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Relaxation in the Cauchy problem
for Hamilton-Jacobi equations

Hitoshi Ishii* (RFEHKE BFH - BEFPFEWIE) and Paola Loreti *

1. Introduction. In this note we study a little further the relazation of Hamilton-
Jacobi equations developed recently in [4,5]. In [4] we initiated the study of the relax-
ation of Hamilton-Jacobi equations of eikonal type and in [5] we extended this study to
a larger class of Hamilton-Jacobi equations.

Let us recall the relaxation in calculus of variations. In general a non-convex varia-
tional problem (P) does not have its minimizer. A natural way to attack such a vari-
ational problem is to introduce its relaxed (or convexified) variational problem (RP)
which has a minimizer and to regard such a minimizer as a generalized solution of
the original problem (P). The main result (or principle) in this direction states that
min (RP) = inf (P). That is, any accumulation point of a minimizing sequence of (P)
is a minimizer of (RP). This fact or principle is called the relaxation of non-convex
variational problems. See [3] for a treatment of the relaxation of non-convex variational
problems.

Relaxation of Hamilton-Jacobi equations is the principle which says that the point-
wise supremum over a suitable collection of Lipschitz continuous subsolutions in the
almost everywhere sense of a non-convex Hamilton-Jacobi equation yields a viscosity
solution of the equation with convexified Hamiltonian. See [4,5].

Here we are concerned with the Cauchy problem for Hamilton-Jacobi equations and
generalize some results obtained in [5].

2. Main result for the Cauchy Problem. We consider the Cauchy Problem

(1) ug(z,t) + H(z, Dyu(z,t)) =0 for (z,t) € R" x (0,T),
(2) ult:O =80
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where H and g are given continuous functions respectively on R and R", T is a

given positive number or T = oo, u = u(z,t) is the unknown continuous function on

R™ x [0,T), u; denotes the t-derivative of u, and Dyu denotes the z-gradient of u. B
Let H denote the convex envelope of the function H, that is,

H(z,p) = sup{l(p) | | affine function, I(q) < H(z,q) for ¢ € R"}.
We also consider the convexified Hamilton-Jacobi equation
(3) uy(z,t) + H(z, Dyu(z,t)) =0 for (z,t) € R™ x (0, T).

We use the notation: for a € R™ and r > 0, B™(a,r) denotes the n-dimensional
closed ball of radius r centered at a. For @ ¢ R™, BUC(Q) and UC (£2) denote the spaces
of bounded uniformly continuous functions on §2 and of uniformly continuous functions
on (O, respectively. Furthermore, Lip (2) denotes the space of Lipschitz continuous
functions on €. Notice that f € Lip () is not assumed to be a bounded function.

Throughout this note we assume:

(4) H, H e BUC(R® x B*(0, R)) for all R > 0.

(5) ngnooinf{ﬂ(l;p) } (z,p) € R™ x (R™\ B™(0, R))} > 0.

For R > 0 we define the function Hg : R?® —» RU {o0} by

{H(:L',p) if z € B™(0, R),

Hp(z,p) = if z ¢ B"(0, R),

and write ﬁg for @, where G = Hpg.
(6) For each R > 0 and £ > 0 there is a constant p > R such that

H,(z,p) < H(z,p) +¢ for (z,p) € R" x B*(0,R).

(1) g€ UCR"M).

Proposition 1. (i) If u € USC(R" x [0,T)) and v € LSC(R™ x [0,T)) are a viscosity
subsolution and a viscosity supersolution of (3) respectively. Assume that u(z,0) <
v(z,0) for € R™ and that there is a (concave) modulus w such that for all (z,t) €
R" x [0,T) and y € R",

{u(z,t) <u(y,0) +w(lz —y| + 1),
v(z,t) 2v(y,0) — w(lz -y + ).

Then uw < v on R® x [0,T). (i) There is a (unique) viscosity solution u € UC(R"™ x
[0,00)) of (3) which satisfies (2). If, in addition, g € Lip (R™), then u € Lip(R™ X
[0, 00)).
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We remark that the same proposition as above is valid for (1). We omit giving the
proof of the above proposition. ‘
Let Vr denote the set of functions v € Lip (R™ x [0, 7)) such that

(8) vi(z,t) + H{z, Dyv(z,t)) <0 ae (z,t) € R" x (0,T).

