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1. Quantum propagator of the Hénon map

A discrete analog of the Feynman-type path integral,

< GuU"go >= /_o:o"'/_:dQIdQZ‘"dQn—leXP[%S(qﬁaqu“' )] (L)

gives a standard recipe to formulate quantum mechanics of the symplectic map.

Here, the function S{qo, g1, --,¢.) represents the discretized Lagrangian or the action
functional given as
1 n—-1
Saor ) = 32 565~ a1 = 3 Vg, (12)
j=1 j=1

The action functional is derived so that applying the variational principle generates
the symplectic map. In fact, we can easily see that the condition 85(qo, - -,4,)/0¢; =
0, (1 <j<n—1)yields the classical map in the Lagrangian form:

(@1 — @) ~ (g — G-1) = ~V'{gp)- (1.3)
The simplest possible choice of the potential function would be,
3
Vi) =% — < (1.4

where ¢ denotes a real parameter controlling qualitative features of the underlying
classical map, and possibly the corresponding quantum dynamics. This system is related
to the so-called Hénon family via an appropriate affine transformation with a change
of parameter [1]. A merit to employ the Hénon map is not only that it is a canonical
and the simplest possible polynomial map [2], but also that the theory of complex
dynamical systems is most well developed in the Hénon family[3, 4]. This is important
because the saddle point solutions of the quantum propagator (1.1) are just the classical
trajectories in the complex plane. If one wants to describes quantum phenomena in
term of classical dynamics, it is crucial to know complex classical dynamics in details.
In this respect, the Hénon map is most suitable. The aim of this short note is to
describe a concrete recipe to find Stokes geometry for the integral (1.1). In particular,
by deriving differential operators acting on our integral, we will adapt our problem to the
prescription proposed and validated in several examples in [6], in which virtual turning
points and new Stokes curves play essential new roles in constructing Stokes geometry
in higher-order differential equations.
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2. Bicharacteristic equations

Semiclassical approximation is a widely used technique to study quantum-classical
correspondence in chaotic systems, that is, to see how classical chaos influences the
corresponding quantum systems in the semiclassical limit. Here the semiclassical limit
is achieved by taking i — 0. Such an issue is sometimes called quantum chaology in the
literature [5], and have extensively been studied in the past two decades. However, even
after a great deal of efforts, the validity of semiclassical approximation has not yet been
clarified, and well-fomulated mathematical problems are only limited. Here, we mean
semiclassical approximation as just taking the leading order contribution in evaluating
the multiple integral < ¢,|U"|go > via the stationary phase(or saddle point) method.
The resulting semiclassical formula is, in general, expressed as a sum over contributions
of classical trajectories connecting the initial and final states since the number of saddles
(=complex classical trajectories). In addition, the number of contributing saddles
increases exponentially as a function of the time step n. This reflects the existence
of chaos in our symplectic map.

An important fact we should here note is that not all the saddle point solutions
appear as a final semiclassical expression because the Stokes phenomenon occurs and
some of saddle point solutions should not contribute. Therefore, in order to establish
semiclassical prescription describing especially tunneling processes, where complex
trajectories play essential roles, we have to work out a rigid prescription to deal with
Stokes phenomenon for the quantum propagator (1.1). This is essentially important for
our understanding quantum tunneling in the presence of chaos [1].

To this end, the work by Aoki, Kawai and Takei [6] is essential. They have proposed
a concrete recipe to analyze Stokes phenomena in higher-order differential equations, say
P(z,nd/dz)ip(z) = 0, within the exact WKB framework [6]. Their work contains not
only a mathematical justification of the preceding work [8] in which new Stokes curves
should be introduced in order to recover the univaluedness around crossing points of
ordinary Stokes curves in an ad-hoc way, but also claims that wviriial turning points
(they are originally called new turning points in [6]) should first be taken into account
to construct complete Stokes geometry. They also clarified that new Stokes curves play
essentially the same part in the Stokes geometry [7].

