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1 Introduction

In this survey report we will discuss the classification of separable simple amenable $C^{*}$-algebras with tracial

rank no more than one. This is a part of the Elliott program of classification of simple am enable C’-algebras.

The main question of interest is: Given two simple separable amenable $C^{*}$ algebras $A$ and $B$ , when they

are isomorphic7 The Elliott program is to find a complete $K$ theoretical isomorphic invariant for a class of

simple C’-algebras. Let us mention a couple of important developments in the program without attempting

to give any historical account. The program started with the Elliott classification of inductive limits of

circle algebras with real rank zero ([10]) which states that two unital inductive limits of circle algebras

with real rank zero are isomorphic if the associated scaled ordered $K$-groups ( $K_{0}$ together with $K_{1}$ ) are

(order) isomorphic. A pre-program result of Elliott that classifies $\mathrm{A}\mathrm{F}$-algebras should also be mentioned

([9]). Another high light is the Elliott-Gong’s ([12]) result of classification of simple AH-algebras with no

dimension growth of real rank zero. For purely infinite simple C’-algebras, there is no doubt that most

satisfactory result is the Kirchberg and Phillips’s classification of purely infinite simple separable amenable

C’-algebras which satisfy the Universal Coefficient Theorem (see [19] and [40] , see also an earlier result of

[43] $)$ . A more recent result of Elliott-Gong -Li ([13]) classifies simple $\mathrm{A}\mathrm{H}$-algebras with no-dimension growth

opens the door to classify separable simple amenable C’-algebras beyond the class of C’-algebras with real

rank zero.
In this report, we will only discuss stably finite C’-algebras. We believe that, while the Elliott program

is far from complete, it has sufficiently many fruitful results so that harvest of these results should also be

on the top of agenda. For that, we mean the application of those results. For the application purpose, we

will discuss how to classify simple $C^{*}$-algebras that are not assumed to be inductive limits of certain basic

building blocks. One rich source of simple amenable C’-algebras which satisfy the Universal Coefficient

Theorem are crossed products of minimal homeomorphisms on some compact metric space. One of the

question that we will discussed is: Does the Elliott program provide a classification for those $C^{*}- \mathrm{a}1\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{s}^{7}$

We will describe the classification of unital separable simple amenable $C^{*}$-algebras with tracial rank no

more than one. The report is organized as follows. Section 2 gives the definition of C’-algebras of tracial rank

zero and introduce an isomorphism theorem for separable simple amenable C’-algebras with tracial rank

zero. Section 3 described certain C’-algebras which have tracial rank zero. Section 4 discusses the question
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when a crossed products arisen from minimal homeomorphisms on a compact metric space has tracial rank
zero. We present a result in [36] which answers the question. Section 5 is devoted to the description of the
proof of the classification result mentioned in Section 2. Starting Section 6, we discuss simple C’-algebras
with tracial rank one. We will attempt to describe the difficulties that one needs to overcome in order to give
the classification theorem for simple amenable $C^{*}$ -algebras with tracial rank greater than zero. In Section 7,
we give some results concerning the unitary groups of simple $C$“-algebras with tracial rank one. In Section
8, we present a version of uniqueness theorem that is required for the classification. In Section 9 we present

an existence theorem. Finally, in Section 10, we present a classification theorem for unital separable simple

amenable C’-algebras with tracial rank no more than one.
This report was presented in a RIMS Symposium in Kyoto University in January 2005.

2 Classification of simple C’-algebras with tracial rank zero
We start with C’-algebras with “topological rank zero” and “topological rank one”. We think that a“

standard” C’-algebra $C$ with “topological rank zero” should have the form

$C=\oplus M_{R(i)}i=1m$ ,

and a standard” C’-algebra $C$ with “topological rank one” should have the form

$C=\oplus M_{R(i)}(C(X_{i}))i=1m$ ,

where each $X_{i}$ is an one-dimensional finite CW complex.

To obtain more interesting C’-algebras, one should consider the limits of C’-algebras with “topological

rank zero” and limits of C’-algebras with “topological rank one.” Thus all $AF$ -algebras should have rank

zero.
Let us consider only simple C’-algebras.

Definition 2.1. ([28]) Let $A$ be a unital simple $C^{*}- \mathrm{a}1\mathrm{g}\mathrm{e}\mathrm{b}_{1}\cdot \mathrm{a}$. Then $A$ has tracial topological rank zero and

we will write $TR(A)=0$ if the following holds: For any $\epsilon$ $>0$ and any finite subset $T$ $\subset A$ containing a

nonzero element $a\in A_{+}$ , there is a C’-subalgebra $C$ in $A$ where $C$ $=\oplus_{i=1}^{k}M_{n_{i}}$ , such that $1_{C}=p$ satisfying

the following:
(i) $||px-xp||<\epsilon$ for $x\in F$ ,
(ii) $pxp\in_{\epsilon}C$ for $x\in F$ and
(iii) $1-p$ is equivalent to a projection in $aAa$ .

If $p$ can be chosen to be 1, the above definition gives $\mathrm{A}\mathrm{F}$-algebras. The definition says that, in a unital

simple C’-algebra $A$ with $TR(A)=0$ , the part that may not be approximated by finite dimensional $C^{*}-$

algebras must have small “measure” (or rather small $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$).

