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1 Introduction

In this survey report we will discuss the classification of separable simple amenable C*-algebras with tracial
rank no more than one. This is a part of the Elliott program of classification of simple amenable C*-algebras.
The main question of interest is: Given two simple separsble amenable C*-algebras A and B, when they
are isomorphic? The Elliott program is to find a complete K- _theoretical isomorphic invariant for a class of
simple C*-algebras. Let us mention a couple of important developments in the program without attempting
to give any historical account. The program started with the Elliott classification of inductive limits of
circle algebras with real rank zero ([10]) which states that two unital inductive Hmits of circle algebras
with real Tank zero are isomorphic if the associated scaled ordered K-groups (Ko together with K;) are
(order) isomorphic. A pre-program result of Elliott that classifies AF-algebras should also be mentioned
([9]). Another high light is the Elliott-Gong’s ([12]) result of classification of simple AH-algebras with no
dimension growth of real rank zero. For purely infinite simple C*-algebras, there is no doubt that most
satisfactory result is the Kirchberg and Phillips’s classification of purely infinite simple separable amenable
C*-algebras which satisfy the Universal Coefficient Theorem (see [19] and [40], see also an earlier result of
[43]). A more recent result of Elliott-Gong -Li ([13]) classifies simple AH-algebras with no-dimension growth
opens the door to classify separable simple amenable C*-algebras beyond the class of C*-algebras with real
rank zero. 7

In this report, we will only discuss stably finite C*-algebras. We believe that, while the Elliott program
is far from complete, it has sufficiently many fruitful results so that harvest of these results should also be
on the top of agenda. For that, we mean the application of those results. For the application purpose, we
will discuss how to classify simple C*-algebras that are not assumed to be inductive limits of certain basic
building blocks. One rich source of simple amenable C*-algebras which satisfy the Universal Coefficient
Theorem are crossed products of minimal homeomorphisms on some compact metric space. One of the
question that we will discussed is: Does the Elliott program provide a classification for those C*-algebras?

We will describe the classification of unital separable simple amenable C*-algebras with tracial rank no
more than one. The report is organized as follows. Section 2 gives the definition of C*-algebras of tracial rank
zero and introduce an isomorphism theorem for separable simple amenable C*-algebras with tracial rank
zero. Section 3 described certain C*-algebras which have tracial rank zero. Section 4 discusses the question



when a crossed products arisen from minimal homeomorphisms on a compact metric space has tracial rank
zero. We present a resulf in [36] which answers the question. Section 5 is devoted to the description of the
proof of the classification result mentioned in Section 2. Starting Section 6, we discuss simple C*-algebras
with tracial rank one. We will attempt to describe the difficulties that one needs to overcome in order to give
the classification theorem for simple amenable C*-algebras with tracial rank greater than zero. In Section 7,
we give some results concerning the unitary groups of simple C*-algebras with tracial rank one. In Section
8, we present a version of uniqueness theorem that is required for the classification. In Section 9, we present
an existence theorem. Finally, in Section 10, we present a classification theorem for unital separable simple
amenable C*-algebras with tracial rank no more than one.
This report was presented in a RIMS Symposium in Kyoto University in January 2005.

2 Classification of simple C*-algebras with tracial rank zero

We start with C*-algebras with “topological rank zero” and “topological rank one”. We think that a
standard” C*-algebra C with “topological rank zero” should have the form

m
C = Mrg),
i=1

and a “standard” C*-algebra C with “topological rank one” should have the form

™
C =P Mg (C(Xa)),
i=1
where each X; is an one-dimensional finite CW complex.

To obtain more interesting C*-algebras, one should consider the limits of C*-algebras with “topological
rank zero” and limits of C*-algebras with “topological rank one.” Thus all AF -algebras should have rank
ZETO. )

Let us consider only simple C*-algebras.

Definition 2.1. ([28]) Let A be a unital simple C*-algebra. Then A has tracial topological rank zero and
we will write TR(A) = 0 if the following holds: For any ¢ > 0 and any finite subset F C A containing a
nonzero element a € A, there is a C*-subalgebra C in A where C' = ®F., M,,, such that 1¢c = p satisfying
the following:

(i) lpz — zpll < ¢ for z € F,

(ii) pzp €. C for x € F and

(if) 1 — p is equivalent to a projection in aAa.

If p can be chosen to be 1, the above definition gives AF-algebras. The definition says that, in a unital
simple C*-algebra A with TR(A) = 0, the part that may not be approximated by finite dimensional C*-
algebras must have small “measure” {or rather small trace).

Theorem 2.2. ([28]) Let A be a unital separable simple C*-algebra with TR(Ay=0. Then

e A is quasidiagonal;

13



14

o A has real rank zero;

A has stable rank one;

Ko(A) is weakly unperforated and with Riesz interpolation property;

A has the fundamental comparison property:
if p,q € A are two projections and T(p) < 7{g) for all T € T(A), thenp ~ ¢ with ¢’ < ¢.

