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1, Quantum propagator of the Henon map
A stand ard recipe to formulate quantum mechanics of the area-preserving mapping is
first to construct the unitary operator generating the time evolution of quantum states.
This is achieved by introducing discrete analog of the Feynman-type path Integral:

$<q_{n}|U^{n}|q_{0}>= \int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}dq_{1}dq_{2}\cdots dq_{n-1}\exp[\frac{\mathrm{i}}{\hslash}S(q_{0}, q_{1}, \cdots, q_{\mathrm{n}})]$ . (1)

Here we take the coordinate representation. The function $S(q_{0}, \cdots, q_{n})$ represents the
discretized Lagrangian or the action functional given as

$S(q_{0}, \cdots, q_{n})=\mathrm{I}$ $\frac{1}{2}(q_{j}-q_{j-1})^{2}-\sum_{j=1}^{n-1}V(q_{j})$ . (2)

The action functional is derived so that applying the variational principle to generates
the symplectic map. In fact, we can easily see that the condition $\partial S(q0, \cdots, q_{\mathrm{r}\iota})/\partial qj=$

$0$ , $(1\leq j\leq n -1)$ yields the classical map in the Lagrangian form,

$(q_{j+1}-q_{j})-(q_{j}-q_{g-1})=-V’(q_{j})$ . (3)

If we take the potential function as

$V(q)=- \frac{q^{3}}{3}-cq$ , (4)

then the classical map is essentially the sam $\mathrm{e}$ as the so-called Henon map, which is a
non-trivial polynomial diffeomorphism generating chaos [1]. A canonical form of the
H\’enon map takes the form as

$f$ : $(\begin{array}{l}xy\end{array})rightarrow(y^{2}-x+ay)$ . (5)

Here, the nonlinear parameter $a$ is related with the parameter $c$ in the potential function
$V(q)$ as $c=1-a$.

A usual (complex) semicalssical scheme is just to take the leading order contri-
bution in evaluating the multiple integral $<q_{n}|U^{n}|q_{0}>$ by the stationary phase(or

saddle point) method. The resulting semiclassical formula is expressed as a sum over
contributions of classical trajectories connecting the initial and final states.
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2. Anti-integrable limit and the horseshoe regime in the Henon map

Introducing a new variable by $q_{i}’=\epsilon q_{i}$ and a new parameter $\epsilon=1/\sqrt{-c}$ , then the new
action functional $\hat{S}=\epsilon^{3}S$ is written as

$\hat{S}=\epsilon\{\sum_{j=0}^{n}\frac{1}{2}(q_{j+1}’-q_{j}^{/})^{2}\}+\sum_{j=1}^{n}(\frac{q_{j}^{/3}}{3}+q_{j}’)$ . (6)

For $\epsilon\neq 0$ the variational condition $\partial S(q_{0}, \cdots, q_{n})/\partial q_{j}=0$ is equivalent to the explicit
mapping rule (3). On the other hand, for $\epsilon=0$ there no more exist such explicit
relations between successive points. The “orbits” for $\epsilon=0$ , which are expressed as
$q_{i}\in$ $\{-1, +1\}(\mathrm{i}\in \mathbb{Z})$ . This limit is called anti-integrable limit [2].

The next simplest situation is the parameter region where the so-called horseshoe
condition is satisfied. To be precise, we give the definition of the horseshoe condition:
Let $\Omega(f|_{\mathrm{R}})$ be the non-wondering set of the real Henon map $f|_{\mathbb{R}}$ , and let

$\mathrm{A}=\cap f^{k}(S)|_{\mathbb{R}}k=-\infty\infty$ ,

where the square $S=\{(x, y)||x|\leq R, |y|\leq R\}$ is given for a sufficiently large $R$ .
the Henon map $f$ is said to satisfy the horseshoe condition if there exists a continuous
semi-conjugacy of $\Omega(f|_{\mathbb{R}})$ onto the 2-shift, that is, every trajectory has its own infinite
binary symbol sequence in forward and backward directions.

It was proved that the Henon map is hyperbolic and conjugate to the 2-shift up
to when the first tangency occurs [3]. Here, we mean the first tangency by the first
homoclinic tangency between the uppermost stable manifold and innermost unstable
manifold of a saddle fixed point on the real plane(see Fig. 1). A numerical study shows
that the first tangency parameter value is evaluated as $a_{c}=$ 5.699311 $\ldots$ [4] . For $a>a_{c}$ ,
the invariant set A coincides with the Julia set $J$ and is confined on the real plane, we
here focus our attention to such a case.

Figure 1: Stable and unstable manifolds before and after the first tangency.

3. Stokes geometry in the horseshoe regime
In what follows, we shall fix the initial coordinate $q_{0}=\alpha$ and regard the quantum
propagator ( $1\rangle$ as a function of the final coordinate $q_{n}$ . We therefore use the notatio
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$I(q_{n})\equiv<q_{n}|U^{n}|q0>$ to represent the multiple integral defined in eq. (1). As will be
seen below, we put aside $q_{0}$ dependence for the moment.

