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0 Introduction.

Let g be a symmetrizable Kac—-Moody algebra over the field @ of rational numbers,
and let P be an integral weight lattice of g. In [L1] and [L2], Littelmann introduced
the path model consisting of Lakshmibai-Seshadri paths (LS paths for short) for &
representation of the symmetrizable Kac-Moody algebra g; for an integral weight
A € P, an LS path of shape X is, by definition, a path 7 : [0,1] — Q®z P (i.e.,
piecewise linear, continuous maps such that 7(0) = 0 and 7(1) € P) determined
by a pair of a sequence of elements in WA, where W is the Weyl group of g, and a
sequence of rational numbers satisfying a certain combinatorial condition (see §1.2
below). We denote by B(A) the set of all LS paths of shape A. Littelmann showed
that the set B(\) together with root operators (see §1.3 below) and the weight map
wt(m) := (1), = € B(A), is a crystal with weight lattice P. Then he proved that
if A € P is a dominant integral weight, then the crystal graph of the crystal B())
is connected, and the formal sum 5, e(7(1)) is equal to the character ch L(\)
of the integrable highest weight g-module L()) of highest weight X\. Moreover, it
was proved independently by Kashiwara [Kas3] and Joseph [J] that the B()) for
dominant A is, as a crystal, isomorphic to the crystal base of the highest weight
Uq(g)-module V() of highest weight A, where U,(g) is the quantized universal
enveloping algebra of g over the field Q(g) of rational functions in q. Now, quite a
natural question arises: Is there any U,(g}-module whose crystal base is isomorphic
to the crystal B()A) for general A € P? In a series of papers [NS1] ~ [NS3], we

gave a kind of answer to this question in the case where g is an affine Lie algebra.



For a more precise deséription, we need some notation. Let g be an affine
Lie algebra over Q with Cartan subalgebra b, simple roots {aj }j o € b7, simple
coroots {hj}jel C B, and Weyl group W = (r; | j € I) C GL(h*), where r;, j € I,
are the simple reflections. We denote by § = Y, a;a; € §* the null root, and
by ¢ = Zje I a;/h,- € b the canonical central element. An integral weight A € P is
said to be of positive (resp., negative) level if A(c) > 0 (resp., A(c) < 0), and to be
 of level zero if A(c) = 0:

PziAEP[/\(c)>O}JUiAEP[A(c}zO}/UiAGP])\(c) <O}J.

positive level level-zero negative level
If A € P is of positive (resp., negative) level, then there exists a unique dominant
(resp., anti-dominant) integral weight in WA. Denote it by u. Because B(A) =
B(w)) for all w € W, we have that the set B()) is the same as the set B(p) of
all LS paths of shape p; accordingly, it follows from the result due to Kashiwara
[Kas3] and Joseph [J} that B()) is, as a crystal, isomorphic to the crystal base of
the highest (resp., lowest) weight module V(1) of highest (resp., lowest) weight
over the quantum affine algebra U,(g).

Now we are left with the case where X € P is of level zero. We take (and fix) a
special vertex 0 € I such that aj = 1, and set [ := I\ {O} Let A;, ¢ € I, be the
fundamental weights for g, and set w; := A; —a}Ag for i € Iy (note that w;, 1 € I,
is a level-zero integral weight). In the case where A = mw; for some m € Zy;
and i € Iy, we proved in [NS1] and [NS2] that the LS path crystal is isomorphic
to the crystal base of the extremal weight module over Uy(g) (Theorem 1). Here
the extremal weight module V/(\) over U,(g) with ) as an extremal weight is an
integrable module over U,(g) generated by a single element vy with the defining
relations that the vy is an extremal weight vector of weight A (see §1.4 below); we
know from [Kas1, Proposition 8.2.2] that the extremal weight module V() admits
a crystal base, denoted by B(A).

Theorem 1. Form € Z», and i € Iy, the crystal B(mw;) of all LS paths of shape
mw; is, as a crystal, isomorphic to the crystal base B(mw;) of the extremal weight

module V (mw;) over Uy(g) with mw; as an extremal weight.