Theorem 2.2 suggests that the class of separable amenable simple C*-algebras with tracial rank zero is a
reasonable replacement for the class of separable amenable simple qussidiagonal C*-algebras with real rank
zero, stable rank one and with weakly unperforated Ko-groups.

Recall that a C*-algebra A is AH, if

A= lim A,,

00
where A, = G}fg{)P{i,n)M 2, (C (X)) Plinyy and Pliny € MRgin) (C(Xy,)) is a projection and X; ny isa
connected finite CW-complex.
If A is simple, we say A has slow dimension growth if

. dimX(; n)
im max ——————>— = 0.
n—oo i 14 rankP; )

A is said to have ne dimension growth, if there is an integer m > 0 such that
dimX(; ny < m

for all 7 and n.
Elliott and Gong ([12]) showed that every simple AH-algebra with no dimension growth and real rank
zero has tracial rank zero.

Theorem 2.3. ( [12]) Let A and B be two unital simple AH-algebras with no dimension growth and with
real rank zero. Then A & B if and only if

(KU{A))KO(A)‘E’ ElAL Ky (A)) = (KO(B)7KO(B)+: [1B}v K (B))

Moreover, for any weakly unperforated ordered group Go with the Riesz interpolation property, an order unit
e € Gg, and for any countable abelian group Gy, there exists a unital simple AH-algebra A with no dimension
growth and with real rank zerc such that

(Ko(A), Ko(A)+, [La], K1(4)) = (G, (Go)+, €, G1)-

Later M. Dadarlat ([6]) and G. Gong ([15] and [16]) showed that simple AH-algebras with slow dimension
growth and with real rank zero have no dimension growth.
For unital simple separable C*-algebras with tracial rank zerc, one has



Theorem 2.4. ([30]) Let A and B be two unital separable amenable simple C*-algebras
with TR{A) = TR{B) = 0 which satisfy the UCT.
Then A= B f and only if

(Ko(A), Ko(A)+,[14], K1(A)) = (Ko(B), Ko{B) +, (18], K1(B))-

Some further references: [26], [27], 7], [29] and [37),

3 Which C*-algebras have tracial rank zero 7

In this section we will discuss the problem when the converse of Theorem 2.2 holds.
We begin with simple AH-algebras.

Theorem 3.1. ([33]) For a unital simple AH-algebra, the following are equivalent:
o TR(A)=0;
e A has real rank zere and has the fundamental compam‘;on property;
o A has real rank zero and slow dimension growth;

o A has real rank zero, stable rank one and has weakly unperforated Ko(A).

As observed by N. Brown (see, for example,[3]) that some additional condition on the structure of traces

are required to obtain a converse of Theorem 2.2. We described below.

Definition 3.2. Let A be a C*-algebra. Denote by nA the subset of A consisting of irreducible represen-
tations with finite dimension less than or equal to n. Put A, = A\ n_1A4. It is known that ,A is always

closed and A, is a Hausdorff space in its relative topology.

The following proposition also serves as a definition.

Proposition 3.3. Let A be a C*-algebra and T be a tracial state. Then the following are equivalent:

1) 7 is AC;

2) There is a sequence {a,} of nonnegative numbers with Y ey an = 1 and a sequence of positive regular

probability Borel measures fi, on An such that
(o]
B=) Gnfin;
n=1

3) 7.l — 0, where
In={a€A:m{a)=0 for 7€ ,A}.

Recall that a separable C*-algebra A is said to be RFD, if for any a € A, there is a finite dimensional

irreducible representation 7 such that m(a) # 0.

The tracial state space of a unital simple C*-algebras with TR(A) = 0 has the following special feature.
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Theorem 3.4. Let A be a unital separable simple C*-algebra with TR(A) = 0. Then there is an increasing
sequence of RFD C*-algebras Ay such that A = US>, An and 74, is AC for each traciol state T of A. In
other words, T{A) is a set of approzimately AC tracial staies.

Theorem 3.5. ([32]) Let A be o unital separable simple C*-algebra with countably many extremal tracial
states. Then TR(A) = 0 if and only if A has real rank zero, stable rank one, weakly unperforated Ko(A) and
T{A) is approzimately AC.

For many cases, T(A) is always approximately AC.

Proposition 3.6. If A is ¢ unitel C*-algebra such that A is an inductive limit of type I C*-algebras, then
T(A), the tracial state space of A, is approzimate AC.

Combining 3.5 and 3.6, we have the following.

Corollary 3.7. ([32]) Let A be o unital simple C*-algebra which is an inductive limit of type I C*-algebras.
Suppose that T(A) has countably many extremal points. Then TR(A) =0 if and only if A has real rank zero,
stable rank one and weakly unperforated Ko(A).

