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1. JNTRODUCTION

In this note we shall study the relations between the exact asymptotic
analysis of a so-called homology equation and the normal form theory
of a singular vector field. A homology equation is a system of partial
differential equations which appear in linearizing a singular vector field
by the change of independent variables. We shall introduce a WKB
solution of a homology equation which is a natural extension of the
one introduced by Aoki-Kawai- Takei for the Painleve equation. We
then give a new unexpected connection between Poincare’ series and
the WKB solution via resummation procedure.

2. HOMOLOGY EQUATION

Let $x=$ $(x_{1}$ , . . . , $x_{n})\in \mathbb{C}^{n}$ , $n\underline{>}2$ be the variable in Cn. We consider
a singular vector field near the origin of $\mathbb{C}^{n}$

$X$ $= \sum_{j=1}^{n}a_{j}(x)\frac{\partial}{\partial x_{j}}$ , $a_{j\prime}(0)=0$ , $j=1$ , $\ldots$ , $n$ ,

where $a_{j}(x)$ ($j=1,2$ , $\ldots$ , n) are holomorphic in some neighborhood of
the origin. We set

$X(x)=(a_{1}(x))$ . . . , $a_{n}(x))$ , $\frac{\partial}{\partial x}=(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}})$ ,

and write
X $=X(x) \cdot\frac{\partial}{\partial x}$ , $X(x)=\Lambda x+R(x)$ ,

$R(x)=(R_{1}(x),$
\ldots ,

$R_{n}(x))$ , $R(x)=O(|x|^{2})$ ,

where A is an $n$-square constant matrix.
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We want to linearize $X$ by the change of variables,

(T), $x=u(y)$ , zt $=(u_{1}, \ldots, u_{n})$ ,

namely,

$X(u(y)) \frac{\partial y}{\partial x}\frac{\partial}{\partial y}=X(u(y))(\frac{\partial x}{\partial y})^{-1}\frac{\partial}{\partial y}=\Lambda y\frac{\partial}{\partial y}$ .

It follows that u satisfies the equation

$X(u(y))( \frac{\partial u}{\partial y})^{-1}=$ Ay,

that is
$\Lambda u+R(u)=\Lambda y\frac{\partial u}{\partial y}$ .

Hence the vector field $X$ is linearized by (T) iff $u$ satisfies the following
homology equation

$\mathcal{L}u\equiv$ Ay $\frac{\partial u}{\partial y}=$ Au $+R(u)$ .

For simplicity, we rewrite the variable $y$ as $x$ , and we assume that A is
a diagonal matrix with diagonal components given by $\lambda_{i}$ , $\mathrm{i}=1$ , $\ldots$ , $n$

in the following. Then $\mathcal{L}$ is given by

$\mathcal{L}=\sum_{i=1}^{n}\lambda_{i}x_{i^{\frac{\partial}{\partial x_{i}}}}$ .

Hence the homology equation is written in the following form

$\mathcal{L}u_{j}=\lambda_{j}u_{j}+R_{j}(u)$ , $\dot{J}=1$ , $\ldots$ , $n$ .

3. WKB SOLUTION OF A HOM OLOGY EQUATION

Introduction of a large parameter
The natural way of introducing a large parameter in the symmetric
form of a Painleve’ equation is the following

$\eta^{-1}U_{1}^{t}$ $=$ $\lambda_{1}+U_{1}(U_{2}-U_{3})$

$\eta^{-1}U_{2}’$ $=$ $\lambda_{2}+U_{2}(U_{3}-U_{1})$

$\eta^{-1}U_{3}’$ $=$ $\lambda_{3}+U_{3}(U_{1}-U_{2})$ .

