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1 Introduction

It is one of basic and interesting problems to find periodic oscillations in epidemic models.
Smith [11] found periodic oscillations in epidemic models with periodic parameters. Here
we consider the existence of periodic solutions in an SIRS epidemic model with non-
periodic parameters and with delay.

A constant population SIRS model with delay can exhibit periodic solutions for some
parameter values, see Hethcote et al. [8]. By contrast, Cooke et al. [4] found some
periodic solutions in a variable population SIRS model with delay and with exponential
demographic structure. Here we incorporate a delay (i.e. a constant period of temporary
immunity) into a few variable population disease model. Many disease models for a few
variable population have been studied, see Cooke et al., Gao et al. and Hethcote et al.

5,6, 9].

2 Model formulation

A population size N(t) is divided into disjoint classes of individuals who are susceptible,
infective and recovered with temporary immunity; with sizes denoted by S(t), I(f) and
R(t), respectively.

In our model all newborns are assumed susceptible, and the natural death rate constant
is the same throughout the population. A constant disease-related death rate is included.
We assume that the immune period is constant, denoted by 7. Thus the probability that
an individual remains in the recovered class t units after becoming recovered (without

dying) is given by the step function with value 1 for t <7, and O for t > 7.
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The flow of individuals is described in the transfer diagram:

B(N)Nl

BSI/N R Al

S I + RT S

wS l {(p+a)! i uRl

Hére B(N)N is a birth rate function with B(/N) satisfying the following assumptions for
N € (0,00):

(A1) B{(N) > 0;

(A2) B(N) is continuously differentiable with B/(N) < 0;

(A3) B(0*) > p+ a and p > B(400).
Note that (A2) and (A3) imply that B—(N) exists for N € (B(oc), B(0T)), and (A3)

assures that NV does not go to extinction and cannot blow up.

The parameter p > 0 is the natural death rate constant, & > 0 is the disease-related
death rate constant, and A > 0 is the rate constant for recovery. The force of infection
is assumed to be of standard type, namely SI/N, with # > 0, the effective per capita
contact rate constant of infective individuals.

Our model thus take the following form:

N(t) = 8(t) + I(t) + R(t), (2.1)
S'(t) = B(N(t))N(t) — uS(t) — %{)@ +A(t—T1)e™ T, (2.2)
') = @j%@ —(p+ A+ a)I(t), (2.3)
R(t) = ttT M(u)e HlE-t gy, (2.4)

for t > 7. It is convenient to shift time b}; 7, so that (2.1)-(2.4) hold for the new time

t > 0, with the following initial conditions:

S§(6) >0, 1(6) > 0, R(8) >0 on [—1,0]. (2.5)
Differentiating (2.4) gives

R(t) = M(t) — M(t — 1)e ™ — pR(t). (2.6)

Theorem 2.1. a) 4 solution of the integro-differential system (2.2)(2.4) with N(t) given
by (2.1) satisfies (2.6). b) Conversely, let S(t), I(t), R(t) be a solution of the delay
differential system (2.2), (2.3), (2.6) with N(t) given by (2.1), and initial conditions given



on the interval as staied above. In addition, suppose thai

R(0) = /O Al (u)et du. (2.7)

-7

Then this solution satisfies the integro-differential system (2.2)-(2.4). ¢) Moreover, for
all t > 0, the solution exists, is unique and has S(t) > 0, I(t) >0, R{t) > 0.

Proof. Assertions a) and b) are clear. For assertion c), note that the usual local existence,
uniqueness and continuation results are applied to [7]. Let 7' = inf{t > 0|S(¢)I(t)/N(t) =
0}4 and suppose that 7 is finite. 7(¢) > 0 on [0,T] by (2.3). From (2.4) it is clear that
R(t) > 0 on [0,T]. The assumptions in the model imply that S'(t)y > —BSI/N — uS >
—~(8+ )8, so that S(T") > S(0)e~B+MT > 0. This contradicts the supposition that T is
finite, so 7' must be infinite. Hence S(t) > 0, I(¢) > 0, R(t) > 0. Add equations (2.2),
(2.3), (2.6), and use (2.1) to obtain '

N' = (B(N)—p)N —al. (2.8)

Thus N(t) doed not go to zero and cannot blow up to co. Consequently, the solution

exists globally for all ¢ > 0 and is unique. O

3 Disease-free equilibrium

Stability of disease-free equilibrium is stated in terms of a key threshold parameter

B
Ro=—"7F"". 3.1
oy wrips (3.1)

A linear analysis shows the following theorem. The proof of Theorem 3.1 is omitted.
Theorem 3.1. The system (2.2)-(2.4) with (2.1) always has the disease free equilibrium
(S@®),I(t),R(t)) = (B~ *(),0,0). If Ro < 1, then it is locally asymptotically stable; if
Ro > 1, then it is unstable.

