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1 Crossed products

In this note, we discuss several generalizations of dynamical systems and their
crossed products. Throughout this note, A denotes a C*-algebra.

Let G be a locally compact group. An action of G on A is a strongly continuous
homomorphism «: G — Aut(A). The triple (A, G, ) is called a C*-dynamical
system. From a C*-dynamical system (A, G, «), we get a C*-algebra A x, G which
is called the crossed product’ (see [Pe], for the detail).

When G = Z, an action a: Z — Aut(A) is determined by o; € Aut{A). By an
abuse of notation, we denote a; by «, and identify actions of Z and automorphisms.
The C*-algebra A X, Z is sometimes called the crossed product by the automorphism
a.

Definition 1.1 The crossed product A X,Z is the universal C*-algebra generated by
the images of the x-homomorphism 7: A — AX,Z and the linear map ¢t: A — Ax,Z
satisfying
(i) tz)n{a) = t(za),
(i) tle)*t(y) = n(z"y),
(iif) 7(a)i(z) = t{afa)z),
(iv) t(2)t(y)* = w(a (zy*))

for a,z,y € A.

In the definition above, “universal” means that for any C*-algebra B, any *-ho-
momorphism 7’: A — B and any linear map t': A — B satisfying (i) - (iv) above,
there exists a *-homomorphism p: A x4 Z — B such that 7/ = pow and t' = pot.
We can show that there exists a unitary u in the multiplier algebra of A x4 Z such
that t(z) = ur(z) for ¢ € A. This unitary u satisfles

ur(a)u* = n{a"Ha)) forae A (%)

TThere are two types of crossed products, namely the reduced ones and the full ones. We do
not go to the detail because we are only interested in the case G = Z where the two types of
C*-algebras coincide.




Conversely, if a *-homomorphism 7' A — B and a unitary v’ in the multiplier
algebra of B satisfies (*), then the pair of the x-homomorphism pi’ and the linear
map ¥': A — B defined by t(z) = un(z) for z € A satisfies (i) - (iv). Thus the above
definition coincides with the ordinal one using the covariant condition () (see for
example [Pe]). There are many generalizations of this construction. One of them is
a crossed product by a Hilbert C*-bimodule [AEE].

Definition 1.2 ([BMS]) A Hilbert A-bimodule X is a Banach space which is an
A-bimodule and has A-valued left and right inner products (-,-) and (-, -) such that

(1) (£8 =20, (£ =0,

i) €l =IO = I1Kg, 12,

(it}) (a€,m) =al&m), (§ma) = (& ma,
(i) (&m¢=¢mQ)
for,n, (e X,a€ A

For £,1 € X and a € A, we can show (1,€) = (§,7)*,(n,§) = (£, )" from (i),
and

(ta,n) = (&,na), (& an) = (aEm)

from (iv). An automorphism o € Aut(A) determines a Hilbert A-bimodule X, as
follows: As Banach spaces, X, is isomorphic to A via the map A 3 2+ &, € X,.
The bimodule structure and inner products are defined as

G&xb = 5a(a)mb: (6% gy) = a—l(xy*): <£az>§y> = x*y

for a,z,y € A. By this construction, we think that Hilbert C*-bimodules general-
ize automorphisms. The compositions of automorphisms correspond to the tensor
products of Hilbert C*-bimodules, and the inverses correspond to the dual Hilbert
C*-bimodules.

Definition 1.3 ([AEE, Definition 2.1]) The crossed product A xx Z of a C*-al-
gebra A by a Hilbert A-bimodule X is the universal C*-algebra generated by the
images of the *-homomorphism 7: A — A xx Z and the linear map t: X — AxxZ
satisfying

(i) #&)m(a) = t(La),

(ii) (&) t(n) = =({&m),

(iif) m(a)t(§) = t(af),

(iv) &))" = =((&m),

forae Aand €,n € X.

TWith our convention, we have X, ® X5 = Xgoq.



The conditions (i) and (iii) hold automatically from the conditions (ii) and (iv),
respectively. It is straightforward to see A xx, Z =2 A x, Z for o € Aut(A).

Another generalization of the crossed products by automorphisms is crossed
products by endomorphisms [M, St]. These two generalizations can be unified to
the construction of the Pimsner algebra Ox from a C*-correspondence’ X, which is
defined in [Pi] and modified in [Kab].

Definition 1.4 If a Banach space X satisfies all the conditions for Hilbert A-
bimodules except the existence of a left inner product but instead satisfies (a,n) =
(§,a*n) for £,m € X and a € A, then it is called a C*-correspondence over A.