Theorem 2.2. ([28]) Let A be a unital separable simple C’-algebra with $TR(A)=0$. Then

. A is quasidiagonal
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. $A$ has real rank zero;

. $A$ has stable rank one;. $K_{0}(A)$ is weakly unperforated and with Riesz interpolation property;

. $A$ has the fundamental comparison property;

if $p$ , $q\in A$ are two projections and $\tau(p)<\tau(q)$ for all $\tau\in T(A)$ , then $p\sim q’$ with $q’\leq q$ .

Theorem 2.2 suggests that the class of separable am enable simple C’-algebras with tracial rank zero is a

reasonable replacement for the class of separable amenable simple quasidiagonal $C^{*}$-algebras with real rank

zero, stable rank one and with weakly unperforated $K_{0^{-}}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{s}$.
Recall that a C’-algebra $A$ is $\mathrm{A}\mathrm{H}$ , if

$A= \lim_{narrow\infty}A_{n}$ ,

where $A_{n}=\oplus_{i=1}^{k(n)}\mathrm{P}\{\mathrm{i},\mathrm{n}$) $M_{R(i,n\}}(C(X\langle i,n)))P(:,n)$ ’ and $\mathrm{P}\{\mathrm{i},\mathrm{n}$ ) $\in M_{R(\iota,n)}(C(X_{n}))$ is a projection and $X(\dot{\tau},n)$ is a

connected finite CW-complex.

If $A$ is simple, we say $A$ has slow dimension growth if

$\lim_{narrow\infty}\max_{i}\frac{\dim X_{(\mathrm{z},n)}}{1+\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}P_{(i.n)}}=0$.

$A$ is said to have no dimension growth, if there is an integer $m>0$ such that

$\dim X_{(i,n)}\leq m$

for all $\mathrm{i}$ and $n$ .
Elliott and Gong ([12]) showed that every simple $\mathrm{A}\mathrm{H}$-algebra with no dimension growth and real rank

zero has tracial rank zero.

Theorem 2.3. ( [12]) Let A and B be tuto unital simple $AH$-algebras with no dimension growth and with

real rank zero. Then A $\cong B$ if and only if

$(K_{0}(A), K_{0}(A)_{+}.$
’ [12] ) $K_{1}(A\rangle)\cong(K_{0}(B), K_{0}(B)_{+},$ [1B], $K_{1}(B))$ .

Moreover, for any weakly unperforated ordered group $G_{0}$ with the Riesz interpolation property, an order unit
$e\in G_{0}$ , and for any countable abelian group $G_{1}$ , there exists a unital simple $AH$-algebra A with no dimension

growth and with real rank zero such that

$(K_{0}(A), K_{0}(A)_{+}$ , [12] ) $K_{1}(A))=(G_{0}, (G_{0})_{+}$ , e, $G_{1})$ .

Later M. Dadarlat ([6]) and G. Gong ([15] and [16]) showed that simple $\mathrm{A}\mathrm{H}$-algebras with slow dimension

growth and with real rank zero have no dimension growth.
For unital simple separable C’-algebras with tracial rank zero, one has
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Theorem 2.4. ([30]) Let $A$ and $B$ be two unital separable amenable simple C’-algebras
with $TR(A)=TR(B)=0$ which satisfy the $UCT$.

Then $A\cong Bf$ and only if

$(K_{0}(A), K_{0}(A)_{+}$ , $[1_{A}]$ , $K_{1}(A))\cong(K_{0}(B), K_{0}(B)_{+},$ $[1B]$ , $K_{1}(B))$ .

Some further references: [26], [27], [7], [29] and [37],

3 Which C’-algebras have tracial rank zero ?

In this section we will discuss the problem when the converse of Theorem 2.2 holds.
We begin with simple AH-algebras.

Theorem 3.1. ([33]) For a unital simple $AH$-algebra, the following are equivalent:. $TR(A)=0$;. $A$ has real rank zero and has the fundamental comparison property;

’ $A$ has real rank zero and stow dimension growth;. $A$ has real rank zero, stable rank one and has weakly unperforated $K_{0}(A)$ .

As observed by N. Brown (see, for examPle,[3]) that some additional condition on the structure of traces
are required to obtain a converse of Theorem 2.2. We described below.

Definition 3.2. Let $A$ be a C’-algebra. Denote by $n\hat{A}$ the subset of $\hat{A}$ consisting of irreducible represen-
tations with finite dimension less than or equal to $n$ . Put $\hat{A}_{n}$ =n\^A\n-lA It is known that $n\hat{A}$ is always

closed and $\hat{A}_{n}$ is a HausdorfT space in its relative topology.

The following proposition also serves as a definition.

Proposition 3.3. Let A be a C’-algebra and $\tau$ be a tracial state. Then the following are equivalent:

1) $\tau$ is $AC_{\mathrm{i}}$

2) There $u$ a sequence $\{a_{n}\}$ of nonnegative numbers with $\sum_{n=1}^{\infty}a_{n}=1$ and a sequence of positive regular

probability Borel measures $\mu_{n}$ $\mathit{0}n$
$\hat{A}_{n}$ such that

$\mu=\sum_{n=1}^{\infty}a_{n}\mu_{n}$ ;

3) $||\tau|_{J_{n}}||arrow \mathrm{O}$ , where
$I_{n}=$ {a $\in A$ : $\pi(a)=0$ for $\pi$

$\in n\hat{A}$ }.