The following theorem is the main result in this note.

Theorem 2.  Assume that (4)-(7) hold. Let u € UC(R™ x [0,T)) be the unique
viscosity solution of (3) satisfying (2). Then, for (z,t) € R" x [0,T),

(9) u{z, t) = sup{v(z,t) | v € Vr, v|i=0 < g}

Remark. In general the above formula does not give a subsolution of
u(z,t) + H(z, Dyu(z,t)) =0 a.e. (z,t) € R" x (0,00).

For instance, let n = 2 and define H € C(R?) and g € UC(R?) by H(p,q) =
(In]7 + |g|?)? and g(z,y) = —|x| — |y|, respectively. Note that H(p,q) = |p| + |g| for
(p,q) € R% We set p(z,y,t) = —2t — |z| — |y|. Then, for instance, by computing
D#*p(z,y,t), we infer that p is the viscosity solution of :

{Uz(:c,y,t) +ug(z, 9, 1) + [uy(2,9,8) =0 in R? x (0,00),
u(z,y,0) = g(z,y) for (z,y) € R®.

On the other hand, since at any point (z,y,t) € R? x (0,00), where z, y # 0, we
have

H(pz(z,4,t), py(z,0,0)) =4,  pilz,y,t) = =2,

p is not a subsolution of
ut(may’t) + (Ium(z‘,y,t)lé + luy(xayat)lé)z =0 ae (Cb,y,t) € R" x (Oa OO)

Theorem 2 is an easy consequence of the following theorem.

Theorem 3. Assume that (4)-(6) hold. Let u € UC(R"™ x [0,T)) be a viscosity
subsolution of (3). Then, for all (z,t) € R™ x [0,T),

(10) u(z,t) = sup{v(z,t) |[v € Vr, v<u in R" x[0,T)}.

Conceding Theorem 3 for the moment, we finish the proof of Theorem 2 as follows.



61

Proof of Theorem 2. We write w(z,t) for the right hand side of (9). By Theorem
%\we find that « < w on R™ x [0,T). Let v € Vr satisfy v(-,0) < g on R™. Then, since
H < H, we have

vz, t) + H(z, Dyv(z,t)) <0 ae. (z,t) € R" x (0,T).

Since H(z, ") is convex, v is a viscosity subsolution of (3). By (i) of Proposition 1, we
have v < w on R™ x (0,T), from which we get w < u on R™ x (0,T). Thus we have
y=won R" x (0,T). O

For our proof of Theorem 3, we need several lemmas. For a proof of the next three
lemmas, we refer to [5]. -

Lemma 4. Let K be a non-empty convex subset of R™ and set
L) =sup{¢ -p|pe K} € RU {0} for all ¢ € R™.
Let U be an open subset of R™ and let v € C(U) satisfy
Dty(z)c K forallz eU.

Let z,y € U, and assume that the open line segment ly(z,y) = {tz+ (1 - t)y [t €
(0,1)} CU. Then
u(z) < u(y) + Lz - y)-

In the above lemma and in what follows, for v € C(U) and z € U, D¥v(x) denotes
the superdifferential of v at .

Lemma 5. Let Q) be an open subset of R™ and fi, ..., fn € Lip(Q), with N € N. Set

£(@) = max{fy (), ., fw(a)} forz € Q.

Then f € Lip(Q) and £, f1,..., fx are almost everywhere differentiable. Moreover for
almost every x € €2,

Df(z) € {Dfi(z), ... Dfn(z)},
where Df(z) denotes the gradient of f at x.
Lemma 6. Let Z be a non-empty closed subset of R™. Define L : R™ — RU {oo} by

L&) =sup{§ - p|lpe Z}.
Let £ € R™ be a point where L is differentiable. Then

DL() € ZNo(co Z)
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We introduce the notation: for (z,r) € R™ x R let
Z(z,r) = {(p,q) € R™*' | ¢+ H(z,p) <7}
and K(z,r) := ¢0Z(z,r), the closed convex hull of Z(x,r). We note that
K(z,7) ={(p,g) e R**' | g+ H(z,p) <7}