It perhaps worth to point out that the class of inductive limits of type I C*-algebras includes C*-algebras
with the following forms:

(1) A = limy—c0o An, each Ay has continuous trace;

(2) A = limy, 00 An, ach A, is sub-homogeneous;

(3) A = limp_,o0 An, each A, has only finite dimensional irreducible representation;

We would like to leave the following question:

Question: Let A be a unital separable amenable quasidiagonal simple C*-algebra with unique tracial
state. Suppose that A has real rank zero, stable rank one and weakly unperforated Ko(A). Does A have
tracial rank zero?

Some further references: [3] and [5] .

4 Simple Crossed Products
Definition 4.1. Let X be a compact metric space and let @ : X — X be a minimal homeomorphism. Let
C(X) %4 Z be the transformation group C*-algebra (the crossed product).

If X has infinitely many points, then C(X) x4 Z is simple. Note that C(X) %, Z satisfies the Universal
Coefficient Theorem (UCT).

Question: When TR(C(X)} X, Z) = 07

Definition 4.2. Let A be a unital stably finite C*-algebra and let Af(T'(A)) be the space of all real affine
continuous functions on the compact convex set T(A). Let

p: Ko(A) — Aff(T(A))

be the positive homomorphism induced by

for projection p € A.



If A is a unital simple C*-algebra with real rank zero and stable rank one, then p(Kp(A)) is deuse in

ASF(T(A)). (see [2])

Furthermore, a result of N. C. Phillips (1.10 of [41]) states that if X is an infinite compact metric space
and @ : X — X is a minimal homeomorphism, and if A, = C(X) x4 Z has real rank zero, then p{Kg(As))
is dense in Aff(T(As)).

A recent result shows that, under the assumption that X has finite dimensional, the converse of the above
and much more are true.

Theorem 4.3. ([36])
Let X be an infinite compact metric space with finite covering dimension and let o : X — X be a minimal
homeomorphism. Denote Ay = C(X) %o Z. Then TR(Ay) = 0 if and only if p{As) is dense in Af f(T{As)).

Let us consider the case that (X, ) is uniquely ergodic.

Let X be a connected compact metric space, let @: X — X be a homeomorphism, and let p be an
a-invariant Borel measure on X. Then the rotation number p# associated with « and g is a homomorphism
with domain the kernel of the homomorphism

id - (@™ )*: KI(X) — KY(X)

and codomain R/Z.

It is defined as follows. As usual, let ¢, : C(X) — C{X) be the automorphism ¢(f) = foa™L.

Let v € U(M.(C(X))) satisfy (id — (a7 *)*)([u]) = 0. Let v = ¢o({u*)u. Then Jv} = 0 in K({C(X)).
Increasing the matrix size and replacing u by diag(u,1), we may assume that v € Up(M,(C(X))). Then
there exist a1, 0z, . ..,am € Mp(C(X))s.q. such that [T, e =v.

Now define

pilla) =2+ 5 [ 3 Tlow(e)) duto)

(see [14}).

Corollary 4.4. ([36]) Let X be a finite connected CW complex and let o : X — X be a minimal homeomor-
phism. Suppose that o is unique ergodic. Then TR(C(X) %o Z) = 0 if and only if the associated rotation
number of|h has irrational value.

The following recovers a theorem of Elliott and Evans ({EE}): Every irrational rotation algebra is an
AT-algebra of real rank zero.

Theorem 4.5. Let X be a compact metric space with finite covering dimension, lef a : X — X be a minimal
homeomorphism. Suppose that p{Ko(C(X) x4 Z)) is dense in AffT(C{X) x4 Z)). Then C(X) %o Z is a
simple AH-algebra.

The proof of the above theorem is an application of 4.3 and the classification theorem 2.4.
We end this section with the following theorem which is also a combination of Theorem 4.3 and 2.4.

Theorem 4.6. ([36]) Let X be a compact metric space with finite covering dimension, let o, 0 : X — X be
o minimal homeomorphism and let Ay = C(X) %o Z and Ag = C(X) g Z. Suppose that p(Ko(Aa)) and
p(Ko(Ap)) are dense in AffT(Aq)) and Af fT(Ag)), respectively.
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Then

if and only if

(Ko{Aa), Ko(Aa) 1, [1a.], K1(Aa) & (Ko(Ag) Ko(Ap)+:[14,], K1(Ag))-

5 Proof of Theorem 2.4

Let A and B be two C*-algebras and let ¢ : A — B be a contractive completely positive linear map. Let
G C A be a finite subset and let § > 0. We say that ¢ is G-6-multiplicative if '

ll¢(a)g(b) — d(ab)|| <6

for all a,b € F. _
Homomorphisms from A to B are always G-§ -multiplicative for any finite subset ¢ and & > 0. In general
a G-8-multiplicative may not close to any homomorphisms.

Let L1,Ly : A — B be two maps We write
Li=.Ly on F

if
IL1{a) — Lz{a)} < €, for all a € F.