We know from [NS1, Remark 5.2] and [NS3, §3.1] that for a general integral

weight A € P of level zero, there is no isomorphism of crystals between the set
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B(A) of all LS paths of shape A and the crystal base B(\) of the extremal weight
U,(g)-module V() of extremal weight A. We do not know whether or not there
exists a Uy(g)-module having a crystal base isomorphic to B(\), except for the

case mentioned in Theorem 1.

Now we turn to a fundamental module of level zero (see §1.5 below). Let el :
b* — b*/Q4 be the canonical projection. Denote by U}(g) the quantized universal
enveloping algebra with P, := cl(P) the integral weight lattice. In [Kas4, §5.2],
Kashiwara introduced a finite-dimensional irreducible U,(g)-module W (), called
a fundamental module of level zero, and proved that it has a global basis with a
simple crystal (see [Kas4, Theorem 5.17]). The fundamental module W(w;) of
level zero seems to be isomorphic to the Kirillov-Reshetikhin module Wl(i) in the
notation of [HKOTT, §2.3] for i € I (see [HKOTT, Remark 2.3]). In [NSi]
and [NS2], we gave a path model for W(w;) = W as follows. Let A\ € P be
a level-zero integral weight. For an LS path 7 € B()) of shape A, we define a
path cl{m) : [0,1] = Q ®z Pu by: (cl{m))(t) = cl(n(t)) for t € [0,1], and set
B(A)a := cl(B(A)). Then the set B()\)y has a crystal structure with weight lattice
Py, which is naturally induced from that of B()).

Theorem 2. The crystal B(w;)q s isomorphic to the crystal base of the funda-

mental module W (tw;) of level zero.

In [NS3], we studied the crystal structure of B(A)q = cl(B(\)) for a general
integral weight A € P of level zero. Before stating our main result of [NS3], we
make some comments. If X = \ + R§ for some R € Q, then it follows from the
definition of LS paths that B(X') = {r + mgs | ® € B()\)}, where (7 + mps)(2) :=
7(t)+tRJ, t € [0,1], and from the definition of the root operators that the crystal
graph of B(A + R§) is the same shape as that of B()), up to Ré-shift of weight. In
addition, we have that B(\) = B(w]) for all w € W. Therefore we may assume
that the A € P is of the form A =}, _, myw; with m; € Zy, from the beginning.

Now we are ready to state our main result in [NS3].

Theorem 3. Let A = D icl, Mi®; with m; € Zyq. Then, there exists a unique iso-
morphism B(N)a = @;cz, (B(wi)a)®™ of crystals (with weight lattice Pyy) between
the crystal B(A)q and the tensor product ®,., (B(w;)q)®™.

i€lp



By combining Theorems 2 and 3, we can get the following corollary.

Corollary. Let A = Y, miw; with m; € Zoo. Then, the crystal B(A)a is, as a
crystal with weight lattice Py, isomorphic to the crystal base of the tensor product
Ul(g)-module @, W (w;)®™.

1 Preliminaries.

1.1 Affine Lie algebras and quantum affine algebras. Let g be an affine
Lie algebra over the field Q of rational numbers with Cartan subalgebra §. Denote
by II := {aj}ja C b* := Homg(h,Q) the set of simple roots, and by IV :=
{hﬂ'}jez C b the set of simple coroots, where I = {0, 1, 2, ..., £} is an index
set for the simple roots II. Throughout this article, we use the numbering of the

simple roots as in [Kac, §4.8 and §6]. Let 4 € b* and

c=> alh;€h (1.1.1)
jeI

be the null root and the canonical central element of g, respectively. Denote by
W = (r; | j € I) C GL(h*) the Weyl grdup of the affine Lie algebra g, where
r; € GL(h*) is the simple reflection in oy for j € I. We call an element of the set
A := WII a real root, and denote by AT the set of positive real roots. Let A,
j € I, be the fundamental weights for the affine Lie algebra g. We take (and fix)
an integral weight lattice P C b* that contains all the simple roots oy, j € I, and
fundamental weights A;, j € I. Foreach i € Ip:= I\ {0}, we define a level-zero
fundamental weight w; € P by

w; = A,; — G,;/Ao. ‘ ) (112)

Note that w;(c) = 0;an integral weight X € P is said to be level-zero if A(c) = 0.
An integral weight A € P of level zero is said to be dominant if A(h;) > 0 for all
1€ Io. Let

cl: h* = §*/Q6 (1.1.3)
be the canonical projection, and set Py := cl(P).