For 6 > 0, let A(6) == {(z,y) € R*™ | [z — y| < 6}.
Lemma 7. Assume that (4) holds. For any R > 0 and € > 0 there ezists a constant
8 > 0 such that for any (z,y) € A(d) andr € R,

ZR(ﬂ?,T‘) + Bn+1(0’ 5) - ZR+1 (y)"‘ + 5)5

where, for R >0, Zg(z,r) = Z(z,r) N B"*1(0, R).
Proof. Fixe > 0 and R > 0. Let w denote the modulus of continuity of H on
R" x B"(0, R+ 1). |

Fix a constant § € (0, 1) so that §+w(26) < &. Fix (€,7) € B"*1(0,4), (z,y) € A(9),
(p,q) € Zg(z,0), and 7 € R.

Noting that (p,q) + (€,1) € B"t1(0, R + 1), we observe that

g+n+H(y,p+&) <g+H(p) +n+w(z—yl+E) <r+d+w(2d) <r-+e.

Thus we have
(p+&q9+n) € Zraly,r+¢),

which concludes the proof. 0

Lemma 8. Assume that (4)-(6) hold. For any R > 0 and € > 0 there ezisis a constant
M > R such that for any r € R",

Kr(z,0) C coZpy(z,¢€),

where Kr(z,r) = K{z,r) N B"*1(0, R).
Proof. For R > 0 and € > 0 let p = p(R,¢) > R be the constant from (6). That is,
p = p(R,€) is a constant for which

H,(z,p) < H(z,p)+¢ for (z,p) € R® x B*(0, R).
In view of (4), for R > 0 let Mgz > 0 be the constant defined by

Mp = sup{|H(z,p)| | (z,p) € R" x B*(0, R)}.
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Fix R>0,e> 0,z € R", and (p,q) € Kr(z,0). We have
H(z,p)+q <0,
and hence
ﬁp(x,p) +g<e.
Choose sequences {\;}7, C (0,1] and {p;}i2; C B™(0,p), with m € N, so that
m 7
ZAipi:p’ ZA@'—'—'I,
i=1

g=1

m
> MH(z,pi) +q < 2.

i=1
(See the proof of Lemma 10 below.) Setting
m
h=Q+Z)\z’H($,P¢), @ =h—-H(z,p;) fori=12..m,
i=1
we observe that

h < 2, h>—lqg—M,>—-R—M,,
lg:| < |h|+ M, <2+ R+2M, fori=12,.,m,

and that
(pi, q;) € Z(z,h) C Z(x,2¢) fori=1,2,..,m,

> Migi=h- > MH(z,pi) =4,
i=1 i=1

Z)\i(pis(h') = (p,q).

=1

These together show that (p,q) € co Zy(z,2¢), with M = (0*+ 2+ R+ QM,,)?)I/Z.
g

Proof of Theorem 3. We write @ = R™ x (0,T) and Qs = R" x (—4,T+6) for 6 > 0.
Firstly, without loss of generality we may assume that u is defined and Lipschitz
continuous on @ for some constant ¢ > 0 and that

(11) uy(z,t) + H(z, Dau(z,t)) <0 in Qs
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in the viscosity sense. Indeed, we have

(12) u(z,t) = sup{v{z,t) |v € Lip(Q;) for some § > 0,

v is a viscosity solution of (11), v < u on @}.
To see this, assuming T’ < oo, we solve the Cauchy problem
wi(z,t) + H(z, Dow(z,t)) <0 inR™x (T,T+1)
with the initial condition

— 11 k(]
(13) w(z,T) = th/n% u(z,t) for 2: eR".

In view of (4) and (5), there is a constant C > 0 such that H(z,p) > —C for all
(z,p) € R*", which shows that u is a viscosity solution of u; < C in R™ x (0,T). This
monotonicity of the function u(z,t) in ¢t and the uniform continuity of v guarantee that
the limit on the right hand side of (13) defines a uniform continuous function on R".
By (ii) of Proposition 1, there is a unique viscosity solution w € UC(R™ x [T, T +1))
for which (13) holds. We extend the domain of definition of w to R™ x (0,T + 1) by

setting
w(z,t) = u(z,t) for (z,t) € R* x (0,T).

