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Analysis of an SIRS Epidemic Model
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1 Introduction

It is one of basic and interesting problems to iind periodic oscillations in epidemic models.

Smith [11] found periodic oscillations in epidemic models with periodic parameters. Here

we consider the existence of periodic solutions in an SIRS epidemic model with non-

periodic parameters and with delay.

A constant population SIRS model with delay can exhibit periodic solutions for some

parameter values, see Hethcote et al. [8]. By contrast, Cooke et al. [4] found some

periodic solutions in a variable population SIRS model with delay and with exponential

demographic structure. Here we incorporate a delay ( $\mathrm{i}.\mathrm{e}$

, a constant period of temporary

immunity) into a few variable population disease model. Many disease models for a few

variable population have been studied, see Cooke et al., Gao et al. and Hethcote et al.

[5, 6, 9].

2 Model formulation

A population size $N(t)$ is divided into disjoint classes of individuals who are susceptible,

infective and recovered with temporary immunity; with sizes denoted by $S(t)$ , $I(t)$ and

$R(t)$ , respectively.

In our model all newborns are assumed susceptible, and the natural death rate constant

is the same throughout the population. A constant disease-related death rate is included.

We assume that the immune period is constant, denoted by $\tau$ . Thus the probability that

an individual remains in the recovered class $t$ units after becoming recovered (without

dying) is given by the step function with value 1 for $t\leq\tau$ , and 0 for $t>\tau$ .
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The flow of individuals is described in the transfer diagram:

$B(N)N\downarrow S\underline{\beta SI/N}Iarrow\lambda IR^{\tau}arrow S$

$\mu S\downarrow$ $\langle\mu+a\}I\downarrow$ $\mu R\downarrow$

Here $B(N)N$ is a birth rate function with $B(N)$ satisfying the following assiimptions for
$N\in(0, \infty)$ :

(At) $B(N)>0$ ;

(A2) $B(N$ } is continuously differentiable with $B’(N)<0j$

(A3) $B(0^{+})>\mu+$ a and $\mu>B(+\infty)$ .

Note that (A2) and (A3) imply that $B^{-1}(N)$ exists for $N\in(B(\infty), B(0^{+}))$ , and (A3)

assures that $N$ does not go to extinction and cannot blow up.

The parameter $\mu>0$ is the natural death rate constant, $\alpha$ $\geq 0$ is the disease-related

death rate constant, and $\lambda\geq 0$ is the rate constant for recovery. The force of infection

is assumed to be of standard tyPe, namely $\beta I/N$ , with $\beta>0$ , the effective per capita

contact rate constant of infective individuals.

Our model thm take the following form:

$N(t)=S(t)+I(t)+R(t)$ , (2.1)

$S’(t)=B(N \langle t))N(t)-\mu S(t)-\frac{\beta S(t)I(t)}{N(t)}+\mathrm{X}\mathrm{I}(\mathrm{t}-\tau)e^{-\mu\tau}$ , (2.1)

$I’(t)= \frac{\beta S(t)I(t)}{N(t)}-(\mu+\lambda +\alpha)I(t)$ , (2.3)

$R(t)= \int_{t-\tau}^{t}\lambda I(u)e^{-\mu(t-u)}du$ , (2.4)

for $t>\tau$ . It is convenient to shift time $\mathrm{b}\tilde{\mathrm{y}}\tau$ , so that (2.1)-(2.4) hold for the new time
$t>0$ , with the following initial conditions:

$S(\theta)>0$ , $I(\theta)>0$ , $R(\theta)>0$ on $[-\tau, 0]$ . (2.5)

Differentiating $(2,4)$ gives

$R’(t)=\lambda I(t)-\lambda I(t-\tau)e^{-\mu\tau}-$ $\mathrm{R}(\mathrm{t})$ . (2.6)

Theorem 2.1. $a$) A solution of the integro-differential system (2.2)-(2-4) with $N(t)$ given
by $(2,1)$ satisfies $(2,6)$ . $b$) Conversely, let $S(t)$ , $1(\mathrm{t})$ , $\mathrm{R}\{\mathrm{t}$) be a solution of the delay

differential system (2.2), (2.3), (2.6) with $N(t)$ given by (2.1), and initial conditions give $n$
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on the interval as stated above. In addition, suppose that

$R$(0) $= \int_{-\tau}^{0}\lambda I(u)e^{\mu u}du$ . (2.7)

Then this solution satisfies the integro-differential system (2.2)-(2.4). $c$) Moreover, for
all $t$ $\geq 0$, the solution eists, is unique and has $S(t)>0$ , $I(t)$ $>0$ , $R(t)>0$ .