Recall that a separable -algebra $A$ is said to be RFD, if for any $a\in A$ , there is a finite dimensional

irreducible representation $\pi$ such that $\pi(a)\neq 0$ .
The tracial state space of a unital simple C’-algebras with $TR(A)=0$ has the following special feature
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Theorem 3.4. Let $A$ be a unital separable simple C’-algebra with $TR(A)=0$ . Then there is an increasing

sequence of $RFD$ C’-algebras $A_{n}$ such that $A=\overline{\mathrm{U}_{n=1}^{\infty}A_{n}}$ and $\tau|A_{n}$ is $AC$ for each tracial state $\tau$ of A. In

other words, $T(A)$ is a set of approximately $AC$ tracial states.

Theorem 3.5, ([32]) Let $A$ be a unital separable simple C’-algebra with countably many extremal tracial

states. Then $TR(A)=0$ if and only if $A$ has real rank zero, stable rank one, weakly unperforated $K_{0}(A)$ and

$T(A)$ is approximately $AC$.

For many cases, $T(A)$ is always approximately $\mathrm{A}\mathrm{C}$ .
Proposition 3.6, If $A$ is a unital -algebra such that $A$ is an inductive limit of type I C’-algebras, then

$\mathrm{T}(\mathrm{A})$ , the tracial state space of $A$ , $l\mathrm{S}$ approximate $AC$.

Combining 3.5 and 3.6, we have the following.

Corollary 3.7. ([32]) Let $A$ be a unital simple C’-algebra which is an inductive limit of type I C’-algebra$s$ .
Suppose that $T(A)$ has countably many extremal points. Then $TR(A)=0$ if and only if $A$ has real rank zero,

stable rank one and weakly unperforated $K_{0}(A)$ .

It perhaps worth to point out that the class of inductive limits of tyPe I C’-algebras includes $C^{*}$ -algebra

with the following forms:
(1) $A= \lim_{narrow\infty}A_{n}$ , each $A_{n}$ has continuous $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ ;

(2) $A= \lim_{narrow\infty}A_{n}$ , each $A_{n}$ is sub-homogeneous;

(3) $A=\mathrm{h}.\mathrm{m}_{narrow\infty}A_{n}$ , each $A_{n}$ has only finite dimensional irreducible representation;

We would like to leave the following question:
Question: Let $A$ be a unital separable amenable quasidiagonal simple C’-algebra with unique tracial

state. Suppose that $A$ has real rank zero, stable rank one and weakly unperforated $K_{0}(A)$ . Does $A$ have

tracial rank zero?
Some further references: [3] and [5] .

4 Simple Crossed Products

Definition 4.1. Let $X$ be a compact metric space and let a : $Xarrow X$ be a minimal homeomorphism. Let
$\mathrm{C}(\mathrm{X})\mathrm{x}_{\alpha}\mathbb{Z}$ be the transformation group C’-aigebra (the crossed product).

If $X$ has infinitely many points, then $C(X);\triangleleft_{\alpha}\mathbb{Z}$ is simple. Note that $C(X)\mathrm{r}_{\alpha}\mathbb{Z}$ satisfies the Universal

Coefficient Theorem (UCT).

Question: When $TR(C(X)\rangle \mathrm{t}_{\alpha}\mathbb{Z})=0^{7}$

Definition 4.2. Let $A$ be a unital stably finite $\mathrm{C}’arrow \mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}$ and let AS(T(A)) be the space of all real affine

continuous functions on the compact convex set $T(A)$ . Let

$\rho$ : $K_{0}(A)arrow Aff(T(A))$

be the positive homomorphism induced by

$\rho([p])(\tau)=\tau(p)$

for projection $p\in A$ .



17

If A is a unital simple C’-algebra with real rank zero and stable rank one, then $\mathrm{p}(\mathrm{K}_{\mathrm{q}}(\mathrm{A}))$ is dense in
$Aff(T(A))$ . (see [2])

Furthermore, a result of N. C. Phillips (1.10 of [41]) states that if $X$ is an infinite compact metric space
and $\alpha$ : $Xarrow X$ is a minimal homeomorphism, and if $A_{\alpha}=\mathrm{C}(\mathrm{X})$ $)\mathrm{r}_{\alpha}\mathbb{Z}$ has real rank zero, then $\rho(K_{0}(A_{\alpha}))$

is dense in $Aff(T(A_{\alpha}))$ .
A recent result shows that, under the assumption that $X$ has finite dimensional, the converse of the above

and much more are true.

Theorem 4.3. ([36])
Let X be an infinite compact metric space with finite covering dimension and $\ell et$ a : X $arrow X$ be a minimal

homeomorphism. Denote $A_{\alpha}=C(X)$ $)\triangleleft_{c}\mathbb{Z}$. Then $TR(A_{\alpha})=0$ if and only if $\rho(A_{\alpha})$ is dense in A$ff(T(A_{\alpha}))$ .
Let us consider the case that $(X, \alpha)$ is uniquely ergodic.
Let $X$ be a connected compact metric space, let $\alpha:Xarrow X$ be a homeomorphism, and let $\mu$ be an

$\alpha$-invariant Borel measure on $X$. Then the rotation number $\rho_{\alpha}^{\mu}$ associated with $\alpha$ and $\mu$ is a homomorphism
with domain the kernel of the homomorphism

id $-(\alpha^{-1})’$ : $K^{1}(X)arrow K^{1}(X)$

and codomain $\mathbb{R}/\mathbb{Z}$ .
It is defined as follows. As usual, let $\phi_{\alpha}$ : $C(X)arrow C(X)$ be the automorphism $\phi_{\alpha}(f)=f\circ\alpha^{-1}$ .
Let $u\in U(M_{n}(C(X)))$ satisfy (id $-(\alpha^{-1})^{*}$ ) $([u])=0$ . Let $v=\phi_{\alpha}(u^{*})u$ . Then $[v]=0$ in $K_{1}(C(X))$ .