P

Let A be a C*-algebra. Denote by P(A) the set of all projections and unitaries in Mo (A®CL), n =
1,2, ..., where C,, is an abelian C*-algebra so that

K{(A®C,) = KA Z/nE).
One also has the following exact sequence

Tk Ik

(see [44]).
Following Dadarlat and Loring ([8}]}, we use the notation

K(4) = @iz0,1,nez, Ki(4A; Z/nZ).

By Homy(K(A), K(B)) we mean all homomorphisms from K(A) to K(B) which respect the direct
sum decomposition and the so-called Bockstein operations. Denote by Homy(K(A), K(B))** those a €
Homa(K(A), K(B)) with the property that a(Ko(A)+ \ {0}) C Ko(B)+ \ {0}. If A satisfies the Universal
Coefficient Theorem, then Homa (K (A), K(B)) = KL(A, B).



Moreover, one has the following short exact sequence,
0 — Pext(K.(A), K.(B)) - KK{A,B) —» KL(A,B) -0

Let L : A — B be a contractive completely positive linear map. We also use L for the extension from
A®K — B®K as well as maps from A/@_C/n — BTSTE,I for all n.

Given a projection p € P(A), if L: A — B is an F-é-multiplicative contractive completely positive linear
map with sufficiently large F and sufficiently small 4,

IL(p) -l < 1/4

for some projection ¢'. Define [L](p) = [¢/] in K(B). It is easy to see this is well defined. Suppose that ¢ is
also in P(A) with [g] = k{p] for some integer k. By adding sufficiently many elements {partial isometries) in
F, we can assume that [L}(g) = k[LI{p).

Similarly, one can do the same for unitaries. Let P C P(A) be a finite subset. We say [L]|p is well
defined if [L](p) is well defined for every p € Pand if [p'] = [p] and p’ € P, then [L}(p') = [L](p). This always
occurs if F is sufficiently large and § is sufficiently small. Tn what follows we write {L]|p when [L] is well
defined on P.

QGiven two separable amenable simple C*-algebras A and B as described in Theorem 2.4. To prove that
A 22 B, we deploy a strategy of Elliott, called approximate intertwining.

We first to construct a map ¢ : A — B from the order isomorphism from K.(A) to K.(B) and a
map 1 : B — A from the order isomorphism from K,(B) to K.(A), respectively. A theorem provides ¢
and 1 is called “existence theorem”. If there were a unitary u; € A and there were a unitary up € B
such that adug o (¢ o ¢) = id4 and adug o (¢ o ) = idp, then one would immediately obtain the desired
isomorphism. However, the best possible uniqueness theorem can only assure that ¢ o ¢ is approximately
unitarily equivalent to id4 and ¢ o ¢ is approximately unitarily equivalent to idp. Nevertheless, the Elliott
argument of approximately intertwining will then provide the desired isomorphism.

It turns out, however, without assuming that C*-algebras A and B are inductive limits of certain building
block, the existence theorem is difficult to established. In fact, prior tc the proof of Theorem 2.4, one could
only provide maps that are not homomorphisms each of which carries only a partial K-theoretical information
given by the order isomorphism on K-theory. This adds further difficulty to the uniqueness theorem. In

other words, a uniqueness theorem should deal with maps which are not even homomorphisms. A search

for a uniqueness theorem for amenable C*-algebras which are not assumed to be inductive limits of basic
building blocks leads us to the following.

Theorem 5.1. Let A be a separable unital amenable C*-algebra and let B a unital C*-algebra. Suppose
that hy,hg : A — B are two unital homomorphisms such that

[h] = [ha] in KL(4,B).

Suppose that hg : A — B is o full unital monomorphism. Then, for any € >0 and finite subset F C A,
there is an integer n and a unitary W € U(My41(B)) such that

| W diag(hy(a), ho(a), -+ s ho(a))W — diag(ha(a), ho(a), -+ ho(a))l] < e

foralla & F.
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The original version of this first appeared in an earlier version of [25]. A better version later stated in
[7]. The above statement is taken from [34]. After we found (an earlier version) of the above, it becomes
clear to us that a uniqueness theorem can be established for simple amenable C*-algebras with a property
that we called “TAF” which is equivalent to what we called now “tracial rank zero”.

Theorem 5.2. Let A be a separable unital amenable simple C*-algebra with TR(A) = 0 satisfying the UCT.
Then, for any € > 0 and any finite subset F C A, there exist § > 0, a finite subset P C P{A) and a finite
subset G C A satisfying the following:
for any unital C*-algebra B with TR(B) = 0, and any two G-6-multiplicative contractive completely
positive linear maps L, Lg : A — B with
(Li]lp = [Lalp

there erists o unitary U € B such that
i;l,d.UOL]L %ELQ on F.

Combing the above uniqueness theorem with the following existence theorem, by applying the Elliott
approximate intertwining argument, we establish 2.4.