For a definition and properties of the Pimsner algebra, see the next section.
Recently, Exel defines generalized correspondences and gives a method to construct
C*-algebras from them ([E]). A ternary ring of operators (TRO) is a Banach space
X with a ternary operation [-,-,-]: X x X x X — X which satisfies the conditions
that the map (z,y, 2) — zy*z satisfies ([Z]). A generalized correspondence over A is
an A-bimodule which is a TRO such that the ternary operation satisfies

K: an, C] = [51 Un (Z*d, [&7’1‘@, C] = [fa*, 7, g]

for £,m,( € X and a € A. A C*-correspondence is a generalized correspondence by

setting [£,7,(] == &(n, ).

C*-correspondence

generalized
correspondence

~—

dual

tPimsner called it a Hilbert-bimodule, and he assumed that its left action is faithful.



The class of generalized correspondences is a natural class which contains C*-
correspondences and is invariant under “taking duals”. In [E], Exel suggests one
way to construct a C*-algebra C*(A, X) from a generalized correspondence X over
A, which generalizes the construction of Pimsner algebras. There are several things
remained which have to be checked. For example, we do not know whether the
natural embedding map A — C*(A4, X) is injective or not.

So far, we only consider the generalization of actions and crossed products for the
case that the group is Z (or the semigroup N). There is a generalization of actions
by general groups using C*-correspondences, which is called a product system.

Definition 1.5 Let T be a cone of a group. A product system over I' is a family
{X,}er of C*-correspondences over A together with the isomorphisms as C*-corre-
spondences

Wapt Xy @ Xy — Xy

satisfying the associative low
Wopp © (W @ idx,) = Wy o (idx, ®wu,u>-

We should be careful of X, where e € I is the identity (see [F]). If T has a
topology (e.g. ' = R,), then we have to take care of the “continuity” (or “measur-
ability”) of the map v — X, (see [H]). Product systems over the positive real line
R, are related to Fg-semigroup (see [H, Sk|). A higher rank graph introduced in
[KP] gives an example of product systems over the semigroup NE (see [F, RSY]).

There is a natural construction of a C*-algebra from a product system, which is
analogue of Toeplitz algebra Tx defined below. However, except for special cases,
we do not know how to define analogues of crossed products or Pimsner algebras of
product systems.

2 Pimsner algebras
Let A be a C*-algebra, and X be a C*-correspondence over A.

Definition 2.1 A representation of X on a C*-algebra B is a pair (7,t) consisting
of a *-homomorphism 7: A — B and a linear map t: X — B satisfying

(i) t(&)m(a) = t{éa),
(it) ¢(&)*t(m) == ((&,m),
(iif) m(a)t(§) = t(af)

for a € A and £,7 € X. We denote by C*(m,t) the C*-algebra generated by the
images of m and £ in B.

Definition 2.2 We denote the universal representation by (7x,tx). The C*-alge-
bra C*(%x,tx) is called the Toeplitz algebra of X, and denoted by 7x.



The Toeplitz algebra Ty is not an analogue of crossed products. We need the
condition corresponding (iv) in Definition 1.1 or Definition 1.3. To express this
condition, we introduce some notations.

Definition 2.3 A map T: X — X is said to be adjointable if there exists 7*: X —
X such that (§,Tn) = (T*¢,n) for £,n € X.
We denote by £(X) the set of all adjointable operators on X.

It is routine to check that £(X) is a C*-algebra, and the left action defines the
*-homomorphism ¢: A — L(X) by ¢(a)f = aé.

Definition 2.4 For §,n € X, the operator 8¢, € L(X) is defined by 6,,(¢) =
&(n,¢) for ¢ € X. We define £(X) C L(X) by

K(X) = span{f;, | &,m € X},
which is an ideal of L(X).
For the proof of the next lemma see [KPW, Lemma 2.2} or [FR, Remark 1.7].

Lemma 2.5 For a representation (w,t) of X, there ewists a unique *-homomor-
phism ¢y K(X) — C*(m,t) such that (6 ,) = t(€)t(n)* for £,n € X.

Definition 2.6 For a C*-correspondence X, we define an ideal Jx of A by
Jx :={a€ A|pa) € K(X) and ab =0 for all b € kerp}.

Definition 2.7 A representation (,%) of X is said to be covariant if ,(¢(a)) =
7{a) for all ¢ € Jx.