Increasing the matrix size and replacing $u$ by diag(u, 1), we may assume that $v\in U_{0}(M_{n}(C(X)))$ . Then
there exist $a_{1}$ , a2, $\ldots$ , $a_{m}\in M_{n}(C(X))_{sa}$ such that $\prod_{k=1}^{m}e^{ia_{k}}=v$ .

Now define
$\rho_{\alpha}^{\mu}([u])=\mathbb{Z}+\frac{1}{2\pi}\int_{X}\sum_{k=1}^{m}\mathrm{T}\mathrm{r}(a_{k}$($) $)$ $d\mu(x)$

(see [14]).

Theorem 4.5. Let $X$ be a compact metric space with finite covering dimension, let $\alpha$ : $Xarrow X$ be a minimal
homeomorphism. Suppose that $\rho(K_{0}(C(X)\rangle\triangleleft_{\alpha}\mathbb{Z}))$ is dense in A$ffT(C(X)>\triangleleft_{\alpha}\mathbb{Z}))$ . Then $C(X)\rangle\triangleleft_{\alpha}\mathbb{Z}$ is $a$

simple AH-algebra.

The proof of the above theorem is an application of 4.3 and the classification theorem 2.4.
We end this section with the following theorem which is also a combination of Theorem 4.3 and 2.4.

Theorem 4.6. ([36]) Let $X$ be a compact metric space with finite covering dimension, let $\alpha,\beta$ : $Xarrow X$ be

a minimal horneomorphisrn and let $A_{\alpha}=C(X))\triangleleft_{\alpha}\mathbb{Z}$ and Ap $=C(X)$ $\rangle\triangleleft\beta$ Z. Suppose that $\rho(K_{0}(A_{\alpha}))$ and
$\rho(K_{0}(A\beta))$ are dense in A$ffT(A_{\alpha}))$ and A$ffT(A\beta)))$ respectively
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Then
$A_{\alpha}\cong A_{\beta}$

if and only if
$(K_{0}(A_{a}), K_{0}(A_{\alpha})_{+}$ , $[1_{A_{a}}]$ , $K_{1}(A_{\alpha}))\cong(K_{0}(A_{\beta}), K_{0}(A_{\beta})_{+},$ $[1_{A_{\beta}}]$ , $K_{1}(A_{\beta}))$ .

5 Proof of Theorem 2.4

Let $A$ and $B$ be two C’-algebras and let $\phi$ : $Aarrow B$ be a contractive completely positive linear map. Let

($;\subset A$ be a finite subset and let $\delta$ $>0$ . We say that $\phi$ is $\mathcal{G}-\delta$-multiplicative if

$||\phi(a)\phi(b)-\phi(ab)||<\delta$

for all $a$ , $b\in F$ .
Homomorphisms from $A$ to $B$ are always g-b -multiplicative for any finite subset $\mathcal{G}$ and $\delta$ $>0$ . In general

a Q-S-multiplicative may not close to any homomorphisms.

Let $L_{1}$ , $L_{2}$ : A $arrow B$ be two maps We write

$L_{1}\approx_{\epsilon}L_{2}$ on $F$

if
$||L_{1}(a)-L_{2}(a)||<\epsilon$ , for all a $\in F$ .

Let $A$ be a C’-algebra. Denote by $\mathrm{P}(A)$ the set of all projections and unitaries in $M_{\infty}(\overline{A\otimes C}_{n})$ , $n=$

$1,2$ , $\ldots$ , where $C_{n}$ is an abelian C’-algebra so that

$K_{i}(A\otimes C_{n})=K_{*}(A;\mathrm{Z}/n\mathrm{Z})$ .

One also has the following exact sequence

$\mathrm{K}\mathrm{Q}(\mathrm{A})$ $arrow$ $K_{0}(A, \mathrm{Z}/k\mathrm{Z})$ $arrow$ $K_{1}(A)$

$\uparrow \mathrm{k}$

$\downarrow \mathrm{k}$

$\mathrm{K}\mathrm{Q}(\mathrm{A})$ $arrow$ $K_{1}(A, \mathrm{Z}/k\mathrm{Z})$ $arrow$ $K_{1}(A)$

(see [44]).
Following Dadarlat and Loring ([8]), we use the notation

$\underline{K}(A)=\oplus_{i=0,1,n\in \mathrm{z}_{+}}K_{i}(A;\mathrm{Z}/n\mathrm{Z})$ .