In order to apply the same recipe to our integral < gn|U"|gs >, we here derive
differential equations that our multiple integral (1.1) satisfies, and discuss how virtual
turning points and new Stokes curves for multiple integral could be introduced based
on the same argument in [6]. It is interesting to note that the procedure to derive
differential operator for our multiple integral is nothing but to solve the initial values
as functions of final values for the Hénon map. Bicharacteristic equaitions for the Borel
transform of the differential operator can also be derived in & similar way. The order
of differential equations increase exponentially as n increases, and their explicit forms
appear complicated. Nevertheless, since the resulting differential operators are linked
to the underlying classical map, so our algorithm to derive them is straightforward and
automatic.

In what follows, we shall fix one of the initial coordinate o and regard the quantum
propagator (1.1) as a function of the final coordinate gn. We therefore use the notation
I{gs) =< ga|U™ g0 > to represent our integral defined in eq. (1.1), and introduce the
large parameter 1 = t/h. ‘

To derive differential equations for I(g,), Let us consider a set of equations for
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e"5(q0,91,+:qn) .

0 :
7?{(%41 — @) = (@ —qi-1) — G — C)}ens = gaensa t=12--n=-1) (21)

g e = O s 2.2

Ndn = Gn-1)e™ = 3 S (2.2)

If we carry out an integration of both sides of egs. (2.1) and (2.2) over each variable g¢;,

it is easy to see that the integrals in right-hand sides vanish by taking an appropaiate

integral contour. A set of conditions, 8¢"/8¢; = 0 (i = 1,---,n — 1), yields

simulateneous equations for the operators acting on I(g,). These are nothing but a
set of equation (1.3), that is the Hénon map [9].

A single differential operator acting on (g,), which should be written as functions

of g, and 8/0q,, can be derived by expressing the operator [(qz —q)— (g1 —q)— ¢ — c}

as functions of 8/dq,. This is achieved by solving the recursion relation (1.3) into the
form

gy = 611(%—1,%) (23)
g2 = @2(Gn-1,4n), (2.4)

and using the relation 8/8¢, = n(gx — gn-1), which is obtained by (2.2), into (2.3) and
(2.4). Egs. (2.3) and (2.4) are equivalent to solving the final value problem for the
Hénon map. Explicit forms of differential operators for n = 3 and n = 4 cases have
already been presented in another report [10].

Next, we will derive bicharacteristic equations for these differential equations. For
this purpose, we first present some generic property concerning the Hamiltonian flow
associated with the maps. Suppose amap f : (z,7) — (X,Y) be differentiable and have
a unique invserse, a Hamiltonian flow is induced naturally if we regard one of variable,
say ¥, as the time of Hamiltonian flow. Here the map f may also be viewed as finite
iterations of other maps, that is, f(z,y) = ¢"(x,y) where n is the number of itetion.
More precise statement is given as,

Proposition[11]
Let det J be the Jabobian of the map (z,y) — (X,Y) and H be a function of (X,Y)
which is given by

o(X.Y)
H(X,Y) = / (det J)dz, (2.5)
and satisfies
0H
By 0. (2.6)

Then the following set of Hamiltonian equations holds:

dX OH dy OH
W &k @7)

The Hamitonian I is determined if the Jacobian of the map f is given as a function of
z. If x is expressed as functions of (X,Y), then H is explicitely expressed by (X,Y).
In particular, in case of the area preseving map for which det J = 1, the Hamiltonian
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Figure 1. Bicharacteristic curve for n = 4. The parameters are chosen as go = 0
and ¢ = 6 where all the turning points are located on the real plane. Cuspidal points
and transversally crossing points represent ordinally turning and virtual turning points
respectively. The number of ordinary turning points totally amounts to 7, and that of
virtual turning points to 21. The rest of turning points are outside the range of this
figure.

is nothing but z(X,Y). The proof of this proposition is straightforward and is given in
Appendix A.