This is identical with the one introduced by Aoki-Kawai- Takei from
the viewpoint of a monodromy preserving deformation apart from some
minor constant. In view of the similarity of the homology equation to
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the symmetric form of a Painleve equation, we introduce the large
parameter in the homology equation in the following way

$\eta^{-1}\mathcal{L}U_{j}=\eta^{-1}\mathcal{L}(\log u_{j})=\lambda_{j}+\frac{R_{j}(u)}{u_{j}}$, $j=1$ , $\ldots$ , $n$ ,

where $U_{j}=\log u_{j}$ .
A $WKB$ solution (0 - instanton solution)
For the sake of simplicity we set $u(x)$ $=x+v(x)$ in the original ho-
mology equation and we introduce a large parameter $\eta$ by the above
argument. The resultant equation is

$(HG)_{\eta}$ $\eta^{-1}\mathcal{L}v_{j}=XjVj+R_{j}(x+v(x))$ , j $=1$ , \ldots , n.

Definition (WKB solution). A WKB solution (0 - instanton so-
lution) $v(x, \eta)$ of $(HG)_{\eta}$ is a formal power series solution of $(HG)_{\eta}$ in
the form

(3.1) $v(x, \eta)=\sum_{\mathrm{z}/=0}^{\infty}$ op $-\iota/v_{\nu}(X)$ $=v_{0}(x)+\eta^{-1}v_{1}(x)+\cdots$ ,

where the series is a formal power series in $\eta$ with coefficients $v_{l/}(x)$

holomorphic vector functions in $x$ in some open set in $\mathbb{C}^{n}$ independent
of $L/$ .

By setting $v=$ $(v^{1}, \ldots, v^{n})$ we substitute the expansion (3.1) into
$(HG)_{\eta}$ . First we note

$\mathcal{L}v^{j}=\sum_{\mathrm{I}/=0}^{\infty}\mathcal{L}v_{l}^{j},(x)\eta^{-\nu}$ ,

$R_{j}(x+v)=R_{j}(x+v_{0}+v_{1}\eta^{-1}+v_{2}\eta^{-2}+\cdots )$

$=R_{j}(x+v_{0})+$ ep-1 $\sum_{k=1}^{n}(\frac{\partial R_{j}}{\partial z_{k}})(x+v_{0})v_{1}^{k}+O(\eta^{-2})$ .

By comparing the coefficients of 77, $\eta^{0}=1$ and $\eta^{-1}$ of both sides of
$(HG)_{\eta}$ we obtain

(3.2) $\lambda_{j}v_{0}^{j}(x)+R_{j}(x_{1}+v_{0}^{1},$
\ldots ,

$x_{n}+v_{0}^{n})=0$ , j $=1$ , 2, \ldots , n,

(3.3) $\mathcal{L}v_{0j}^{j_{=\lambda v_{1}^{J}}}+\sum_{k=1}^{n}(\frac{\partial R_{j}}{\partial z_{k}})(x+v_{0})v_{1}^{k}$, j $=1,$ 2, \ldots , n.
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In order to determine $v_{\nu}(x)$ $(\nu \geq 2)$ we compare the coefficients of $\eta^{-}’$ .

We obtain

(3.4) $\mathcal{L}v_{\nu-1}^{j}=\lambda_{j}v_{\nu}^{i}+\sum_{k=1}^{n}(\frac{\partial R_{J}}{\partial z_{k}})(x+v_{\zeta)})v_{U}^{k}$

$+$ (terms consisting of $v_{k}^{j}$ , $k\leq\nu$ $-1$ and $j=1$ , $\ldots$ , $n$ ).

In order to determine $v_{\nu}$ from the above recurrence relations we need
a definition. Let A be the diagonal matrix with diagonal components
given by $\lambda_{1}$ , . . ’ ’

$\lambda_{n}$ in this order.

Definition (turning point). The point x such that

(3.5) $\det$ (A $+(\partial R/\partial z)(x+v_{0})$ ) $=0$

is called a turning point of the equation $(HG)_{\eta}$ .

Assumption. We assume
(A.1) $\lambda_{j}\neq 0$ , $j=1$ , $\ldots$ , $n$ .