Theorem 5.3. Let A and B be two unital separable simple amenable C*-algebras with tracial rank zero
which satisfy the Universal Coefficient Theorem. Then, for any z € K L{A, B) which gives an order unit
preserving order isomorphism from (Ko(A), Ko(A)+,[La], K1(4)) to (Ko(B), Ko(B)+, 18], K1(B)), there
exists a sequence of contractive completely positive linear maps $n : A— B such that

Tim_[¢n(ab) — dn(a)gn(8)] =0
for all a,b € A and {¢n} induces z.
Some further references: [27},(7], [29] and [18].

6 Tracial rank one

Now we turn to C*-algebras with tracial rank one.

Definition 6.1. Let A be a unital simple C*-algebra. Then A has tracial topological rank no more than one
and we will write TR(A) < 1 if the following holds: For any ¢ > 0, and any finite subset F C A containing
a nonzero element a € Ay, there is a C*-subalgebra C in A where C = ®f.; My, (C(X;)), where each X; is
a finite CW complex with dimension no more than one such that lc = p satisfying the following:

(i) lpz —zp|| < € for z € F,

(il) pzp € C for z € F and

(iii) 1 — p is equivalent to a projection in aAa.

In the above definition, if C can always be chosen to be a finite dimensional C*-subalgebra then TR(A) =
0. If TR(A) < 1 but TR(A) # 0 then we will write TR(A) = 1. The definition requires that the part of
C*-algebra A which can not be approximated by C*-algebras with the form C described above has small
“measure” (or small trace). It is clear that if A is an inductive limit of C*-algebras An, with the form
A, = @?(:"1) M, (i,n)(Xi ), where each X;, is a finite CW complex with dimension 1 then TR{A) < 1.
Guihua Gong proves the following theorem.
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Theorem 6.2. (G. Gong—{17]) Every simple AH-algebra with no dimension growth has tracial rank one or
zero.

For unital simple separable C*-algebras with tracial rank no more than one, we have the following.
Theorem 6.3. {[28]) Let A be a unital separable simple C*-algebra with' TR(A) < 1. Then
e A is quasidiagonal;

o A has real rank zero or one;

A has stable rank one;

Ko(A) is weakly unperforated and with Riesz interpolation property;

A has the fundamental comparison property:
if p,q € A are two projections and 7{p) < 7(q) for all T € T(A), thenp~ ¢ withqd < q.

Theorem 6.4. If TR(A) =1 and A has real rank zero, then TR(A) = 0.

In the definition of 6.1, C has the form @le Mp(C{X;)), where each X; is a one-dimensional finite
CW complex. In fact, it is equivalent to require that C has the form §F_, M. e (C[0,1])).

=1
For simple AH-algebras with no dimension growth, we have the following classification theorem.

Theorem 6.5. {(Elliott, Gong and Li-(13]) Let A and B be two unital simple AH-algebras with no dimension
growth. Then A= B if and only if

(Ko(A), Ko(A)+,[La], K1(4), T(A)) = (Ko(B), Ko(B)+, [1s], K1(B), T(B)).

Definition 6.6. By
(Ko(A), Ko(A)+,[La], K1(A), T(A)) & (Ko(B), Ko(B)+, 18], K1(B), T(B)),
we mean _
e there is an order isomorphism vp : Ko{A) — Ko(B) with o([14]) = [18];
e there is an isomorphism v : K1(4) — K1{B) and

e there is an affine homeomorphism 7, : T(A) — T{B) such that v; }(7){z) = 7(y0(z)) for all 7 € T(A)
and z € Kp(A).

Tracial topological rank can be defined for C*-algebras which are not simple (see {32}). In particular, a
unital commutative C*-algebra A = C{X), where X is a compact metric space has tracial rank % if and only
if the covering dimension of X is k. In [35], it is shown that any crossed product of a unital separable simple
C*-algebra with tracial rank one by an action ¢n Z which has tracial cyclic Rohlin property has tracial rank

one or Zero.
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7 Unitary group U(A)

Let A be a unital C*-algebra. Denote by U(A) the unitary group of A and denote by Up(A) the path
connected component containing the identity.
For C*-algebras with real rank zero, one has the following.

Theorem 7.1. [24] Let A be a unital C*-algebra with real rank zero. Then every unitary u € Up(A) can be
approzimated in norm by unitaries with finite spectrum.

Let A be a unital C*-algebra and let u € Ug(A). Suppose that
he C([0,1), Us(4)) h(0) =u and h(l)=14.

Put
k

cel(h) = sup{z Hat) — -l ito=0<t <+ <lp = 1}

i=1
Define
cel(u) = inf{cel(h) : h(t) € C([0,1},Us(4)) h{0) =u and A1)} = 14},

Corollary 7.2. Let A be a unital C*-algebra with real rank zero. Then
cel{u) <7
for all u € Up(A).

This is no longer true for C*-algebras with tracial rank one. In fact, if A=C ([0,1)), for any L > 0, then
there are u € C([0,1]) such that
cel(u) > L.