Since the Hénon map (go, 1) — {q1(go,P1),42(go, p1)) is polynomial diffemorphism
and its inverse is also the Hénon map with different system parameters, the above
proposition is straightforwardly applicable. Hamiltonian then is expressed as

H(Qn—lspn) = 2q (Qn—h‘Zn) + ql(qn—I:Qn)2 +c— Q2(Qn-17 n)-

Here we introduce a new variable as

€ == n(gn — gn-1), (2.8)
and define
o(H s 3, &, = —pH , 2.9
(H)lgn, 8, &m) = —nH(au @) | 0o oo e e (2.9)
%2 = q2(gn-1,%n)
where
- o]
H{gq1,q) = 8—q1“5(ro,Q17‘ )l gmo = 201 H G H @2 —c. (2.10)

We can show that o(H)(ga,S,€,n) is just the principal symbol for our differential
operator and thus gives bicharacteristic equations. Indeed we already know that
the variables (gn,£) form canonical conjugate variables and they satisfy Hamiltonian
equations, because the above H(gn-1,pn) can be regarded as Hamiltonian H (g, £).
Furthermore, as is shown in Appendix B, (1, S) also forms another canonical pair and
satisfy a set of Hamiltonian equations:

dS _ 8o(H(g, S, m) (2.11)
dq1 677 ’




114

dn __ Bo(H(g, 5,6m) (2.12)
dq oS
Note that time variable for bicharacteristic equations is ¢
Explicit forms of prmczpa,l symbols o(H)(ga, S,&,7) are given respectively as
o(H) =071 = 2(g2 + DE+ (BB + @~ o+ (2.13)
for n = 2, and
o (1) = %" — Algs + 1) -+ (663 + 10gs + 20+ 6}y '€?
— (43 + 843 + 4egs + 8gs -+ 4c + 3)¢
+ (gh + 25 4+ 2cq? + 3¢2 + 3egs + gz + 2 + 3c— qo)n (2.14)

for n = 3.

3. A concrete recipe to draw Stokes geometry

Since we now have differential equations for our multiple integral (1.1}, we can apply
a general theory for higher-order differential equations developed in [6]. Concerning
turning points, we say the point gl is a turning point in the ordinary sense if the
equation o(H) = 0 for ¢ has a double root. In this case, we have,

dan (90, 91)
dq
dS(QOgQI?"')QE(QO:QI)) =0 (3 2)

dq1 - |

=0, (3.1)

Also we follow the definition of virtual turning points given in [6], that is, for g ;é q(J )
¢l is a virtual turning point if

@ (q0,4?) = & (g0, ¢) (3.3)

S(QO:QE ), 5y (qu(hz})) (q()vCIl )a 3 qn (q()a (j))) (34)

In the same way, we can apply the definition of Stokes curves given in the previous
section. We say the curves emanating from the turning points ¢ and satisfying the
following relation Stokes curves;

Im S(go, ¢, 451,65 ) = Im S(go, ¢, -, 421, 65). (3.5)
Stokes curves emanating from ordinary turning points give the ones in the ordinary
sense, and those from virtual turning points give new Stokes curves.

Since solving bicharacteristic equation is equivalent to expressing the initial value
go as a function of final values g,—1 and ¢,, it is easy to draw bicharacteristic curves
on (¢n,S(¢o, -+ ,gn)) plane. Fig. 1 displays bicharacteristic curves for n = 4. We can
see that ordinary turning points form cuspidal shape and virtual turning points are just
crossing points on the plane as predicted.