A global stability result can be given as follows.

Theorem 3.2. For Ry < 1 all solutions of the system (2.2)-(2.4) with (2.1) approach the
disease free equilibrium as t — co.

Proof. By (2.3), we have I' < (8 — pu — A — ), hence I(f) has limit zero as £ — o©
if 8—p—A—a < 0. Then R(t) — 0 from (2.4). Since (2.8) has the limit equation
N' = (B(N) — p)N (see [12]), N(t) — B~}(u) as t — co. Hence S(t) — B~ (u) as

t — 0o. U
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4 Endemic equilibrium
Let (8*, I*, R*) be an endemic equilibrinm. Then it must satisfy

N*=8*4+I*"+R*
0 = B(N*)N* — uN* — aI*

*

0= ,8,5’*1—{]—; — g+ A+ o)
0= X"~ \T"e ™ — uR*.

Solving these equations, the following theorem holds.

Theorem 4.1. If Ry > 1, then the system (2.2)-(2.4) with (2.1) has a unique endemic
equilibrium (S{t),I(t), R(t)) = (8, I*, R*) where

kT 1 — g—bT
S*:“+)‘+QN*,I*=(1—”+A+Q)N*/<1+Ml e )),R*=)\( e 1
s B L Ji

and N*=B"1 (#+a(1-if%fﬁ)/(1+£1—e_@)>.

If Rg < 1, then there is no endemic equilibrium.
Hereafter we call that the disease persists in the population if iminf; .., I{t) > 0.

Theorem 4.2. For the system (2.2)-(2.4) with (2.1), the disease persists in the population
ifRg > 1.

Proof. By (2.8), there are positive constants k£ and K such that ¥ < N{t) < K for
large t since I(t) < N(t). Let X = {(S,I,R) € R3}k < S+1+ R < K}. Then
the space of functions C = C([-7,0},X) is the complete metric space with supnorm
| el = supPser—rg l9(8)]. A subset Y of C with the Lipschitz condition is compact (see
[2, p. 170]). By taking the Lipschitz constant large enough, Y is forward invariant and
attractive.

Therefore we restrict the analysis to Y. Let x = (5(9),1(8), R(#)) with 6 € [-7,0] be a
pointinY. We canshow that 8 = {x € Y : I(0) = 0} is a forward invariant compact subset
of Y. Let P:Y — R* (a continuously differentiable functional) be defined by P(x) = I(0)
and let ‘dot’ denote differentialtion along a solution. Then P/P = 88(0)/N(0)— (u+A+a)
for solutions starting in Y'\S. Since solutions starting in S approach (B~1(1),0,0) € S,
by applying the theorem on average Liapunov functions (see [3, 10]), it follows that S is

a uniform repeller. Hence lim inf;—o I(#) > 0. 0



If there is no disease related death (i.e. @ = 0}, then local stability of the unique
endemic equilibrium is governed by the characteristic equation

(z— H + p1) {22 + (u + ﬁ%) £ 4 B (ut N - ﬁ%Ae*<#+Z>f} 0 (a1)

where H = %B(N N t . Applying a stability switch criterion [1] to (4.1}, it follows

that this equation can have purely imaginary roots for some parameter values. Thus for

some T > 0, arising by a Hopf bifurcation, periodic solutions are possible.

If the set of parameters § = 0.2 X
1400
365, A =365/7, p=1/80, a =0, B(N)= _,,
0.012+1/(90N) satisfying Rg > 1 are given, 1000

for 7 € (0.5,2.7 x 10?), the endemic equi- 800}
librium is unstable whereas it i asymptot- 800

400
ically stable for 0 < 7 < 0.5 and for any 200

7 > 2.7x10°. These results are in agreement

with our computer simulations using MATH-

EMATICA. Numerically solutions of the sys- Figure 1. Numerical solutions for the SIRS

fem (2.2)(2.4) oscillate for 7 = 1.0 (Fig. model (2.2)-(2.4) with initial conditions
1) given by S(t) = 1000, I{t) = 1, R(t) = re™#7
and with 7 = 1.0.

5 Conclusions

In this paper, we have formulated a few variable population SIRS disease transmission
model with a constant immune period. We have identified an important threshold param-
eter Rg in (3.1). The disease dies out if Ro < 1, because infective individuals tend to
zero. If Rg > 1, the disease can persist in the population. Local stability of the endemic
equilibrium is ané,lyzed under the restriction that o = 0. For some parameter values,
intermediate delays show a destabilizing effect on the endemic equilibrium, and yield pe-
riodic solutions. An immune period is reganded as zero in SIS models, while it is regarded
as infinite (permanent immune) in SIR models. Our simple model suggests that a finite
and some extent of immune period brings a different qualitative feature from classical SIS

& SIR epidemic models.
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