It turns out that the unboundedness of exponential length for unitaries in a unital simple C*-algebras with
tracial tank one causes tremendous amount of trouble, in particular, when C*-algebras are not assumed to be
inductive limits of certain basic building blocks. It effects both so-called uniqueness theorem and existence
theorem.

Definition 7.3. Let A be a unital C*-algebra. Let CU(A) be the closure of the commutator subgroup of
U(A). Clearly that the commutator subgroup forms a normal subgroup of U(A). It follows that CU{4) is a
normal subgroup of U{A). It should be noted that U(A)/CU(A) is commutative.

Definition 7.4. If 4,7 € U(A)/CU(A) define
dist(@,0) = inf{{jz — y|| : 2,y € U(A) Z=14, § =T}

If u,v € U(A) then
dist(@,7) = inf{||lwv* —z||: z € CU(A)}.

We have the following:



Lemma 7.5. Let A be a unital simple C*-algebra with TR{A) < 1. Let u € Ug(A). Then, for any £ > 0,
there are unitaries uy,us € A such that uy has exponential length no more than 2w, ug is an exponential and

fu—wuaf <e.
The following is very useful in establishing both uniqueness theorem and existence theorem.

Lemma 7.6. Let A be a unital C*-algebra.
(1) Up{A)/CU(A) is divisible.
(2) If u € U(A) such that u* € Ug(A), then there is v € Ug(A) such that

7 =a* in U(4)/CU(A).

(3) Suppose that Ki(A) = U(A)/Us(A) and G C U(A)/CU(A) is finitely generated subgroup. Then one
has G = G N (Upg(A)/CU(A)) & x(G), where

) U{A)/CU(A) — U(A)/Us(A)
is the gquotient map.

Theorem 7.7. ([31]) Let A be a unital simple C*-algebra with TR(A) < 1 and let u € CU(A). Then
u € Up(A) and for any € > 0, cel(u) < 87 +e.

Theorem 7.8. ([31]) Let A be a unital simple C*-algebra with TR(A)
[u] = [v] in K1(A) and

IA

1. Let u,v € U{A) such that

uk ok € Up(4) and cel((uF)*v*) < L.

Then for any € > 0,
cel{u*v) < 8n 4+ L/k+¢.

Moreover, there is y € Ug(A) with
cel(ly) < L/k+e¢

such that wrv = § in U{4)/CU(A).

Theorem 7.9. Let A be a unital separable simple C*-algebra with TR(A) < 1 and u € Up(A). Suppose that
uk € CQU(A) for some integer k > 0, then u € CU(A). In particular, Uy(A)/CU(A) is torsion free.

Some further references: [45], [46], [38] and {39].

8 A uniqueness theorem

An easily neglected fact used to obtain Theorem 5.2 from 5.1 is the following well-known fact.

Proposition 8.1. Let F be a finite dimensional C*-algebra and B be a unital C*-algebra of stable rank
one. If 1,47 : F — B are two unital monomorphisms such that

(@1)e = (d2)«

as homomorphisms from Ko(F) to Ko(B), then ¢1 and ¢g are unitarily equivalent.
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This is no long true if we replace F by, say C([0,1}) or M (C(]0,1]), and even if we also replace unitary
equivalence by approximate unitary equivalence. Obviously, in order to establish a uniqueness theorem for
simple C*-algebras with tracial rank one, one has to deal with this problem. Given two positive elements
a1,az € B with sp(a;) = sp(az) = [0, 1], when they are approximately unitarily equivalent? In general, this
is hopeless. :

But we have the following:

Lemma 8.2. Let B = ®5_,B; be a unital C*-algebra with B; = Mg (C(X;)), where X; =[0,1] or X; is
a point .

For any £ > 0, any finite subset F C B and any integer L > 0, there exist a finite subset G C B depending
on € and F but not L, and § = 1/4L such that the following holds.

If A is a unital separable nuclear simple C*-algebra with TR(A) <1 and ¢; : B — A are two homomor-
phisms satisfying the following:

() there are ag;,by; € A, 4,7 < L with

1D agi61(9)agi — 1all <1/16 and
:

1> b i62(9)bg,s — 1all < 1/16
M

for all g € G;
(i) (¢1)« = (¢2)« on Ko(B); and,
(iii} if [|r o ¢a(g) =T o 2(g)ll < 6 for alig € G,
then there exists a unitary u € A such that

o1(f) —u*do(Hull <e for all feF.

From the above we obtain the following theorem which is an approximate version of 8.1

Theorem 8.3. Let A be a unital simple C*-algebra with TR(A) < 1 and C be a C*-subalgebra of A with
the form
C = ®Mp;)(C(X;)), where X; = [0,1], or X is a point. Then for any finite subset F C C and £ > 0, there
ezist § > 0, 0 > 0 and a finite subset G C A satisfying the following:

if L1, Ly : A — B are two unital G-6-multiplicative contractive completely positive linear maps, where B
is @ unital simple C*-algebra with TR{B) < 1, with (Lilc)s = (Lalc)s on Ko(C) and

[7(L1(g)) —To La(g)i <o
for all g € G and for all T € T(B), then there is a unitary u € A such that
BL1(f) —w*Ly(flull <e for all feF.
An easy version of 8.2 is the following.