Since we have differential equations acting on our multiple integral (1) [5], we can
apPly a prescription to construct the Stokes geometry for higher-order differential equa-
tions to our integral $I(q_{n})[7]$ . Concerning turning points, we say the point $q_{n}^{T}$ is a
turning point, if the $q_{n}^{T}$ satisfies the following conditions:

$\frac{dq_{n}^{T}(q_{0},q_{1})}{dq_{1}}=0$ ,

$\frac{dS(q_{0},\cdots,q_{n}^{T}(q_{0},q_{1}))}{dq_{1}}=0$ .

Also we follow the definition of virtual turning points, that is, for $q_{1}^{(i)}\neq q_{1}^{(j)}$ , $q_{n}^{T}$ is a
virutal turning point if

$q_{n}^{T}(q0, q_{1}^{(\iota)})=q_{n}^{T}(q0, q_{1}^{(j)})$

$S(q_{0}, q_{1}^{(i)}, \cdots, q_{n}^{T}(q_{0}, q_{1}^{(i)})),$ $=S(q\mathfrak{o}, q_{1}^{\langle j\rangle}\cdots , q_{n}^{T}(q_{0}, q_{1}^{(j)}))$ .

In the same way, we can apply the definition of Stokes curves. Recalling the gener-
ating relation, $\partial S(q_{0}, \cdots, q_{n})/\partial q_{n}=q_{1}$ , we say the curves emanating from the turning
points $q_{n}^{T}$ and satisfying the following relation;

${\rm Im} S(q_{0}, q_{1}^{(i)}, \cdot . . , q_{n-1\}}^{(i)}q_{n}^{T})={\rm Im} S(q_{0}, q_{1}^{(j)}, \cdots, q_{n-1}^{(j)}, q_{n}^{T})$ . (7)

Stokes curves emanating from ordinary turning points give the ordinary Stokes curves,
and those from virtual turning points give new Stokes curves.

A typical example of the Stokes geometry in the horseshoe regime at $n=3$ is
shown in Fig. 2. The most important fact is that all the turning points in the ordinary
sense are located on the real axis. As also presented in Fig. 3 this reflects the fact
that all the folding points of Lagrangian manifolds appear on the real plane, which
is characteristic of the horseshoe property of the Henon mapping. There are three
virtual turning points, one of which are sited on the real axis and the others in the
imaginary domain. It should be noted that, due to the symmetry of the Stokes graph
with respect to the real axis, a degenerated crossing point on the real axis appears
on the real axis. Four ordinary Stokes curves and two new Stokes curves cross there
and the univaluedness condition around it determines characters of each Stokes curve
uniquely [5].

The most urgent issue in our interest to clarify the relation between classical $\mathrm{d}\mathrm{y}^{-}-$

namics generating chaos and the corresponding Stokes geometry. In the classical side,
stretching and folding is a key mechanism generating chaos, and the number of folding
points of the Lagrangian manifold increases exponentially as a function of the time step
$n$ . The folding points of the Lagrangian manifold manifest themselves as the turning
points in Stokes geometry. Figure 3 depicts time evolution of Stokes graphs together
with the corresponding Lagrangian manifolds. Here, only the ordinary Stokes curves
are drawn. Three Stokes curves emanate from a simple turning point, and local Stokes
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Figure 2: Stokes geometry for the Henon map for $n=3$ . The dominance relation
and types of the turning points follow the usual convention. Filled dots and open dots
represent ordinary and virtual turning points, respectively. Broken lines new Stokes
curves.

geometry in the vicinity of folding points can be well understood within conventional
argum ents.

As seen from Fig. 3 some ordinary Stokes curves rotate around the origin several
times, the number of rotation increases with the time step $n$ . It would be difficult to
find out the rule controling the behavior of Stokes curves as a function of $n$ only by
observing them on $q_{n}$ plane. However, plotting the Stokes curves on the $q1$ plane, one
can more easily understand the structure of Stokes curves. Here we note that $q_{1}$ plays
the role of time in the bicharacteristic equations for the diiferential operator acting on
the $I(q_{n})[5]$ .

In Fig. 4, the ordinary Stokes curves are drawn on $q_{1}$ plane, The structure of
Stokes curves are much simpler that those on $q_{n}$ plane. Using this representation, one
can derive the how the Stokes curves behave on $q_{n}$ . We here provide only the result
(see details in [5]):

{({ $\mathrm{O}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{y}$ turning points} :
$T^{(n)}=2^{n}-1$

$\#$ {Ordinary Stokes curves in group $j$ }:
$S_{j}^{(n)}=2^{n-j}$

$\#$ {Rotation around the origin in group $j$ } :