By $Hom_{\Lambda}(\underline{K}(A),\underline{K}(B))$ we mean all homomorphisms from $\underline{K}(A)$ to $\mathrm{K}\{\mathrm{B}$ ) which respect the direct

sum decomposition and the so-called Bockstein operations. Denote by $Hom\Lambda(\underline{K}(A),\underline{K}(B))^{++}$ those $\alpha$ $\in$

HomA(K(A), $\mathrm{K}(\mathrm{B})$ ) with the property that $\alpha(K_{0}(A)_{+}\backslash \{0\})\subset K_{0}(B)_{+}\backslash \{0\}$. If $A$ satisfies the Universal
Coefficient Theorem, then $Hom_{\mathrm{A}}(\underline{K}(A),\underline{K}(B))\cong KL(A, B)$ .
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Moreover, one has the following short exact sequence,

$0arrow$ Pext(K. (A), $K_{*}(B)$ ) $arrow KK(A, B)arrow KL(A, B)arrow \mathrm{O}$

Let $L$ : $Aarrow B$ be a contractive completely $\mathrm{p}\mathrm{o}\underline{\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}}$ linear map. We also use $L$ for the extension from
A@K\rightarrow B@ rs as well as maps from $A\otimes C_{n}arrow B\otimes C_{n}$ for all $n$ .

Given a projection $p\in \mathrm{P}(A)$ , if $L$ : $Aarrow B$ is an $.F-\delta$-multiplicative contractive completely positive linear
map with sufficiently large $F$ and sufficiently small 6,

$||L(p)-q’||<1/4$

for some projection $q’$ . Define $[L](p)=[q’]$ in $\underline{K}(B)$ . It is easy to see this is well defined. Suppose that $q$ is
also in $\mathrm{P}(A)$ with $[q]=k\mathrm{p}]$ for some integer $k$ . By adding sufficiently many elements (partial isometries) in
$F$ , we can assume that $[L](q)=k[L](p)$ .

Similarly, one can do the same for unitaries. Let $P$ $\subset \mathrm{P}(A)$ be a finite subset. We say $[L]|_{\mathcal{P}}$ is well
defined if $[L]$ $(p)$ is well defined for every $p\in P\mathrm{a}\mathrm{n}\mathrm{d}$ if $|p’$ ] $=\phi$] and $p’\in P$ , then [L](p) $=[L](p)$ . This always
occurs if $\mathcal{F}$ is sufficiently large and 6 is sufficiently small. In what follows we write $[L]|\mathrm{p}$ when [1] is well
defined on $P$ .

Given two separable amenable simple C’-algebras $A$ and $B$ as described in Theorem 2.4, To prove that
$A\cong B$ , we deploy a strategy of Elliott, called approximate intertwining.

We first to construct a map $\phi$ : $Aarrow B$ from the order isomorphism from $K_{*}(A)$ to $K_{*}(B)$ and a
map $\psi$ : $Barrow A$ from the order isomorphism from $K_{*}(B)$ to $K_{*}(A)$ , respectively. A theorem provides $\phi$

and $\psi$ is called “existence theorem”. If there were a unitary $u_{1}\in A$ and there were a unitary u2 $\in B$

such that ad $u_{1}\mathrm{o}(\psi\circ\phi)=\mathrm{i}\mathrm{d}_{A}$ and ad $u_{2}\mathrm{o}(\phi 0\psi)=\mathrm{i}\mathrm{d}_{B}$ , then one would immediately obtain the desired
isomorphism. How ever, the best possible uniqueness theorem can only assure that $\psi$ $\circ\phi$ is approximately

unitarily equivalent to $\mathrm{i}\mathrm{d}_{A}$ and $\phi 0\psi$ is approximately unitarily equivalent to $\mathrm{i}\mathrm{d}B$ . Nevertheless, the Elliott

argument of approximately intertwining will then provide the desired isomorphism.

It turns out, however, without assuming that C’-algebras $A$ and $B$ are inductive limits of certain building

block, the existence theorem is difficult to established. In fact, prior to the proof of Theorem 2.4, one could

only provide maps that are not homomorphisms each of which carries only a partial $K$-theoretical information

given by the order isomorphism on $K$-theory. This adds further difficulty to the uniqueness theorem. In

other words, a uniqueness theorem should deal with maps which are not even homomorphisms. A search

for a uniqueness theorem for amenable $C^{*}$-algebras which are not assumed to be inductive limits of basic

building blocks leads us to the follow $\mathrm{i}\mathrm{n}\mathrm{g}$ .
Theorem 5.1. Let A be a separable unital amenable C’-algebra and let B a unital C’-algebra. Suppose

that $h_{1}$ , $h_{2}$ : A $arrow B$ are two unital homomorphisms such that

$[h_{1}]=[h_{2}]$ in $KL(A,$B).

Suppose that $h_{0}$ : A $arrow B$ is a full unital monomor phism. Then, for any $\epsilon$ $>0$ and finite subset F $\subset A$ ,

there is an integer n and a unitary W $\in U(M_{n+1}(B))$ such that

$||W^{*}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(h_{1}(a), h_{0}(a)$, \cdots , $h_{0}(a))W$ - diag(h $\mathrm{P}(\mathrm{A})$ , $h_{0}(a)$ , \cdots , $h_{0}(a)$ ) $||<\epsilon$

for all a $\in F$ .
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The original version of this first appeared in an earlier version of [25], A better version later stated in

[7]. The above statement is taken from [34]. After we found (an earlier version) of the above, it becomes

clear to us that a uniqueness theorem can be established for simple amenable C’-algebras with a property

that we called “TAF” which is equivalent to what we called now “tracial rank zer\"o.