Theorem 8.4. Let A be a unital simple C*-algebra with TR(A) < 1 and B = ®Mp;)(C(X;)) with X; =
[0,1}, or X; is a point. Let ¢; : B — A be two monomorphisms such that

($1)s = ($2)s : Ko(B) — Ko(A) and



TOP1 =TOPs
for all T € T(A).
Then there is a sequence of unitaries u, € A such that

lim )¢ (z)u, = ¢o(z) for all z € B.
T OQ

For the uniqueness theorem, we begin with the following. The proof of it depends on an approximate
version of 5.1 and results in section 7 such as 7.6 (see also [18]).

Theorem 8.5. Let A be a unital separable simple amenable C*-algebra which satisfies the Universal Co-
efficient Theorem and L : U{My(A)) — Ry be a map. For any € > 0 and any finite subset F C A there
exist o positive number § > 0, a finite subset G C A, a finite subset P C P(A) and an integer n > 0
satisfying the following: for any unital simple C*-algebra B with TR(B) <1, if ¢, %, 0 : A — C are three
G-6-multiplicative contractive completely positive linear maps with

¢l = Wi,

cel(@(u) P(w)) < Liw)
for allvw € U(A) NP and o is unital,
then there is a unitary u € Mp41(B) such that

u"diag(cﬁ(a), O'(G), T ,a(a))u g dlag("ﬁ("‘)) a(a), e 70(0‘))

for all a € F, where o(a) is repeated n times.

if TR(A) < 1, one can absorb the map o. To control cel(¢(u)*1(u)), on the other hand, is entirely a
different matter. We found when K1{A4) has no infinite cyclic part, a uniqueness theorem could be easily
stated and not too difficult to obtain from the above and Theorem 8.3. Note that tracial information becomes
a part of invariant.

Theorem 8.8. Let A be a unital separable simple C*-algebra with TR(A) < 1 and with torsion Ki(A). For
any € > 0 and any finite subset F C A there exist § > 0, 0 > 0, a finite subset P C P(A) and a finite subset
G C A satisfying the following:
for any unital simple C*-algebra B with TR(B) < 1, any two G-6-multiplicative completely positive linear
contractions Ly, La : A — B with
[Li]ip = [Lellp
and

sup {|roLi(g) —ToLa(g)l} <c
TeT(B)

for all g € G, there ezists o unitary U € B such that
ad(U)yo Ly = Ly on F.
An immediate consequence of the above is the following.

Theorem 8.7. Let A be a unital amenable simple C*-algebra with TR(A) < 1 and with torsion K1(A)
which satisfies the UCT. Then an automorphism o : A — A is approzimately inner if and only if [o] = lid4]
in KL(A, A) and 7o a(z) = 7(z) for allz € A and 7 € T(A).

Some further references: {22] and [23]
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9 An existence theorem

Since in 8.6, tracial information is needed in the unigueness theorem, in the statement of existence theorem,
one also needs to match the required tracial information. Theorem 9.3 is the first step in that direction:

Definition 9.1. Let A and B be two unital stably finite C*-algebras and let a : Ko(A4) — Ko(B) be a
positive homomorphism and A : T{B) — T(4) be a continuous affine map. We say A is compatible to o if
A(r)(z) = r(a(z)) for all z € Ko(A), where we view 7 as a state on Ko(A).

Let S be a compact convex set. Denote by Aff(S) the set of all (real) continuous affine functions
on S. Let A : S — T be a continuous affine map from S to another compact convex set 7. We denote
by Ay : AFF(T) — Aff(S) the unital positive linear continuous map defined by Ay(f)(s) = f(A(s)) for
f e Aff(T).

Definition 9.2. A positive linear map £ : Af fT(A) — AffT(B) is said to be compatible to a if EB)(r) =
7(a(p)) for all 7 € T(B) and any projection p € Me(4).

Let A be a unital C*-algebra (with at least one normalized trace). Define @ : A — AffT(A) by
Q(a){r) = 7{(a) for a € A. Then Q is a unital positive linear map.

Theorem 9.3. Let A = M(C([0,1])), let B be a unital separable nuclear simple C*-algebra with TR(B) <1,
let v : Ko(A) = Ko(B) be a positive homomorphism and let A : T(B) — T(A) be an affine continuous map
which is compatible to .

Then, for any o > 0 and any finite subset G C A, there exists a unital monomorphism ¢ . A — B such
that

sup {jrod(g) ~ A7) ()} <@

T€T(B)
forallg€ G and ¢ = .