Proof. Assertions a) and b) are clear. For assertion $\mathrm{c}$), note that the usual local existence,

uniqueness and continuation results are applied to [7]. Let $T= \inf\{t>0|S\{t)I(t)/N(t)=$

$0\}$ and suppose that $T$ is finite. $I(t)>0$ on $[0, T]$ by (2.3). From (2.4) it is clear that

$R(t)>0$ on $[0, T]$ . The assumptions in the model imply that $S’(t)\geq-\beta SI/N-\mu.S\geq$

$-(\beta+pu)S$ , so that $S(T)$ $\geq S(0)e^{-\langle\beta+\mu)T}>0$. This contradicts the supposition that $T$ is

finite, so $T$ must be infinite. Hence $S(t)>0$ , $I(t)>0$ , $R(t)$ $>0$ . Add equations (2.2),

(2.3), (2.6), and use (2.1) to obtain

$N’=$ $(B(N)-\mu)N-\alpha I$ . (2.8)

Thus $N(t)$ doed not go to zero and cannot blow uP to $\infty$ . Consequently, the solution

exists globally for ffi $t$ $>0$ and is unique. $\square$

3 disease-free equilibrium

Stability of disease free equilibrium is stated in terms of a key threshold parameter

$\mathcal{R}_{0}=\frac{\beta}{\mu+\lambda+\alpha}$ . (3.1)

A linear analysis shows the follow ing theorem. The proof of Theorem 3.1 is omitted.

Theorem 3.1. The system (2.2)-(2.4) with (2.1) always has the disease free equilibrium

$(S(t),I(t)$ , $\mathrm{R}(\mathrm{t})=(B^{-1}(\mu), 0,0)$ . If $\mathcal{R}_{0}<1$ , then it is locally asymptotically stable; if
$\mathcal{R}0>1_{2}$ then it is unstable.

A global stability result can be given as follows.

Theorem 3.2. For $\mathcal{R}0<1$ all solutions of the system (2.2)-(2.4) with (2.1) approach the

disease free equilibrium as $t$ $arrow\infty$ .

Proof By (2.3), we have $I^{/}\leq(\beta-\mu-\mathrm{A}-\alpha)I$, hence $I(t)$ has limit zero as $tarrow$ oo

if $\beta-\mu-\lambda-\alpha<0$ . Then $R(t)arrow 0$ from (2.4). Since (2.8) has the limit equation

$N’=(B(N)-\mathrm{n})\mathrm{N}$ (see [12]), $N(t)arrow B^{-1}(\mu)$ as $t$ $arrow\infty$ . Hence $S(t)arrow B^{-1}(\mu)$ as

$tarrow\infty$ . $\square$
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4 Endemic equilibrium

Let $(S^{*}, I^{*}, R^{*})$ be an endemic equilibrium. Then it must satisfy

$N^{*}=S^{*}+I^{*}+R^{*}$

$0=B(N^{*})N^{*}-\mu N^{*}-\alpha I^{*}$

$0= \beta S^{*}\frac{I^{*}}{N^{*}}-$ ($\mu+$ A $+\alpha$ ) $I^{*}$

$0=\lambda I^{*}-\lambda I^{*}e^{-\mu\tau}-\mu R^{*}$ .

Solving these equations, the following theorem holds.

Theorem 4.1. If $\mathcal{R}_{0}>1$ , then the system (2.2)-(2.4) with (2.1) has a unique endemic

equdibrium $(S(t),I(t)$ , $R(t))=(S_{\}^{*}I^{*}, R^{*})$ there

$S^{*}= \frac{\mu+\lambda+\alpha}{\beta}N^{*}$ , $I^{*}=(1- \frac{\mu+\lambda+\alpha}{\beta})N^{*}/(1+\frac{\lambda(1-e^{-\mu\tau})}{\mu})$ , $R^{*}= \frac{\lambda(1-e^{-\mu\tau})}{\mu}I^{*}$

and $N^{*}=B^{-1}$ ($\mu+$ a $(1- \frac{\mu+\lambda+\alpha}{\beta})/(1+\frac{\lambda(1-e^{-\mu\tau})}{\mu})$).
If $\mathcal{R}_{0}\leq 1$ , then th$ere$ is no endemic equilibrium.

Hereafter we call that the disease persists in the population if $\lim\inf_{tarrow\infty}I(t)>0$ .

Theorem 4.2. For the system (2.2)-(2.4) with (2.1), the disease persists in the population

if $\mathcal{R}_{0}>1$ .

Proof. By (2.8), there are positive constants $k$ and $K$ such that $k\leq N(t)\leq K$ for

large $t$ since $I(t)\leq \mathrm{N}(\mathrm{t})$ . Let $X=\{(S_{\}}I, R)\in \mathrm{R}_{+}^{3}|k\leq S+I+R\leq K\}$ . Then

the space of functions $C=C([-\tau, 0],X)$ is the complete metric space with supnorm

$|| \varphi||=\sup_{s\in[-\tau,0]}|\varphi(s)|$ . A subset $Y$ of $C$ with the Lipschitz condition is compact (see

[2, P. 170] $)$ . By taking the Lipschitz constant large enough, $Y$ is forward invariant and

attractive.