Theorem 5.2. Let $A$ be a separable unital amenable simple $C^{*}$ -algebra with $TR(A)=0$ satisfying the $UCT$.

Then, for any $\epsilon$ $>0$ and any finite subset $F$ $\subset A$ , there exist $\delta$ $>0$ , a finite subset $P$ $\subset \mathrm{P}(A)$ and a finite
subset $\mathcal{G}\subset A$ satisfying the following:

for any unital C’-algebra $B$ with $TR(B)=0$, and any two $\mathcal{G}-\delta$ -multiplicative contractive completely

positive linear maps $L_{1}$ , $L_{2}$ : $Aarrow B$ with
$[L_{1}]|_{\mathrm{P}}$ $=[L_{2}]|_{P}$

there exists a unitary $U\in B$ such that

adU $\mathrm{o}L_{1}\approx_{\epsilon}L_{2}$ on F.

Combing the above uniqueness theorem with the following existence theorem, by applying the Elliott

approximate intertwining argument, we establish 2.4.

Theorem 5.3. Let $A$ and $B$ be two unital separable simple amenable $C^{*}$ -aigebras with tracial rank zero
which satisfy the Universal ’Coefficient Theorem. Then, for any $z\in KL(A, B)$ which gives an order unit

preserving order isomorphism from $(K_{0}(A)\}K_{0}(A)_{+}, [1_{A}], K_{1}(A))$ to $(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]$ , $K_{1}(B))$ , there

exists a sequence of contractive completely positive linear maps $\phi_{n}$ : $Aarrow B$ such that

$\lim_{narrow\infty}||\phi_{n}(ab)-\phi_{n}(a)\phi_{n}(b)||=0$

for all $a$ , $b\in A$ and $\{\phi_{n}\}$ induces $z$ .

Some further references: [27],[7], [29] and [18].

6 Tracial rank one

Now we turn to $C^{*}$ -algebras with tracial rank one.

Definition 6.1. Let $A$ be a unital simple C’-algebra. Then $A$ has tracial topological rank no more than one

and we will write $TR(A)\leq 1$ if the following holds: For any $\epsilon$ $>0$ , and any finite subset $T$ $\subset A$ containing

a nonzero element $a\in A_{+}$ , there is a C’-subalgebra $C$ in $A$ where $C$ $=\oplus_{i=1}^{k}M_{n\mathrm{i}}$ $(C(X_{i}))$ , where each $X_{i}$ is

a finite CW complex with dimension no more than one such that $1c=p$ satisfying the following:

(i) $||px-xp||<\epsilon$ for $x\in \mathcal{F}$ ,
(ii) $pxp\in_{\epsilon}C$ for $x\in F$ and
(iii) $1-p$ is equivalent to a projection in $aAa$.
In the above definition, if $C$ can always be chosen to be a finite dimensional $C^{*}$-subalgebra then $TR(A)=$

$0$ . If $TR(A)\leq 1$ but $TR(A)\neq 0$ then we will write $TR(A)=1$ . The definition requires that the part of

C’-algebra $A$ which can not be approximated by C’-algebras with the form $C$ described above has small

“measure” (or small $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$). It is clear that if $A$ is an inductive limit of $C^{*}$ -algebras $A_{n}$ with the form
$A_{n}=\oplus_{j=1}^{k(n)}M_{r(i,n)}(X_{i.n})$ , where each $X_{i,n}$ is a finite CW complex with dimension 1 then $TR(A)\leq 1$ .

Guihua Gong proves the follow ing theorem,
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Theorem 6.2. (G. Gong$-[17]$ ) Every simple $AH$-algebra with no dimension growth has tracial rank one or
zero.

For unital simple separable C’-algebras with tracial rank no more than one, we have the following.

Theorem 6.3. ([28]) Let $A$ be a unital separable simple C’-algebra with $TR(A)\leq 1$ . Then. $A$ is quasidiagonal;. $A$ has real rank zero or one;. $A$ has stable rank one;. $K_{0}(A)$ is weakly unperforated and with Riesz interpolation property;. $A$ has the fundamental comparison property:

if $p$ , $q\in A$ are two projections and $\tau(p)<\tau(q)$ for all $\tau\in T(A)$ , then $p\sim q’$ with $q’\leq q$ .

Theorem 6.2. ij $TR(A)=1$ and A has real rank zero, then $TR(A)=0$.

In the definition of 6.1, $C$ has the form $\oplus_{i=1}^{k}M_{R(\mathrm{i})}(C(X_{i}))$ , where each $X_{i}$ is a one-dimensional finite
CW complex. In fact, it is equivalent to require that $C$ has the form $\oplus_{i=1}^{k}M_{R(i)}(C([\mathrm{O}, 1]))$ .

For simple $\mathrm{A}\mathrm{H}$-algebras with no dimension growth, we have the following classification theorem.

Theorem 6.5. (Elliott, Gong and Li-[13] ) Let $A$ and $B$ be two unital simple $AH$-algebras with no dimension
growth. Then $A\cong B$ if and only if

$(K_{0}(A), K_{0}(A)_{+}$ , [Is], $K_{1}(A),T(A))\cong(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]$ , $K_{1}(B)$ , $T(B))$ .