It is easy to see that w € UC(R"™ x (0,7 + 1)) that w is a viscosity subsolution of
wy(z,t) + H(z, Dyw(z,t)) =0 in R"x (0,7 +1).

Now, if T' = oo, we define w € UC (R"™ x [0,00)) by setting w = w.
Fix any £ > 0. Since w € UC(R"™ x (0,T + 1)), there is a constant § € (0,1/2) such
that

(14) u(z,t) — 26 < wlz,t —6) —e < ulz,t) for (z,t) € R" x (0,T).

It is clear that the function z(z,t) := w(z,t—§)—2¢ is defined and uniformly continuous
on Qs and is a viscosity solution of (11).

Now, we take the sup-convolution of z in the ¢t-variable. That is, for v > 0, we
consider the function

1
2Y(z,t) = sup{z(z,s) — -2—’;(t ~5)?|s€(=5,T+0)} for (z,t) € R* .
If v > 0 is small enough, then 27 is a viscosity solution of (11) in Q;/2 and

(15) z(z,t) < 27(z,t) £ 2(z,t) +¢e for (z,t) € Q5.



Note also that, for each v > 0, the collection of functions z7(z, ), with € R", is equi-
Lipschitz continuous on {—4/2,T + §/2). By virtue of (5), we may choose constants
co > 0 and Cy > 0 such that

o~

H(z,p) > eolp| = C;  for (z,p) € R*™
Since 27 is a viscosity solution of
co|Dx2"(z,t)] £ C1 + Ly in Qs2,

where L, > 0 is a uniform Lipschitz bound of the functions 27(z,) on (-4/2,T+6/2),
we see that the functions z7 (-, t) are Lipschitz continuous on R", with a Lipschitz bound
independent of ¢ € (—6/2,T + §/2).

Now, using (14) and (15) and writing U(z,t) for the right hand side of (12), we see
that for sufficiently small ¥ > 0 and for all (z,?) € @,

u(z,t) > z(z,t) + € 2 27 (x, 1),
and hence,
Uz, t) = 27(z,t) 2 z(z,t) > u(z,t) — 3¢,

which proves (12).

Henceforth we assume that, for some constant 6 > 0, u is a member of Lip(Qs) and
satisfies (11) in the viscosity sense.

Let R > 0 be a Lipschitz bound of the function u. Fix any € € (0, 1). Due to Lemma
8, there is a constant p > R such that for all z € R",

Kg(z,0) C coZy(z,e).
In view of Lemma 7, there is a constant v € (0, 1) such that for any (z,y) € A(y),
Zy(z,€) + B"(0,7) C Zpt1(y, 26).-
Zp+1(y,2€) C Zpya(z, 3¢).
Consequently, for (z,y) € A(y), we have
(16) Kg(z,0)+ B™(0,7) C co0 Z,41(y, 2¢),
(17) Z,11(y, 26) C Zpya(w, 3¢).

We may assume that v < 8. Let p € (0,7) be a constant to be fixed later. We
choose a set Y, C Qs so that
(18) #(Y,, n B"1(0,r)) <co forallr >0,
(19) U B s),m >Qs

(y,8)EYL

B85
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We set
L(g,my) =sup{€ - p+nq | (p9) € Zp4a(y, 26)} for§yeR™nER
and
u(z,t;y,8) = u(y,s) + Lz —y,t — s;y) for (z,t) € R™1, (y,3) € Qs.
By Lemmas 6, we get for (z,y) € A(y),
(20) DenL(€,m;9) € Zp1(y,26) C Z,p12(2,36)  ae (€,m) € R

Noting that
Dtu(z,t) C Kg(z,0) for (z,t) € Qs,

and setting %(z,t) := u(z,t) + v|(z,t) — (y,s)| for (z,t),(y,s) € Qs, we find that for
(z,t), (y,8) € Qs, if 0 < |z —y| <7, then

Dti(z,t) € DYu(z,t) + B*T1(0,7) C co Z,41(y, 2¢).
Hence, by Lemma 4, we get
(21) u(z,t) +i(z,t) = (v, 8)| S v(z,tiy,s)  for (2,1),(y,5) € Qs, With |z —y| <6
Set 3 = /5 and define the function w: Qg5 — R by
w(z,t) = min{v(z, t;y,s) | (y,5) € Y. N B"((2,1),38)}.