Note that the origin $x=0$ is not a turning point of $(HG)_{\eta}$ for any
holomorphic $v_{0}(x)=O(|x|^{2})$ , because $\det$ A $\neq 0$ .
Then, we have
Proposition Assume that $\det$ A $\neq 0$ . Then every coefficient $v_{\nu}(x)$ of
a $WKB$ solution is uniquely determined as a holomorphic function in
some neighborhood of the origin $x=0$ independent of $u$ .

Proof. The function $v_{0}^{j}(x)$ is holomorhic at the origin $x=0$ and
satisfies that $v_{0}^{j}(x)=O(|x|^{2})$ . Hence it is uniquely determined by $(3,2)$

in view of the implicit function theorem. Then the functions
$v_{k}^{j}(x)$ , $k=1$ , 2, $\ldots$ , $j=1$ , $\ldots$ , $n$

can be uniquely determined by (3.4) as holomorphic functions in some
neighborhood of the origin by the assumption because the origin $x=0$

is not a turning point of the equation. We note that $v_{k}^{j}$ $(x)$ are deter-
mined recursively by differentiation and algebraic manupulations. This
implies that all $v_{k}^{J}(x)$ are holomorphic in some neighborhood of the ori-
gin independent of $\mathrm{r}/$ . $\square$

Definition (Resonance condition). We say that $\eta$ is resonant, if

(3.6) $\sum_{i=1}^{n}\lambda_{i}\alpha_{i}-\eta\lambda_{j}=0$ ,

for some $\alpha=$ $(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{+}^{n}$ , $|\alpha|\geq 2$ and $j$ , $1\leq j\underline{<}n$ . If $\eta$ is not
resonant, then we say that $\eta$ is nonresonani
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Definition (Poincar\’e condition) We say that a homolgy equation
satisfies a Poincare condition, if the convex hull of $\lambda_{j}$ , $(j=1, \ldots, n)$

in the complex plane does not contain the origin.

If a Poincare condition is not verified, then we assume the following
condition

$\lambda_{j}\in \mathbb{R}$ , $j=1$ , $\ldots$ , $n$ .

In this case, there are two important cases, namely, a Diophantine case
and Liouville case. In the former case, either a Siegel condition or a
Bruno (type) Diophantine condition is verified among $\lambda_{j}$ , $j=1$ , $\ldots$ , $n$ .
If no such conditions are satisfied, then we say that we are in a Liouville
domain under our assumption.

We note that if a Poincare condition is verified, then the number of
resonance is finite, while in a Siegel case, the number of resonance is,
in general, infinite. Moreover the resonance may be a dense subset of
a real line.

4. SUMMABILITY OF A WKB SOLUTION IN A POINCAR\’E DOM AIN

For the direction 4, $(0\leq\xi<2\pi)$ and the opening $\theta>0$ we define
the sector $S_{\xi,\theta}$ by

(4.1) $S_{\xi,\theta}= \{\eta\in \mathbb{C};|\mathrm{A}\mathrm{r}\mathrm{g}\eta-\xi|<\frac{\theta}{2}\}$ ,

where the branch of the argum ent is the principal value. Then we have

Theorem 1. (Resummation) Suppose that

(C) |Arg $\lambda_{j}|<\frac{\pi}{4}$ , j $=1$ , \ldots , n.

Then, there exist a direction 4, an opening $\theta>\pi$ , a neighborhood $U$

of the origin $x=0$ and $V(x, \eta)$ such that $V(x, \eta)$ is holomorphic in
$(x, \eta)\in U\cross$ $S_{\xi,\theta}$ and satisfies $(HG)_{\eta}$ . The function $V(x, \eta)$ is a Borel
sum of the $WKB$ solution $v(x, \eta)$ in $U\mathrm{x}$ $S_{\xi,\theta}$ when $\etaarrow\infty$ . Namely,
for every $N\geq 1$ and $R>0$ , there exist $C>0$ and $K>0$ such that

(4.2) $|V(x, \eta)-\sum_{\nu=0}^{N}\eta^{-\nu}v_{\nu}(x)|\underline{<}CK^{N}N!|\eta|^{-N-1}$ ,

$\forall(x, \eta)\in U\cross$ $S_{\xi,\theta)}|\eta|\underline{>}R$ .