Therefore we restrict the analysis to $Y$ . Let $\mathrm{x}$ $=$ $(S(\theta), \mathrm{I}(\mathrm{t})$ $R(\theta))$ with $\mathrm{O}\in[-\mathrm{r}, 0]$ be a

point in $Y$ . We can show that $\mathrm{S}=\{\mathrm{x}\in Y : I(0)=0\}$ is a forward invariant compact subset

of Y. Let $P$ : $Yarrow \mathbb{R}^{+}$ (a conthmously differentiate functional) be defined by $P(\mathrm{x})$ $=I(0)$

and let ‘dot’ denote differentialtion along a solution. Then $\dot{P}/P=\beta S(0)/N(0)-(\mu+\lambda+\alpha)$

for solutions starting in $Y\backslash \mathrm{S}$ . Since solutions starting in $\mathrm{S}$ approach $(B^{-1}(\mu), 0, \mathrm{O})\in \mathrm{S}$ ,
by aPPlying the theorem on average Liapunov functions (see [3, 10]), it follows that $\mathrm{S}$ is
a uniform repeller. Hence $\lim\inf_{tarrow\infty}I(t)>0$ . $\square$
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(4.1)

If there is no disease related death (i.e. a $=0$), then local stability of the uniqule

endemic equilibrium is governed by the characteristic equation

$(z-H+\mu)\{z^{2}+(\mu+$ I $\frac{I^{*}}{N^{*}})z+\beta\frac{I^{*}}{N^{*}}(\mu+\lambda)-\beta\frac{I^{*}}{N^{*}}$ A$e^{-(\mu+z)\tau}\}=0$

where $H= \frac{d}{dN}B(N)N|_{N=N^{*}}$ . APPlying a stability switch criterion [1] to (4.1), it follows

that this equation can have purely imaginary roots for some parameter values. Thus for

some $\tau>0$ , arising by a Hopf bifurcation, periodic solutions are possible.

If the set of parameters $\beta=0.2\mathrm{x}$

$3\theta 5\rangle$ $\lambda=365/7$ , $\mu=1/80$ , $\alpha=0$ , $B(N)=$

$0.012+1/(90N)$

’

satisfying $\mathcal{R}_{0}>1$ are giveerr,

$1200|11000400$

librium is unstable whereas it is asymptot-
$\mathrm{f}\mathrm{o}\mathrm{r}_{1}\tau\in(05,2.7\mathrm{x}10^{2})\mathrm{t}\mathrm{h}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}-\mathrm{t}1\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{u}1\mathrm{r}\mathrm{e}$

$200600400\{800$

ically stable for $0\leq\tau<0,5$ and for $\mathrm{a}^{\rho \mathrm{v}}.$ :
$\tau>2.7\mathrm{x}$ $10^{2}$ . These results are in agreement

$\mathrm{s}$

1

$\mathrm{x}[perp]_{-}\mathrm{t}\lrcorner.\mathrm{A}L1\}[perp]_{d}\mathrm{L}^{\}10^{\cdot}\overline{2}030405\dot{0}\}A\mathrm{A}\Delta_{-}\mathrm{A}_{-}\mathrm{L}\mathrm{L}\mathrm{L}\ovalbox{\tt\small REJECT}^{t}acute{1}\underline{:}^{\mathrm{R}}[perp] \mathrm{A}.\mathrm{L}\mathrm{A}-\mathrm{L}_{\mathrm{t}}$

with our computer simulations using MATH-
Figure 1: Numerical solutions for the SIRS

EMATICA. Numerically solutions of the sya-
model (2.2)-(2.4) with initial conditions

tem (2.2)-(2.4) oscillate for $\tau=1.0$ (Fig.
given by $S(t)=1400$ $I(t)=1$ , $R(t)=\tau e^{-\mu\tau}$

1).
and with $\tau=1.0$ .

5 Conclusions

In this paPer, we have formulated a few variable population SIRS disease transmission

model with a constant immune period. We have identified an important threshold param-

eter $\mathcal{R}_{0}$ in (3.1). The disease dies out if $\mathcal{R}0<1$ , because infective individuals tend to

zero. if $\mathcal{R}0>1$ , the disease can persist in the population. Local stability of the endemic

equilibrium is analyzed under the restriction that a $=0$. For some parameter values,

intermediate delays show a destabilizing effect on the endemic equilibrium, and yield Pe-

riodic solutions. An immune period is $\mathrm{r}\mathrm{e}\mathrm{g}9^{r_{\vee}}d\mathrm{Q}\mathrm{d}$ as zero 1n SIS models, while it is regarded

as infinite (permanent im mune) in SIR models. Our simple model suggests that a finite

and some extent of immune period brings a different qualitative feature from classical SIS

& SIR epidemic models.
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