Let U,(g) be the quantized universal enveloping algebra (with weight lattice
P) of the affine Lie algebra g over the field Q(g) of rational functions in g. We
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denote by Ej;, Fj, j € I, and ¢*, h € PY := Homg(P, Z) the Chevalley generators
of Uy(g), where E; (resp., F;) corresponds to the simple root o; (resp., —q;).
Denote by Uy(g) the Q(g)-subalgebra of U,(g) generated by Ej, F;, j € I, and q*,
h € (Py)V := Homg(P,, Z), which is the quantized.universal enveloping algebra
of g with weight lattice F.

1.2 Lakshmibai-Seshadri paths. A path (with weight in P) is, by defini-
tion, a piecewise linear, continuous map = : [0,1] — Q ®z P from [0, 1] := {t €
Q1 0<t<1} to Q®z P such that 7(0) = 0 and #(1) € P. In this subsection, we
recall the definition of a Lakshmibai-Seshadri path (an LS path for short) from
{L2, §4] (see also [NS2, §1.4] and [NS3, §2.1]).

We first recall some auxiliary notations. Let A € P be an integral weight. For
u, v € WA, we write p > v if there exist a sequence u = &, &1, ..., &, = v
of elements in WA and a sequence 8y, ..., 8, € AT of positive real roots such
that & = rg, (§s—1) and &-1(8)) < 0 for k = 1,2, ..., n, where for a positive
real root B € AT, r3 denotes the reflection with respect to §, and 3V denotes
the dual real root of 8. If u > v, then we define dist(i, ) to be the maximal
length n of all possible such sequences &, 1, ... , &, for the pair {p,v). Then, for
By v € WA with g > v and a rational number 0 < @ < 1, an a~chain for (p,v)
is, by definition, a sequence yu = & > & > --- > &, = v of elements in W such
that dist(§e-1,6x) = 1 and a&,—1(6)) € Zo for all k = 1, 2, ..., n, where B is
the positive real root corresponding to (€r-1,&) with &1 > &.

Now we are ready for the definition of an LS path. Let A € P be an integral
weight. An LS path of shape X is a path 7 : [0,1] — Q ®z P associated to a
pair (v; a) of a sequence v : vy, vy, ..., v, of elements in WA and a sequence
2:0=ga <a < <a; =1 of rational numbers satisfying the condition
that there exists an ajy-chain for (v, vjpy) for all k = 1,2, ..., s — 1: to such
a pair (¥;a) = (v, v, ..., Vs; ag, ay, ..., G,), We associate the following path
7:{0,1] - Q®z P:

k-1

ﬂ(t) = Z(a; - 0,5_1)1’/1 + (t — G,k_l)ll;c for Qg1 <t<L ag, 1 < k S S.
=1

Note that 7(0) is obviously equal to 0 € P, and it follows from [L2, Lemma 4.5 a)]



that 7(1) € P; namely, the 7 above is, in fact, a path for all such pairs (v;a) =
(v1, vay ..., Vs; Gg, G1, -, Q). Denote by B(\) the set of LS paths of shape A.
Remark 1.2.1. (1) The straight line 7,,(¢) := tv, t € [0, 1], is contained in B()) for
all v € WA (put s =1 and v; =v).

(2) Tt follows from the definition that B(w)) = B(A) for all w € W.

1.3 Root operators. In this subsection, we give a description of root opera-
tors e; and f;, j € I, which was introduced in [L2, §1], on the set B(A) of all LS
paths of shape A € P (see also [NS2, §1.2] and [NS4, §2.1]).
Let A € P be an integral weight. For an LS path 7 € B(\} and j € I, we define
e;m as follows: First, we set
HEt) = (n(t))(h;) for t€[0,1], (13.1)
m7 = min{HJ(¢) | t € [0, 1]}. ‘
If mj > —1, then we define e;w = 0. Here, 8 is an extra element, which corre-
sponds to the 0 in the theory of crystals (by convention, we put e;60 = f;6 :=0).