Definition 6.6. By

$(K_{0}(A), \mathrm{K}\mathrm{Q}(\mathrm{A})$ . [Is], Kq (A) $\mathrm{T}\{\mathrm{A}$ ) , $\cong(K_{0}(B), K_{0}(B)+$ , [Is], $K_{1}$ (B), $T(B))$ ,

we mean. there is an order isomorphism $\gamma 0$ : $K_{0}(A)arrow K_{0}(B)$ with $\gamma 0([1A])=[1_{B}]$ ,. there is an isomorphism $\gamma_{1}$ : $K_{1}(A)arrow K_{1}(B)$ and. there is an affine homeomorphism yz : $T(A)arrow T(B)$ such that $\gamma_{2}^{-1}(\tau)(x)=\tau(\gamma 0(x))$ for a1J $\tau\in T(A)$

and x $\in K_{0}(A)$ .

Tracial topological rank can be defined for C’-algebras which are not simple (see [32]). In particular, a
unital commutative $C$ ’-algebra $A=C(X)$ , where $X$ is a compact metric space has tracial rank $k$ if and only

if the covering dimension of $X$ is $k$ . In [35], it is shown that any crossed product of a unital separable simple

C’-algebra with tracial rank one by an action $6\mathrm{n}$ $\mathbb{Z}$ which has tracial cyclic Rohlin property has tracial rank

one or zero.
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7 Unitary group $U(A)$

Let $A$ be a unital C’-algebra. Denote by $U(A)$ the unitary group of $A$ and denote by $U_{0}(A)$ the path

connected component containing the identity.

For C’-algebras with real rank zero, one has the following.

Theorem 7.1. [24] Let $A$ be a unital C’-algebra with real rank zero. Then every unitary $u\in U_{0}(A)$ can be

approximated in norm by unitaries with finite spectrum.

Let $A$ be a unital $C^{*}$-algebra and let $u\in U_{0}(A)$ . Suppose that

h $\in C$([0, 1], UO(A ) $\mathrm{h}\{1$ ) $=u$ and $h(1)=1A$ .

Put
$\mathrm{c}\mathrm{e}1(h)=\sup\{\sum_{i=1}^{k}||h(t_{i})-h(t_{\dot{x}-1})|| : t_{0}=0<t_{1}<\cdots<t_{k}=1\}$ .

Define
$\mathrm{c}\mathrm{e}1(u)=\inf${ $\mathrm{c}\mathrm{e}1(h)$ : $h(t)\in C([0,1], \mathrm{U}\mathrm{O}(\mathrm{A}) \mathrm{h}\{1)=u$ and $h(1)=1A\}$ .

Corollary 7.2. Let A be a unital C’-algebra with real rank zero. Then

$\mathrm{c}\mathrm{e}1(u)\leq\pi$

for all u $\in U_{0}(A)$ .
This is no longer true for C’-algebras with tracial rank one. In fact, if $A=C([0,1])$ , for any $L>0$ , then

there are $u\in C([0,1])$ such that
$\mathrm{c}\mathrm{e}1(u)>L$ .

It turns out that the unboundedness of exponential length for unitaries in a unital simple C’-algebras with

tracial rank one causes tremendous amount of trouble, in particular, when $C^{*}$ -algebras are not assumed to be

inductive limits of certain basic building blocks. It effects both so-called uniqueness theorem and existence

theorem.

Definition 7.3. Let $A$ be a unital $C^{*}$ -algebra. Let $CU(A)$ be the closure of the commutator subgroup of

$U(A)$ . Clearly that the commutator subgroup forms a normal subgroup of $U(A)$ , It follows that $CU(A)$ is a

normal subgroup of $U(A)$ . It should be noted that $U(A)/CU(A)$ is commutative.

Definition 7.4. If $\overline{u},\overline{v}\in U(A)/CU(A)$ define

dist $( \overline{u},\overline{v})=\inf\{||x-y||$: x, y $\in U(A)\overline{x}=\overline{u},\overline{y}=\overline{v}\}$ .

If u, v $\in U(A)$ then
dist(u\overline , $\overline{v}$ ) $= \inf\{||uv^{*}-x||$: x $\in CU(A)\}$ .

We have the following
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Lemma 7.5. Let $A$ be a unital sirnple C’-algebra with $TR(A)\leq 1$ . Let $u\in U_{0}(A)$ . Then, for any $\epsilon$ $>0$ ,
there are unitaries $u_{1}$ , $u_{2}\in A$ such that $u_{1}$ has exponential length no more than $2\pi$ , $u_{2}$ is an exponential and

$||u-u_{1}u_{2}||<\epsilon$ .

The following is very useful in establishing both uniqueness theorem and existence theorem.

Lemma 7.6. Let A be a unital $C^{*}$ -algebra
(1) $U_{0}(A)/CU(A)$ is divisible.
(2) If u $\in U\{A$) such that $u^{k}\in U_{0}(A)$ , then there is v $\in U_{0}(A)$ such that

$\overline{v}^{k}=\overline{u}^{k}$ in $U(A)/CU(A)$ .

(3) Suppose that $K_{1}(A)=U(A)/U_{0}(A)$ and $G\subset U(A)/CU(A)$ is finitely generated subgroup, Then one
has $G=G\cap(U_{0}(A)/CU(A))$ $\oplus\kappa(G)$ , where

$\kappa$ : $U(A)/CU(A)arrow U(A)/U_{0}(A)$

is the quotient map.