To construct a map with given “K K-data,” we use the known result for simple C*-algebras with tracial
rank zero. The strategy is first to map the given unital simple C*-algebra A with TR(A) <1 to a unital
simple C*-algebra C with TR(C) = 0 whose scaled order K-groups are the same as that of B. We then
maps C to B. To this end, we begin with the following.

Proposition 9.4, Let B be a unital separable amenable simple C*-algebra with TR(B) < 1. Then there
ezists o unital separable amenable simple C*-algebra C with TR(C) = 0 such that

(Ko(C), Ko(C)+, [Lc}, K1(C)) = (Ko(B), Ko(B)+, [La}, K1(B)).
We then to establish the following.

Lemma 9.5. Let A and B be unital separable nuclear simples C*-algebra with TR(A) <1 and TR(B) <1
satisfying the UCT such thal

(Ko(A), Ko(A)y., (1], K1 (A)) = (Ko(B), Ko(B)+, 18], K1(B}). (el)
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Suppose that there exists a unital separable nuclear simple C*-algebra C with TR(C) = 0 satisfying UCT
and the following:

(Ko(C), Ko(C)+, [1c], K1 (C)) = (Ko(B), Ko(B)+, 18], K1(B))-

Then there exists a sequence of contractive completely positive linear maps &, : A — C such that (i)
limp—oo “‘I)'n(a'b) - Qn(a)Qn(b)” =0 fora,b€ A,
(i1} For each finite subset P C P(A) there ezists an integer N > 0 such that

[©n]lp = [o]l»
for alln > N, where o € KL{A, B) which gives an identification in (e 1) above.
We then combine 9.5, with 9.4 and 9.3 to prove the following.

Theorem 9.6. Let A and B be two unital separable amenable simple C*-algebras with TR(A) £ 1 and
TR(B) £ 1 satisfying AUCT such that

(Ko(B), Ko(B)+, (18], K1(B), T(B)) = (Ko(A), Ko(A), [Lal, K1(A), T(4))- (e2)

Then there is a sequence of coniractive completely positive linear maps {9, } from A to B such that
(i) iMoo || ¥n(ab) — Tp(@)Tp{b)|| = 0 for all a,b € A4,
(i} for any finite subset set P C P(A),

[@allp = alp,

for all sufficiently large n, where o € KL(A, B) gives the identification on K-theory in (e2) and
(iit)
im  sup {|7 0 ¥pu(a) - &(Qa))(7)I} =0

n0 L eT(B)

for all a € A, 4, where € : AffT(A) — AffT(B) is the affine isometry given above (in (e2)).

Some further references: [13] and [46]

10 The classification theorem

Now, by applying, again, the Elliott approximate intertwining argument, and by combing the uniqueness
theorem (8.6) and the existence theorem (9.6), we establish the following classification theorem.

Theorem 10.1. Let A and B be two unital separable simple amenable C*-algebras with TR(A) < 1 and
TR(B) < 1 which satisfy the UCT. Suppose that K1(A) and K1(B) are torsion. Then A= B if and only if

(Ko(A), Ko(A)+, [L4), K1(A), T(4)) = (Ko(B), Ko(B)+, [18], K1 (B), T(B)).

For general case, there is no difficulty to state a right unigqueness theorem which can be easily derived
from Theorem 8.5. Let A be a unital separable simple amenable C*-algebra with infinite cyclic elements in
K1(A). Then tracial information provides only a portion of the information about the group U{A)/CU(A).
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Inevitably, controlling exponential length of homomorphisms becomes difficult. Since maps that provided
by 9.3 are not even multiplicative, controlling the exponential length becomes even messy.

Given a unitary u € U(A)\Us(A), there is nothing to measure the “length” of u or ¢(u), where¢: A— B
is a map provided by 9.3 since they do not connect to the identity. So one cannot choose ¢ to meet
the requirement of controlling exponential length. The length issue comes when we have the second map
¢ : B — A. At that point, we need to control cel(y o ¢(uju®). If Ky (A) (and K;(B) ) is a torsion group,
with the tracial information together with Theorem 7.8, cel(s) o ¢(u)u*) is already under control. However,
in general, there is nothing one can say about cel(1 o ¢(u)u*). What we need is another type of existence
theorem which can alter the known length of (¢ o ¢{u)u*) so that it can be bounded by & per-determined
bound. The results in section 7 helps but not sufficient. In the actual proof of Theorem 10.2 below we
will map A4 into an AH-algebra and control the exponential length there. A few things have to be done
before this could be made possible. While the structure of U(A)/CU(A) is heavily used in the proof of the
following theorem, it should be noted that U(A)/CU(A) is not used as part of the isomorphic invariant in
the statement.

Theorem 10.2. ([31]) Let A and B be two unital separable simple amenable C” -algebras with TR(4) <1
and TR(B) < 1 which satisfy the UCT. Then A= B if and only if

(Ko(A), Ko(A)+, [14], K1(A), T(A4)) & (Ko(B), Ko(B)+, [18], K1(B), T(B))-

Some further references: [47] and [48].
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