Definition 2.8 Let {nx,tx) be the universal covariant representation, and set
Ox = C*(mx,tx) which is called the Pimsner algebra of X.

One can check that this construction generalizes the crossed products by endo-
morphisms and the ones by Hilbert C*-bimodules as well as other classes of C*-al-
gebras (see Section 3). We will give several characterizations of the representation
(mx,tx) and the Pimsner algebra Ox.

Definition 2.9 For two representations (71, ¢1) and (g, ¢2) of X, we write (71,¢;) =
(mg,t5) if there exists a *-homomorphism p: C*(my,t1) — C*(ms, 1) such that my =
pom and i, = pot.

Such a *homomorphism p is, if it exists, unique and surjective. We will say
that two representations (m,%;) and (m,t2) are equivalent if (m1,t1) &= (m2,t2) and
(m1,11) =< (ma,1s). This is the same as the existence of an isomorphism p: C* (m1,t1) —
C*(my, ty) with 7, = pom and t; = p o t1. The set of equivalence classes of repre-
sentations is an ordered set by the order <. The universal representation (7x,%x)
is the largest element in this set.



Definition 2.10 A representation (m,t) of X is said to be injective if a *-homo-
morphism 7 is injective, and said to admit a gauge action if for each z € T, there
exists a *-homomorphism G,: C*(m,t) — C*(m,t) such that B,(n(a)) = m(a) and
B(t(€)) = zt(§) for alla € A and £ € X.

By the universality, the representation (7x,tx) on Ox admits a gauge action.
We denote this action by v: T — Aut(Ox) and call it the gauge action on Ox. We
can also see that (mx,tx) is injective by using Fock representation [Kab].

Theorem 2.11 ([Ka6, Theorem 6.4], [Ka7, Propostion 7.14]) Each of the fol-
lowing three conditions characterizes the representation (mx,tx) on the Pimsner
algebra Ox:

(i) (mx,tx) is the largest in the set of all covariant representations.

(il) (mx,tx) is the smallest in the set of all injective representations admitting
gauge actions.

(iil) (mx,tx) is the only injective covariant representation admitting a gauge action.

(i) is nothing but the definition of (7x,tx). The uniqueness part of (iii) is called
the gauge-invariant uniqueness theorem. (ii) gives characterizations of (mx,tx) and
Ox without using the covariance nor the ideal Jx.

(ﬁX’EX)
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The most important part of the proof of Theorem 2.11 is an analysis of the fixed
point algebra O% of the gauge action (see the proof of the next theorem).

Theorem 2.12 (see [DS, Theorem 3.1], [Ka6, Theorems 7.1, 7.2])
A: nuclear = O%: nuclear <= Ox: nuclear.
A: exact <> O%: exact <= Ox: ezact.

Sketch of Proof. The two equivalences

“O%: nuclear <= Ox: nuclear”, “O%: exact <= Ox: exact”



follow from the general fact on fixed point algebras by actions of compact groups (see
[DLRZ]). We sketch the proof of “A: nuclear = O%: nuclear” (the corresponding
statement for exactness can be proven similarly).

Suppose that A is nuclear, and we will prove that 0% is nuclear. We set Y5 =
mx(A) C Ox and

Yoes = tx(X)Ys = 50802y € Ox | ¢ € tx(X), y € Y}

for n € N. Then we have

0X=m( U Yny,;), @}:m(UYnYJ).

n,meN neN

We set B, = Y,Y,} and Bjgn = Bo+ B+ -+ By, Then we have O% = lim Bjg ). It
suffices to show that the C*-algebra Bjg ) is nuclear for all n € N. We will prove this
by induction on n. The C*-algebra Bjyq = By & A is nuclear by the assumption.
Suppose we will prove that Bjg 1) is nuclear. The C*-algebra B, is strongly Morita
equivalent to the C*-algebra Y,rY, C Ox which is isomorphic to an ideal of A.
Hence B, is nuclear. Since B, is an ideal of By and By = Bjoa-1] + B, we
have B/ Bn = Bjon-1}/(Bjon-1) N Bn) which is nuclear.

0 ——— Bjop-1N By, — Bpp-13 — Biopn-11/(Bpop-1yNBp) — 0

! ! |

0 — Bn 3 B[[)’n] S B[O,n]/Bn —

Therefore Bjg ) is nuclear being an extension of nuclear C*-algebras. This completes
the proof. |

Remark 2.13 Tx is nuclear (resp. exact) if and only if A is nuclear (resp. exact).
There is an example of a C*-correspondence X over a non-nuclear C*-algebra A
such that Oy is nuclear (see [Ka6, Example 7.7]).