Remark. The condition (C) implies the Poincare’ condition.
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5. RECONSTRUCTION OF A POINCAR\’E SOLUTION VIA ANALYTIC

CONTINUATION OF A WKB SOLUTION

We shall make an analytic continuation (with respect to y) of a
resummed WKB solution to the right half plane. We note that there
exist an infinte number of resonaces on the right-half plane ${\rm Re}$ y7 $>0$

which accumulate only at infinity. The solution may be singular with
respect to $\eta$ at the resonances. We have

Theorem 2. Suppose that (C) is verified. Then the resummed $WKB$

solution is analytically continued to the right half plane as a single-
valued function except for resonances. If the nonresonance condition
holds, then the analytic continuation of a resummed $WKB$ solution
to y7 $=1$ coincides with a classical Poincar\’e solution of a homology
equation.

Next we consider the case where a Poincare condition is verified,
while the condition (C) is not satisfied. The essential difference in this
case is that there is not a unique correspondence between the WKB
solution and the Poincare’ solution.

Theorem 3. Suppose that the Poincare’ condition is verified, Then,

there exist a direction $\xi_{\gamma}$ an opening $\theta>0_{f}$ a neighborhood $U$ of the
origin $x=0$ and $V(x, \eta)$ such that $V(x, \eta)$ is holomorphic in $(x, \eta)\in$

$U\cross$ $S_{\xi,\theta}$ and satisfies $(HG)_{\eta}$ . The $WKB$ solution $v(x, \eta)$ is a Gevrey 2
asymptotic expansion of $V(x, \eta)$ in $U\rangle\langle$ $S_{\xi,\theta}$ vvhen $\etaarrow\infty$ .

The function $V(x, \eta)$ is analytically continued with respect to $\eta$ to
the right half plane as a single- valued function except for resonances.
If the nonresonance condition is verified, then we can take $V(x, \eta)$ such
that the analytic continuation of $V(x, \eta)$ to $\eta=1$ coincides with a
classical Poincare solution of a homology equation with $\eta=1$ .

6. WKB SOLUTION IN A SIEGEL DOMAIN

in this section we assume that we are in a Siegel domain. Moreover,
we assume, for the sake of simplicity
$\lambda_{j}$ cm $\mathbb{R}$ $(j=1, 2, \ldots, n)$ are linearly independent over $\mathbb{Q}$ .

Then the set of all resonances is dense on R. We have

Theorem 4. Under the above conditions, there exist a direction $\xi$ , an
opening $\theta>0$ , a neighborhood $U$ of the origin $x=0$ and $V(x, \eta)$ such
that $V(x, \eta)$ is holomorphic in $(x, \eta)\in U\cross$ $S_{\xi,\theta}$ and satisfies $(HG)_{\eta}$ .
The $WKB$ solution $v(x, \eta)$ is an asymptotic expansion of the function
$V(x, \eta)$ in $U><S_{\xi,\theta}$ $w$ hen y7 $arrow\infty$ .
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The function $V(x, \eta)$ is analytically continued with respect to $\eta$ to
the upper (respectively lower) halfplane as a single-valued function. If
the nonresonance condition is verified, then we can take $V(x, \eta)$ such
that

$\lim_{\pm\etaarrow 1}V(x, \eta)$

exists as a formal power series and they coincide with a Siegel solution
of a homology equation as a form $al$ power series solution.
Remark, i) We do not know whether the WKB solution $v(x, \eta)$ is a
Gevrey asymptotic expansion of $V(x, \eta)$ in $U\cross$ $S_{\xi,\theta}$ when $\etaarrow\infty$ .

$\mathrm{i}\mathrm{i})$ On the real line $\mathbb{R}$ , $V(x, \eta)$ has dense singularities in $\eta$ . Hence,
$V(x, \eta)$ cannot be continued analytically to the point $\eta=1$ .
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