A more concrete procedure to draw ordinary and new Stokes curves is to find curves
satisfying the relation (3.5) on a circle C with a sufficiently large radius. The curves thus
found include not only ordinary but also new Stokes curves. The number of ordinary
Stokes curves is finite because the equation ¢,{q, q1) = const is an algebraic equation
and therefore the number of solutions is finite.
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The ordinary turning points are obtained either by the algebraic equations (3.1)
and (3.2), or by extending Stokes curves found on a circle C' to locate the position at
which three Stokes curves meet. Also the virtual turning points are found by extending
Stokes curves found on a circle C to locate the position satisfying (3.5).

As mentioned, the ordinary turning points give folding points on the Lagrangian
manifold, which is a manifold drawn on (gn, gn-1) plane. The ordinary turning poitns
have such a clear geometrical meaning in chaotic time evolution, but one usually does
not take into account the crossing points of Lagrangian manifolds on {g,, S(go," -, Gn))
plane in the description of chaotic dynamics. However, as discussed here, we cannot
discuss Stokes geometry without those objects. Otherwise stated, one can say that
self-intersection points of Lagrangian manifolds in {gn, S(go, -+, gn)) representation can
only be interpreted quantum mechanically.

Appendix A. Proof of Proposition 1

Let us consider a differential map:

(x,9) = (X(z,9),Y(=z,v), (A1)
and assume that it has an inverse
(X,Y) = (z,9). (A.2)
A small change of (z,%y) cause a variation of (X,Y’). They are governed by
Oy Ox ) ( Jex oy )
= J s J = 5 A3
( &y ) ( By Jyx Iy (8.2)

where 8, = 8/0x, J,x = 0X/0z, etc, or

(2):J*(%). (A1)

To be specific we consider the case in which y is fixed while x is changed. We
introduce the notation

Q)= X(z,y), Plz)=Y(z,y). (A.5)
Then from (A.3) he variations of (Q, P) are given by
aQ dpP
o 2 = Iy A6
d.’B JmX 3 d&'} zY ( )
The proof of the proposition is as follows: First applying (A.4) to H yields
aQH — J_l amH . (A‘7)
OpH o,H
If we impose the condition that H satisfies ’
8. H —Jay
-1 g = m A8
() (3) 9

and compare with (A.5), the Hamiltonian equations (2.7) follow. To solve {A.8) for H,
we multiply J from the left and obtain

0. H 1 f =Ty ) ( 0 )
=J! =1 ; (A.9)
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hence
=0, = KO _OXOY "
Therefore (2.5) is obtained.
Appendix B. Derivation of (2.11) and (2.12)
In this appendix we will derive the relation:
dS _ 90(Flan5,6m) B

dq on ’
First we give the right-hand side via the chain rule,
N J - _ _
H(q1,q2) + na—nH(@(Qn —171,00), 62 (Gn — 177E, 90))

R OH dqi Hg._1 OH dgy Og,_
ZH(Q1,Q2)+77(_ g1 04g 1+ g2 04, 1)

9¢1 dgn—1 On 0¢a dgn—1 Om
- £ OH dq dgs 9q: dgs OH Ogs dqs Oge dqgy

= g, q) + > (o (32 e 7 (2 My T T
00+ 2 (G Gy Tas  2es a0 T 56 Bus G | Bas )

= H{qi, @) +---. (B.2)
Putting
dg;
% dq1 ) ( )
then we have the recursion relation,
Fy = 0j31Fie1 + G iaFi_a, (B.4)

with initial conditions F1 = 1, F; = a; = dga/dg,. Here, 0;,~1 = 0¢;/0¢;-1.
For the left-hand side of eq. (B.2), using the condition 85/9¢; = 0 (1 =
1,2,---,n— 1), we have,
05, (OSduy  DSdu | 95 dyry 08 o,
g ‘Ogzdg  Ogqudgq Ogn-1 dgn O¢n dgy
oz a8 dg,
= H(q,q) + 5&;&5
§r 06 dgn_s g, dgn-s
,q2) + 2 +
(@,0) n(ﬁqn-l dg1  Ogn—2 dg )
% 13 { Ogn (3%—1 dgn-2 | Ogn-1 dé]n—s) 0gn (&_In-z dgn-3 Ogn—2 dQn—!l)}

yq2) + =
(QI QZ) n aqn_l aqn_z dql aqn_s dql 8@11;—2 6(1“_3 dq1 aQn—ll dQ1

:FI(QM%)‘P'” (B.5)
Similarly, this gives the recursion relation,

Gi = On—in—i+1Gi-1 + Onip-i+2Gi-2, (B.6)