Now, we show that if u is sufficiently small, then for (Z,t) € Qs and (z,t) €
B H{(z,1),8)

(22) w(z,t) = min{v(z, t;y, ) | (y,8) € Y. N B""((7,9),20)}-

To do this, fix (z,f) € Qg and (z,t) € Y, n B"1((z,7),26). Noting that
Y, N B ((z,t),u) # 0 and B ((z,t),n) C B"T1((z,t),58) and choosing a point
(y,8) € Y, n B"1({z, 1), u), we see that

w(z,t) <v(z, iy, s) <uly,s) + (p+ 1)|(z,t) — (v, 5)l
<u(z,t) + (B+ p+ D(z,t) - (3, 9)].
Here we have used the fact that the functions L(£,7; y) of (€, n) are Lipschitz continuous
functions with p + 1 as a Lipschitz bound. Fix now u € (0,7) by setting

7ﬁ}

1 .
p=gmin{y, 507
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and observe that
(23) w(z,t) < u(z,t) +v8.

Fix (y,s) € Qs \ B"**((z,%),20) and note that |(y,s) — (z,t)| > 8. Using (21), we
have
v(z, t;y, 8) 2 u(z,t) +v6.

From this and (23), we conclude that (22) holds.

Next, we observe from (22) that the function w is Lipschitz continuous on
B"t1((g,1),8) for all (z,f) € Qp, with p + 1 as a Lipschitz bound, which guaran-
tees that w € Lip (Qg). Applying Lemma 5 and using (20), we observe that w is almost
everywhere differentiable on Qg and, at any point (z,t) € Qp where w is differentiable,

Dw(xst) € U{Dm,w(:c,t;y,s) 1 (yv 3) € YIJ N Bn+1((jzﬂv 208)} - Z9+2 (ZL', 35)’
which yields readily
wi(z,t) + H(zx, Dyw(z,t)) <3¢ ae. (z,t) € Qp.

Setting
z(z,t) = w(z,t) —yB — 3t for (z,t) € Qp,

we have
zi(z,t) + H(z, Dy2{z,t)) <0 ae. (z,t) € Qp.

By (23), we have z(z,t) < u(z,t) — 3¢t for (z,t) € Qp and, by (21), we have 2(z,t) >
u(z,t) — vB3 — 3¢t for (z,t) € Qp. In the above two inequalities, we may take v > 0 as
small as we wish. Thus we get

u(z,t) = sup{z2(z,t) | 2 € Vr, z<uon Q} for (z,t) €Q,
- which completes the proof. 0

3. Examples. In this section we consider some examples of Hamiltonians H and
examine if H satisfies conditions (4)—(6) or not.
Let H € C(R?") be a function of the form

H(z,p) = G(=z,p)™ + f(2),

where G € C(R?") satisfies

(24) G € BUC(R™ x B*(0,R)) for R >0,
(25) G(z, dp) = A\G(z,p) for A2 0,(z,p) € R?",
(26) Sgi= inf G>0.

R x8B"(0,1)
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m is a constant satisfying m > 1, and f € BUC(R"™).

Proposition 9. The function H given above satisfies (4)~(6).
We need the following Lemma.

Lemma 10. For all (z,p) € R?", we have

k k
@7) Gz.p)=min{reR|p= Ap, k>0, Y _X=1, Gla,p)=r}

i=1 i=1

Proof. We fix z € R™ and write G(p) for G(z,p) for notational simplicity. By using
the separation theorem and Carathéodory’s theorem in convex analysis, we see easily

that
- n+l _ n+i n+1
(28) G =mf{d MGm) [ M20, Y N=1 Y Api=p} forpeR"

i=1 i=1 i=1
It is clear from the above representation formula that
G(Op) = AG(p)  for (A,p) € [0,00) x R™,
G(p) 2 G(p) 2 Salpl for p € R™
Fix p € R®. If p = 0, then it is clear that (27) holds. We may thus assume

that p # 0. For any r > G(p), by the above formula, there are {\;}737 < [0,1] and
{pi}fjll < R"™ such that .

n+1 n+1 n-+1
T:>:g;A¢GKpﬂ, :g;hi==1, zg;)wpi==p.