There have been some results on the ideal structures of Pimsner algebras ([Ka7],
[MT1]), and a criterion for their simplicity in a special case ([Sc]). However we do
not know when they are simple in general. On the K-theory of Pimsner algebras,
we have the following (see [Pi, Theorem 4.9] and [Ka6, Theorem 8.6, Proposition
8.8]).

Theorem 2.14 The Pimsner algebra Ox satisfies the Universal Coefficient Theo-
rem of [RS], if both A and Jx satisfy it. We have the following ezact sequence;

Ko(Jx) — Ko(A) —— Ko{Ox)
L#“[X] (fo)*

1 !

K(Ox) <20 k) L k).



3 Topological quivers

In this section, we give methods to construct C*-correspondences over commutative
C*-algebras.

Definition 3.1 ([MT2]) A topological quiver @ = (E®, E*,d,r, X\) consists of two
locally compact spaces E° and E', a continuous open map d: E' — E° acontinuous
map r: E* — E°, and a family of Radon measures A = {Ay}vego 0N E' satisfying
the following two conditions:

(i) supp A, = d~*(v) for all v € E?,
(i) v [ &(e)dAu(e) is an element of Co(EP) for all £ € C.(EY).

Take a topological quiver @ = (E° E',d,r,)). We set A = Cy(E®). For
&,n € Ce(EY),

’Ui——)/ £le)nle)dry(e)
El

is an element of C,(E®). We denote this function by (£,m) € A. The linear space
C.(E") is an A-bimodule by

feg: E' 3 e f(r(e))é(e)g(d(e))

for f,g € A and £ € C,(E"). Let X be the completion of C,(E°) with respect to the
norm defined by [|€]| = [[(€,€)]|*/2. The A-valued inner product and the A-bimodule
structure are naturally extended to X. Thus X is a C*-correspondence over A.

Definition 3.2 The Pimsner algebra Ox of the C*-correspondence X over A con-
structed above is said to be the C*-algebra associated to Q, and denoted by C*(Q).

A quadruple E = (E°, E*,d, r) consisting of two locally compact spaces E° and
E', a local homeomorphism d: E' — E°, and a continuous map r: B — E°, is
called a topological graph ([Kal]). For a topological graph F = (E° E',d,r), the
quintuple Qg = (E° E',d,r,]) is a topological quiver, where A, is the counting
measures on d~'(v) for v € E°. The C*-algebra C*(Qg) is denoted by O(F) in
[Kal]. When d: E! — EO is a branched covering between Riemann surfaces, the
counting measures A, on d"!(v) for v € E® with multiplicities at branched points
satisfy two conditions in Definition 3.1. Thus we get a topological quiver, and the
C*-algebras associated to this type of topological quivers are analyzed in [KW].

For C*-algebras associated to topological quivers, we know the conditions for the
simplicity ([MT2, Theorem 10.2}, see also [Ka3, Theorem 8.12]).

By Theorems 2.12 and 2.14, the class of the C*-algebras associated to topological
quivers are included in the class of nuclear C*-algebras satisfying the Universal
Coefficient Theorem. There may be possibilities that all separable simple nuclear
C*-algebras satisfying the Universal Coefficient Theorem can be obtained as C*-
algebras associated to topological quivers. In fact, the following C*-algebras were
shown to be obtained as C*-algebras associated to topological quivers (or actually
topological graphs [Ka2, Kad]):



(i) all AF-algebras,
(ii) many ASH-algebras including all simple AT-algebras with real rank zero,
(iii) all classifiable Kirchberg algebras.

We do not know whether the following examples arise as C*-algebras associated to
topological quivers:

(i) asimple C*-algebra with a finite and an infinite projection found in [Ro],
(ii) all TAF-algebras classified in [L],
(iii) the Jiang and Su algebra Z defined in [JS}.

A dynamical system (Co(Q2), G, @) of a commutative C*-algebra Co(£2) gives rise
to an action of G on the space {1. Such an action defines a groupoid 2 x G which is
called a transformation group, and the crossed product Co({2) %, G is isomorphic to
the C*-algebra of this groupoid [Re]. From a topological graph F, we can construct
a groupoid G using negative orbits so that the C*-algebra O(F) is isomorphic to the
C*-algebra of the groupoid Gg. This observation may help when we try to extend
the construction in this section to the more general setting involving general groups.
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