$R_{j}^{(n\}}= \{2^{n-j}-1-[\frac{2^{n-j}-1}{3}]\}/2$

Here $[\cdot]$ denotes the Gauss symbol



111

$=|q_{\mathit{2}}$

$n$ $=\mathit{2}$

Figure 3: Time evolution of Stokes geometry for the Henon map. The left row represent
the ordinary Stokes curves and right row Lagrangian manifolds starting from the initial
state $q_{0}=0$ . These are drawn on the $(q_{n-1}, q_{n})$ plane
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$n=\mathit{4}$

$\mathrm{H}\mathrm{r}^{\neg}\in$

${\rm Re} q_{\mathit{1}}$

Figure 4: The Lagrangian manifold at $n=4$ (upper figure), and the Stokes curves on $q_{1}$

plane(lower figure). The bold, normal and thin lines represent the Stokes curves which
appear at $n=2$ , $n=3$ and $n=4$ , respectively. The turning points labeled as Ci, $B_{i}$

and $A_{\mathrm{i}}$ on the Lagrangian manifold are aligned on the real line on $q_{1}$ plane.

Concerning the virtual turning points and new Stokes curves, we only have a con-
jecture based on numerical observations. As shown in Fig. 6, virtual tur ing points
appearing in the Stokes geometry in the horseshoe parameter region are classified into
two types: the first ones are those located on the real axis, and the second ones on the
purely complex domain. Numerical observations tell us that the second-type virtual
turning points cross the real axis only once and crossing points are either the degen-
erated one shown in Fig. 2 or the normal one at which three Stokes curves cross each
other [5].

Therefore, in order to have the connection matrix $\mathrm{T}$ , which is the most relevant
physical quantity in our interest $[8, 9]$ , it is suffice to examine how the connection
occurs along real axis. Here the connection matrix $\mathrm{T}$ relates the WKB solutions at ${\rm Re}$
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Figure 5: The ordinary Stokes curves on $q_{n}$ plane. This is a schematic picture and only
the Stokes curves around the origin are drawn . The index $j$ represent at which time
step the Stokes curves appear. For exam $\mathrm{p}\mathrm{l}\mathrm{e}$, the Stokes curves for $j=n$ appear in at
the first step, and those for $j=2$ appear in the final step $n$ .

Figure 6: The ordinary(solid lines) and new(broken lines) Stokes curves for $n=4$ .
Here, characters of Stokes curves are not indicated. Other turning points and Stokes
curves are outside the figure, but the location of virtual turning points is classified into
two types described in the text
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$q_{n}=-\infty$ and those at ${\rm Re} q_{n}=\infty$ as

$(\begin{array}{l}\varphi_{1}^{(\infty)}(q_{n})\varphi_{2}^{(\infty\rangle}(q_{n})\vdots\varphi_{2^{n}}^{(\infty)}(q_{n})\end{array})=\mathbb{T}$ $(\begin{array}{l}\varphi_{1}^{\langle-\infty)}(q_{n})\varphi_{2}^{(-\infty)}(q_{n})\vdots\varphi_{2^{n}}^{(-\infty\rangle}(q_{n})\end{array})$ .

In this respect, the first-type virtual turning points and new Stokes curves emanating
from them do not play any role since the Stokes coefficients in the vicinity of virtual
turning points should be zero. Therefore, the problem is reduced to finding in which
order degenerated and normal crossing points appear along the real axis. The second-
type virtual tur ing points are involved in such crossing points. We have obtained an
algorithm, using a graphical representation of crossing points aligned along the real
axis, to derive the connection matrix $\mathrm{T}$ in the horseshoe regime (see details also in [5]).

4. Concluding remarks
In this report, we have sketched the Stokes geometry of quantized Henon map in the
horseshoe regime, A primary motivation of our work originates from recent success
of complex semiclassical description of quantum tunneling especially in the presence
of chaos [8, 9, 10]. In such a program, the understanding of Stokes phenomena is a
critical step to make our analysis self-containd. Our prescriptions to treat the Stokes
phenomenon occurring in our quantum propagator are based on the exact WKB anal-
ysis, which naturally introduces novel ingredients in Stokes phenomena in higher-order
differential equations $[6, 7]$ .

The strategy we took first was to select out the simplest possible chaotic system
suitable for our purpose. The Henon map would be the best candidate that meets such
a requirement and the horseshoe regime is the simplest possible situation. Thus, ana-
lyzing Stokes geomety in the horseshoe limit would be the first target to be investigated.
If the situation for the horseshoe limit is well understood, one way to step forward is
to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ Stokes geometry as a function of the system parameter $a$ , and focus on bifur-
cation phenom ena $[11, 5]$ . As stressed already, in the horseshoe case, all the turning
points are located on the real plane, but as the nonlinear paremeter $a$ decreases, some
of them fall into purely imaginary plane. Such an event occurs as a result of coalescence
of turning points. If we know how the Stokes graph changes when such a bifurcation
phenomenon occurs, the Stokes geometry in a generic parameter value can be traced
from the anti-integrable limit in principle. This is exactly the same strategy to study
the pruning of the horseshoe structure [12].
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