Set
n+1

s=> MNGp),  pi=s"Gp).
©o4=1

Notice that s > @(p) > 0 by (28). By rearranging the order in ¢ if necessary, we may

* gssume that

A >0 fori <k, Aipi =0 fori>k
for some k € {1,...,n + 1}. Note that if i > k and A; > 0, then p; = 0. We now have

k n+1
Z Aipi =871 Z MG(pi) =1,
=1 i=1

n+41

k k
Z Aiﬂi(ﬂ{lpi) = Zx\ipi = Z Aip; = P,

Gui'ps) = sG(pi) ' CG(pi) = s for i = 1.,k



Hence we get

k
Gp) > inf{s€ R| X >0, G(p;) =s, D A\pi=p, k<n+1}.

i=1

Since the set {g € R" | G{g) < G(p) + 1} is & compact set, it is not hard to see that
the infimum on the right hand side of the above inequality is actually attained. That
is, we have

k
Gp) >min{s e R| N >0, Glp) =35, > Api=p, k<n+1}.

i=1
The opposite inequality is obvious. The proof is now complete. O

Proof of Proposition 9. First we observe that
(200 = H@p) =Cl@p)"+flx) for(z,p)eR™
Indeed, since the function:

p Gz, p)™ + f(z)

is convex on R™ for every z € R™ and
G(z,p)™ + f(@) < H(z,p) for (z,p) € R™,

we see that
G(z,p)™ + f(z) < H(z,p) for (z,p) € R*".

On the other hand, by Lemma 10, for (z,p) € R?" we have

k k
@(m,p)m=min{r’"ER}k$n+l, Ai >0, Glz,p;) =, Z,\,;=1, Z)\ipz'=13}

i=1 =1
k

k k
> inf{>_ MG(z,p:)™ [ k€N, X >0, S oa=1, ) Api=p}

i=1 i=1 i=1

Hence, by the formula

=1

k k k
ﬁ(m,p) = inf{z MNH(z,p) | k€N, A >0, Z)\i =1, Z/\@-pi = p},
i=1

=1

we have

G(z,p)™ + f(z) = H(z,p).
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Thus we have shown (29).
To show that H satisfies (4), we just need to prove that

G € BUC(R™ x B™(0,R)) for R > 0.

Fix R > 0, set

p1 = sup G,
R x B (0,R)

and, in view of (26), choose p; > 0 so that

inf G > P1.
R x(R?\B"(0,p2))

Then, by Lemma 10, we have

k k k
G(z,p) = min{d_ AiG(z,p:) | M 20, DX =1, Glz,pi) < pu, > Aipi =}
i=1

g==1 1=1

k k k
= min{z MGz, pi) | A 20, z Ai =1, pi € B*(0, p2), Z)\im = p}
=1 i=1

t=1

for (z,p) € R™ x B™(0, R).
This shows that the collection of functions:
z — G(z,p),
with p € B™(0, R), is equi-continuous on R”. On the other hand,
{G(z,) |z € R"}

is a uniformly bounded collection of convex functions on B™(0, R). Consequently, this
collection is equi-Lipschitz continuous on B™(0, R). Thus we see that G € BUC(R™ x
B"(0,R)) for all R > 0.

By assumptions (25) and (26), H clearly satisfies (5).

To show (6), fix R > 0 and choose pa > 0 as above. Then, by Lemma 10, we get

k
G(z,p)™ = min{}_ MG(z,p:)™ | k€N, N 2 0, Gz, p:) = G(z,p),

i1
k k
> hi=1,Y Mpi=p}
i=1 i=1

k
= mln{z AzG(mapz)m 1 ke Na A'L Z O) D € Bn(07 p2)7
i=1

k k

S =1, ) Mpi=p}
=1

i=1



Hence we have
H(z,p) = H,,(z,p) for (z,p) € R" x B"(0, R).
Thus H satisfies (4)-(6). 0O
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