If m; < —1, then

(t) if 0<t <A,
(e;m)(t) = { w(to) + r;(m(t) — 7w(to)) if to <t <y, (1.3.2)
(t) + o if ¢ <t <1,

where we set _

t; =min{t € [0,1] | H] (¢) = mT},

to :=max{t' € [0,ts] | HI () 2m] +1 forall t € [0,¢1}.
Similarly, f;m is given as follows: If HJ(1) —m] < 1, then we set fime=0. 1f
H7(1) —mj > 1, then

7(t) if 0<t<ty,
(Fym)(t) = { w(to) + ry(n(t) — m(ty)) if to St <t (1.3.3)
m(t) — ift; <t <1,

where we set
to := max{t € [0,1] | HF {t) =m]},
t, = min{t' € [to, 1] | HF () = m] +1 for all ¢ € [t',1]}.
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Theorem 1.3.1 ([L2]). For every integral weight A € P, the set B(A) U {8} is
stable under the action of the root operators e; and f; for j € I. We define

wt(rm) = 7(1) for m € B(A),
gj(m) :=max{n >0|etr #0} for r €B()) and j €I,
@j(m) :=max{n> 0| ffr#£60} for r €B()\) and je I
Then, the set B(\) together with the root operators and the maps above is a crystal

with weight lattice P.

1.4 Extremal weight modules.

Definition 1.4.1 (cf. [Kasl, §8] and [Kas4, §3.1]). Let M be an integrable
U,(g)-module. A vector v € M of weight A € P is said to be extremal, if there
exists a family {vw}w cw Of weight vectors of M satisfying the following conditions:
forweWandjel,

a) vy =vifw=1;

b) if n:= (w(A))(h;) > 0, then Ejv,, = 0 and F;-(”)vw = Up;u;

¢) if n = (w(A))(h;) <0, then Fju, =0 and E](--n)vw = Upjow-
Here, EJ(.n) and l*'},-(”) are the n-th ¢-divided powers of the Chevalley generators E;
and F; of U,(g), respectively.

Definition 1.4.2 (cf. [Kasl, §8] and [Kas4, §3.1]). Let A € P be an integral
weight. The extremal weight module V() over U,(g) with A as an extremal weight
is, by definition, the integrable U,(g)-module generated by a single elemenet v,

with the defining relations that v, is an extremal vector of weight .
We know the following theorem from [Kasl, Proposition 8.2.2].

Theorem 1.4.3. For every A € P, the extremal weight module V() has a crystal
base, which we denote by B()\).

Remark 1.4.4. The extremal weight module is a natural generalization of an inte-
grable highest and lowest weight module; in fact, we know from [Kasl, §8] that if
A € P is dominant (resp. anti-dominant), then the extremal weight module V()
is isomorphic to the integrable highest (resp., lowest) weight module of highest
(resp., lowest) weight A, and the crystal base B()) of V() is isomorphic to the

crystal base of the integrable highest (resp., lowest) weight module as a crystal.



1.5 Fundamental module of level zero. We define a positive integer d; €
Z, by
{neZ|lwi+ndec W} = Zd;. (1.5.1)

Because V(w;) & V(ww;) as Uy(g)-modules for all w € W (see [Kasl, Propo-
sition 8.2.2 iv)]), we see that there exists a U,(g)-module isomorphism V(w; +
di6) S V(w;). In addition, there exists a Uj(g)-module isomorphism V(w;) =
V(w; + d;6), which maps the w;-weight space V(w;)w, of V(w@;) to the (w;+did)-
weight space V (w; + di6)aw,+4,5 of V(i + di6) (by [Kas4, Proposition 5.16], these
weight spaces are 1-dimensioﬁal). Thus we get a U;(g)-module automorphism
2z : V(w;) = V(wm;) of weight d;6 (see [Kas4, §5.2]) as the composition of these
- maps. We now define a U, (g)-module W (w;) by

Wiw;) =V (@)/(z — YV (@), (1.5.2)

which is called a fundamental module of level zero. We know from [Kas4, Theo-
" rem 5.17] that W(w;) is a finite-dimensional irreducible Ui(g)-module, and has a

simple crystal base, which is denoted by B(w;)a.

