-1} p_i) = \sum_{i=1}^{k} \lambda_i p_i = \sum_{i=1}^{n+1} \lambda_i p_i = p,$$

$$G(\mu_i^{-1} p_i) = sG(p_i)^{-1} G(p_i) = s \quad \text{for } i = 1, ..., k.$$

Hence we get

$$\widehat{G}(p) \ge \inf\{s \in \mathbf{R} \mid \lambda_i > 0, \ G(p_i) = s, \ \sum_{i=1}^k \lambda_i p_i = p, \ k \le n+1\}.$$

Since the set $\{q \in \mathbf{R}^n \mid G(q) \leq \widehat{G}(p) + 1\}$ is a compact set, it is not hard to see that the infimum on the right hand side of the above inequality is actually attained. That is, we have

$$\widehat{G}(p) \ge \min\{s \in \mathbf{R} \mid \lambda_i > 0, \ G(p_i) = s, \ \sum_{i=1}^k \lambda_i p_i = p, \ k \le n+1\}.$$

The opposite inequality is obvious. The proof is now complete.

Proof of Proposition 9. First we observe that

(29)
$$\widehat{H}(x,p) = \widehat{G}(x,p)^m + f(x) \quad \text{for } (x,p) \in \mathbf{R}^{2n}.$$

Indeed, since the function:

$$p \mapsto \widehat{G}(x,p)^m + f(x)$$

is convex on \mathbf{R}^n for every $x \in \mathbf{R}^n$ and

$$\widehat{G}(x,p)^m + f(x) \le H(x,p)$$
 for $(x,p) \in \mathbf{R}^{2n}$,

we see that

$$\widehat{G}(x,p)^m + f(x) \le \widehat{H}(x,p)$$
 for $(x,p) \in \mathbf{R}^{2n}$.

On the other hand, by Lemma 10, for $(x,p) \in \mathbf{R}^{2n}$ we have

$$\widehat{G}(x,p)^{m} = \min\{r^{m} \in \mathbf{R} \mid k \le n+1, \ \lambda_{i} > 0, \ G(x,p_{i}) = r, \ \sum_{i=1}^{k} \lambda_{i} = 1, \ \sum_{i=1}^{k} \lambda_{i} p_{i} = p\}$$

$$\geq \inf\{\sum_{i=1}^{k} \lambda_{i} G(x,p_{i})^{m} \mid k \in \mathbf{N}, \ \lambda_{i} > 0, \ \sum_{i=1}^{k} \lambda_{i} = 1, \ \sum_{i=1}^{k} \lambda_{i} p_{i} = p\}.$$

Hence, by the formula

$$\widehat{H}(x,p) = \inf \{ \sum_{i=1}^{k} \lambda_i H(x,p_i) \mid k \in \mathbb{N}, \ \lambda_i > 0, \ \sum_{i=1}^{k} \lambda_i = 1, \ \sum_{i=1}^{k} \lambda_i p_i = p \},$$

we have

$$\widehat{G}(x,p)^m + f(x) \ge \widehat{H}(x,p).$$

Thus we have shown (29).

To show that H satisfies (4), we just need to prove that

$$\widehat{G} \in \mathrm{BUC}(\mathbf{R}^n \times B^n(0,R))$$
 for $R > 0$.

Fix R > 0, set

$$\rho_1 = \sup_{\mathbf{R}^n \times B^n(0,R)} G$$

and, in view of (26), choose $\rho_2 > 0$ so that

$$\inf_{\mathbf{R}^n \times (\mathbf{R}^n \setminus B^n(0,\rho_2))} G > \rho_1.$$

Then, by Lemma 10, we have

$$\widehat{G}(x,p) = \min\{\sum_{i=1}^{k} \lambda_i G(x,p_i) \mid \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1, G(x,p_i) \le \rho_1, \sum_{i=1}^{k} \lambda_i p_i = p\}$$

$$= \min\{\sum_{i=1}^{k} \lambda_i G(x,p_i) \mid \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1, p_i \in B^n(0,\rho_2), \sum_{i=1}^{k} \lambda_i p_i = p\}$$
for $(x,p) \in \mathbf{R}^n \times B^n(0,R)$.

This shows that the collection of functions:

$$x \mapsto \widehat{G}(x,p),$$

with $p \in B^n(0,R)$, is equi-continuous on \mathbb{R}^n . On the other hand,

$${\widehat{G}(x,\cdot)\mid x\in\mathbf{R}^n}$$

is a uniformly bounded collection of convex functions on $B^n(0,R)$. Consequently, this collection is equi-Lipschitz continuous on $B^n(0,R)$. Thus we see that $\widehat{G} \in \mathrm{BUC}(\mathbf{R}^n \times B^n(0,R))$ for all R>0.

By assumptions (25) and (26), H clearly satisfies (5).

To show (6), fix R > 0 and choose $\rho_2 > 0$ as above. Then, by Lemma 10, we get

$$\widehat{G}(x,p)^{m} = \min\{\sum_{i=1}^{k} \lambda_{i} G(x,p_{i})^{m} \mid k \in \mathbb{N}, \ \lambda_{i} \geq 0, \ G(x,p_{i}) = \widehat{G}(x,p),$$

$$\sum_{i=1}^{k} \lambda_{i} = 1, \ \sum_{i=1}^{k} \lambda_{i} p_{i} = p\}$$

$$= \min\{\sum_{i=1}^{k} \lambda_{i} G(x,p_{i})^{m} \mid k \in \mathbb{N}, \ \lambda_{i} \geq 0, \ p_{i} \in B^{n}(0,\rho_{2}),$$

$$\sum_{i=1}^{k} \lambda_{i} = 1, \ \sum_{i=1}^{k} \lambda_{i} p_{i} = p\}.$$

Hence we have

$$\widehat{H}(x,p) = \widehat{H}_{\rho_2}(x,p)$$
 for $(x,p) \in \mathbf{R}^n \times B^n(0,R)$.

Thus H satisfies (4)–(6). \square

Bibliography

[1] O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. (9) 76 (1997), no. 3, 265–288.

[2] M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67.

[3] I. Ekeland and R. Temam, Convex analysis and variational problems, Translated from the French. Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.

[4] H. Ishii and P. Loreti, On relaxation in an L^{∞} optimization problem, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 599–615.

[5] H. Ishii and P. Loreti, Relaxation of Hamilton-Jacobi equations, Arch. Rational Mech. Anal. 169 (2003), no. 4, 265 - 304.

[6] R. T. Rockafellar, *Convex analysis*, Princeton Univ. Press, Princeton, New Jersey, 1972.