I
T

I
=

by putting
G = Dago,dgi_s (B.7)
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where the initial conditions are given as Go = 1, G1 = an—1 = dgn/dgn-1.
Using the relation,

6%(%-1,(1@»2) 5‘%— (%;%-1)

_ — 201 + gy B&
3%’—1 aqﬁ_ ( + G ) ( )
0Gi+1(¢i, Gi-1) _ Oqi—2(, Gi-1)
= = -] B.9
56}-;—1 5%‘ ( )

in order (B.1) holds, it is sufficient to show F, = G, each of which is determined by
the recursion relations,
F@ = ai_lF'_1 + aQR_g where F() = l, F1 = ai, (BIO)
G‘ = an,iHG- 1+ (ZQGZ'_ where Go =1 Gl = Qp—1- (B 11)
Here note that (B.10) and (B.11) is identical by replacing @, i1 by a;—1 in (B.11). This
means that what we have to prove is that F, is invariant under the exchange between
Ap—it1 and aG;_j.
Since ag is a constant, we express F,, as a power series with respect to ag,

Fy=F9 4 aoFY + @ F2 + a3 F + -, (B.12)
and each coefficient F¥) (j = 1,2,---) is determined by the recursion relations:
FO, — 0, FO FO (B.13)
FY = anpoFW + FD, V=1 (B.14)
F®, = ansF® + F,E}Q F& =1 (B.15)
)

FS 421 = s F® + FD FP =1 (B.16

From eq. (B.13), we immediately have
n+1

F,,S‘O) —_ H Ay, (B‘17)
v=1

and this term is invariant under the exchange between g; and a,,—; in itself.
Next, from the recursion relation (B.14}, we obtain

n n+2
RO =3 T] @) (@ =1) (B.18)
i=1 Sw=it2
= Y FG). (B.19)
=1
where an explicit form (B.17) gives
FP () = (Gnyr - asy2)(@ie1 - - a1). (B.20)
Tt is easy to check that the term F{U(4) is mapped into the term F{V(n — i+ 1) by the
exchange between ¢, and anio-m ( =1,2,---,n+1).
In the same way, the recusion relation (BA13) gives,
n n+4
FY = E( I %)Fﬁ” (Gnta=1) (B.21)
i=1 ‘w=i+4
k23
S (B.22)
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Due to the form (B.20), we have

Fv(zg)(iaj) = (Gnta - Giga) (Qig1 - - Qji2) (aj—1--- a1). (B.23)
This form again allows us to see F{V(,5) and F{V(n—j+1,n—i+1) are mapped each
other under the exchange between an, and ania—m (m =1,2,--+,n+ 3).

The same calculation in general yields,

I n+2N
)Fi(N—l) (Gniany = 1) (B.24)

=31 a

i=1 \w=i+2N
ki
= Z Z Z FvgN}(ilaiQa"';?;N)s (B25)
iy3=1 43 <1y InSiN-1

and an explicit form of each term is given as,

EMN (3109, in) = (Gngan—1 " Gig42n) (GigpoN—1)=1 " * * Gigga(N-1))
Tt (a'iquLI U a'iN+2)(a'iN—1 e al)' (B.26)
From this form, we can see F\™)(ij,4,++-,4x) is mapped into FN(n — iy +1,n—
ine1 + 1,-+,n — iy + 1,n — iy + 1) under the exchange between a, and apion_m

(m=1,2,--,n+2N—1).
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