2 Qur results.

2.1 Isomorphism theorems. Our main result in [NS1] and [NS2] is the fol-
lowing theorem (see [NS1, Theorem 5.1] and [NS2, Corollaries 2.2.1 and 3.3.8)]).

Theorem 2.1.1. For m € Z»; and i € I, the crystal B(mw;) of all LS paths
of shape mw; is, as a crystal with weight lattice P, isomorphic to the crystal
base B(mw;) of the estremal weight module V(mw;) over Uy(g) with mw; as an

extremal weight.

Here, let us give a sketch of our proof of Theorem 2.1.1. First we show the
theorem for the case where m = 1. In [NS2, Theorem 2.1.1], we proved the

following,.

Theorem 2.1.2. For every i € Iy, the crystal graph of the crystal B(w;) is con-

nected.
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We know from [Kas4, Proposition 5.4 (ii)] that the crystal graph of the crystal
base B(w;) is also connected, and from [Kas4, Proposition 5.16 (ii)] that the cardi-
nality of the subset B(w;)ww, is equal to 1 for all w € W, where B(w;), is the subset
of B(w;) consisting of all elements of weight x € P. In addition, we see from [BN,
Theorem 4.16 (i)] that there exists a canonical embedding By(Nw;) «— B{w;)®V
of crystals that sends uys, to u2Y, where for each A € P, u) denotes the element
of the crystal base B(A) corresponding to the generator b,\ of the extremal weight
module V(A), and Bo()) denotes the connected component of B()) containing the

element uy. Further we showed the following proposition.

Proposition 2.1.3 ([NS1, Theorem 3.1}). For every N € Z.¢ and i € Iy, there
exists an injective map Sy : B(w;) — Bo(Nw;), which we call an N-multiple map,
satisfying thé following condition:

(1) Sn(tw,) = UNw,,

(2) wt(Sn(b)) = Nwt(b) for each b € B(w;),

(3) Swlesb) = e Sn(b), Sn(fib) = fSn(b) for b€ B(w;) andi € I.

By using these facts, we can show that B(w;) = B(w;) as crystals in exactly the
same way as [Kas2, Theorem 4.1] (see [NS1, Theorem 5.1]).

As a consequence of Theorem 2.1.1 for the case where m = 1, we obtained the
following corollary (cf. [NS1, Corollary 5.3}).

Corollary 2.1.4. For everym > 1 and ¢ € Iy, we have
Bo(mw;) = By(mw;) as crystals,
where Bo(mw;) is the connected component of the crystal B(mw;) containing the

straight line T, (t) = t(mw;), t € [0, 1].

Next we prove Theorem 2.1.1 for the case where m > 2 (as seen below, the
crystal graph of B(mew;) is not connected when m > 2). Let Par.,, be the set
of partitions of length (i.e., the number of parts) strictly less than m. For each

o= (ki 2k 2+ > kn_1) € Parg,, we denote by |o| the weight of o, i.e.,



lo] := k1 + Ky +- - - + km—1. We can define a crystal structure on Parcn, as follows:
e;o = fjo=0 for all o € Pare,,, and j € I,
gj(c) =pj(oc) =0 forall o € Parc,, and j € 1,
Wt(&) = —|o|did for o € Parey, .
In [NS2, §§3.2 ~ 3.6, we showed the following.

Lemma 2.1.5. (1) For every o = (k1 2 ko > -+ 2 kp—1) € Parem,

o += (m(w"' - kld";&)! vt m(wi - km—ldi5)3 MW ; O, %5 ey m=1 1).

m ?

is contained in B(mw;).

(2) For each m € B(mw;), there ezists a unique 0 € Parcn such that the m 1s

connected to w, in the crystal graph of B(mw;).

For o € Pare,,, we denote by B,(mw;) the connected component of B(mw;)

containing the path m,. Then it follows from the lemma above that

B(mw;) = Ll B, (mw;).

occParcm

Here recall from §1.3 that the root operators e;, f; are defined in terms of the
function given by the pairing of a path and the simple coroot h;. Because the
path 7,(t) is the same as the straight line e, (t) = t(mw:), up to some J-shift,
and because (h;) = 0 for all j € I, we deduce that the crystal graph of Bo(mw;)
is isomorphic to the crystal graph of B, (me;), up to some 3-shift of weight. More

precisely, we have
B,(mw;) = {0} ® Bo(mw;) — Parc, ® Bo(w:) as crystals,
which sends 7, to 0 ® Tynw,;. Thus we obtain
Theorem 2.1.6. For m € Zs1 and i € I, we have
B(mw;) & Parc,, ®Bo(mw;) as crystals.

On the other hand, we know the following theorem from [BN, Theorem 4.16 (i)].
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Theorem 2.1.7. For each m € Z», and i € Iy, we have
B(mw;) = Par.,, ® By(mw;) as crystals.

By combining Theorems 2.1.6 and 2.1.7 with Corollary 2.1.4, we can get our

isomorphism theorem (Theorem 2.1.1). O

Now, for an integral weight A € P, we set
B(Va := {d(m) | = € BV},

where for a path #, we define cl(n) : [0,1] - Q ®z Py = §*/QJ by: (cl(n)}(t) :=
cl(w(t)) for t € [0,1]. We can endow B())y with a structure of crystal with weight

lattice P, in such a way that

e;cl(m) == cl(eym), ficl(m) := cl{fym),
ej{cl(m)) :=gj(m), @;(cl(m)) = p;(n),
wt{cl(m)) := cl(wt(n)).

for 7 € B(A) and j € I (see [NS2, §3.3] and [NS3, §§1.3 and 1.4]). The fol-
lowing is a consequence of Theorem 2.1.1 (see [NS1, Proposition 5.8] and [NS2,
Proposition 3.2]).

Theorem 2.1.8. For each i € Iy, the crystal B(w;)q is isomorphic to the crystal
base B(tw;)q of the fundamental module W (w;) of level zero as a crystal with weight
lattice P,. '

2.2 Tensor product decomposition theorem. In [NS3], we studied the
crystal structure of B(A)q = cl(B(A)) for a general integral weight A € P of level
zero. Before stating our main result in [NS3], we make some comments. Let
A € P be an integral weight of level zero. We can write the A € P in the form
A =3 e, Miw; + RS for some m} € Z, i € Iy, and R € Q (cf. [Kac, Chap.6]).
Then it follows from the definition of LS paths that

B\ ={r+mrs|me B(Yser,mim) },

where we set (7 + wgrs)(t) = 7w(t) + tRS, t € [0,1], and from the definition of
the root operators that the crystal graph of B()\) is the same shape as that



of B(Y;ej, Mi@:), up to RS-shift of weight. Therefore we have that B(MNa =
B() ez, mi@i)a. In addition, the integral weight Y iz, Miwi € P is equivalent to
the one that is dominant with respect to the simple coroots {h; }j ez, under the
Weyl group W= (rj | 7 € Ip) ¢ W (of finite type). Hence there exist nonneg-
ative integers m; € Zxq, i € Iy, such that B(} ;. M) = B(Q iz, Mi@i)a by
Remark 1.2.1(2). To sum up, for an integral weight A € P of level zero, there
exists m; € Zo, i € Iy, such that B(A)a = B2, 'm,-wi)cl. Thus, when we study
the crystal B(\)q for an integral weight A € P of level zero, we may assume that
the A € P is of the form: A = ) ,c; miw; with m; € Zx from the beginning.

Now we are ready to state our main result in [NS3].

Theorem 2.2.1 ([NS3, Theorem 2.2.1]). Let A =, miw; with m; € Zxo.
Then, there ezists an isomorphism B(A\)a = @;er, (B(mi)a)®™ of crystals (with
weight lattice P.) between B(A)a and the tensor product Ricr, (B(w;)a)®™ of the
crystals B{w;)a, ¢ € Ip.

By combining Theorems 2.1.8 and 2.2.1, we obtain the next corollary.

Corollary 2.2.2. Let A=Y, ; miw; with m; € Zxg. The crystal B{))q is, as @
crystal (with weight lattice Pa), isomorphic to the crystal base Qier, (B(wi)e)®™ of
the tensor product @;e;, W (w;)®™ of fundamental U}(g)-modules W (w;), @ € Io,

of level zero.
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