Theorem 7.7. ([31]) Let A be a unital simple C’-algebra with $TR(A)\leq 1$ and let u $\in CU(A)$ . Then
u $\in U_{0}(A)$ and for any $\epsilon$ $>0$ , $\mathrm{c}\mathrm{e}1(u)\leq \mathrm{S}\pi+\epsilon$ .

Theorem 7.8. ([31]) Let A be a unital simple $C^{*}$ -algebra with $TR(A)\leq 1$ . Let u, v $\in U(A)$ such that

$[u]=[v]$ in $K_{1}(A)$ and
$u^{k}$ , $v^{k}\in \mathrm{U}(\mathrm{A})$ and $\mathrm{c}\mathrm{e}1((u^{k})^{*}v^{k})<L$ .

Then for any $\xi$ $>0$ ,
$cel(u^{*}v)\leq 8\pi+L/k+\epsilon$ .

Moreover; there is $y$ $\in U_{0}(A)$ with
$\mathrm{c}\mathrm{e}1(y)<L/k+\epsilon$

such that $\overline{u^{\mathrm{v}}v}=\overline{y}$ in $U(A)/CU(A)$ .

Theorem 7.9. Let A be a unital separable simple C’-algebra with $TR(A)\leq 1$ and u $\in U_{0}(A)$ . Suppose that
$u^{k}\in CU(A)$ for some integer k $>0$ , then u $\in CU(A)$ . In particular, $U_{0}(A)/CU(A)$ is torsion free.

Some further references: [45], [46], [38] and [39].

8 A uniqueness theorem

An easily neglected fact used to obtain Theorem 5.2 bom 5.1 is the following well-known fact.

Proposition 8.1. Let $F$ be a finite dimensional C’-algebra and $B$ be a unital C’-algebra of stable rank

one. If $\phi_{1}$ , $\phi_{2}$ : $Farrow B$ are two unital monomorphisms such that

$(\phi_{1})_{*}=(\phi_{2})_{*}$

as homomorphisms from $K_{0}(F)$ to $K_{0}(B)$ , then $\phi_{1}$ and $\phi_{2}$ are unitarily equivalen
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This is no long true if we replace $F$ by, say $C([0_{7}1])$ or $M_{k}(C([0,1])$ , and even if we also replace unitary

equivalence by approximate unitary equivalence. Obviously, in order to establish a uniqueness theorem for

simple C’-algebras with tracial rank one, one has to deal with this problem. Given two positive elements

$a_{1}$ , $a_{2}\in B$ with $sp(a_{1})=sp(a_{2})=[0,1]$ , when they are approximately unitarily equivalent7 In general, this

is hopeless.
But we have the following:

Lemma 8.2. Let $B=\oplus_{i=1}^{k}B_{t}$ be a unital C’-algebra with $B_{i}=M_{R(i)}(C(X_{i}))$ , where $X_{i}=[0,1]$ or $X_{i}$ is

a point .
For any $\epsilon$ $>0$ , any finite subset $F$ $\subset B$ and any integer $L>0$ , there exist a finite subset $\mathcal{G}\subset B$ depending

on $\epsilon$ and $F$ but not $L$ , and $\delta=1/4L$ such that the following holds.

If $A$ is a unital separable nuclear simple C’-algebra with $TR(A)\leq 1$ and $\phi_{i}$ : $Barrow A$ are two homomor-

phisms satisfying the following:
(i) there are $a_{g,i},b_{g,j}\in A_{f}\mathrm{i},j\leq L$ with

$|| \sum_{\mathrm{i}}a_{g,\mathrm{a}}^{*}\phi_{1}(g)a_{g,i}-1_{A}||<1/16$
and

$|| \sum_{j}b_{g,\mathrm{j}}^{*}\phi_{2}(g)b_{g,j}-1_{A}||<1/16$

for all $g\in \mathcal{G}$ ;
(ii) $(\phi_{1})_{*}=\langle\phi_{2})_{*}$ on $K_{0}(B)$ ; and,

(ii) if $||\tau \mathrm{o}\mathrm{f}\mathrm{a}\{\mathrm{g}$) - $\tau 0\phi_{2}(g)||<\delta$ for all $g\in Ci$ ,
then there eists a unitary $u\in A$ such that

$||\phi_{1}(f)-u^{*}h(f)u||<\epsilon$ for all f $\in F$.

Prom the above we obtain the following theorem which is an approximate version of 8.1

Theorem 8.3. Let $A$ be a unital simple C’-algebra with $TR(A)\leq 1$ and $C$ be a C’-subalgebra of $A$ with

the form
$C$ $=\oplus M_{R(i\rangle}(C(X_{i}))$ , where $X_{i}=[0,1]$ , or $X$ is a point. Then for any finite subset $F$ $\subset C$ and $\epsilon$ $>0$ , there

exist $\delta>0$ , $\sigma>0$ and a finite subset ($;\subset A$ satisfying the following:

if $L_{1}$ , $L_{2}$ : $Aarrow B$ are two unital $Ci-\delta$ -muftiplicative contractive completely positive linear maps, where $B$

is a unital simpfe $C^{*}$ -algebra with $TR(B)\leq 1$ , with $(L_{1}|c)_{*}=(L_{2}|c)_{*}$ on $K_{0}(C)$ and

$|\tau(L_{1}(g))-\tau \mathrm{o}L_{2}(g)|<$ a

for all g $\in Ci$ and for all $\tau\in T(B)$ , then there is a unitary u $\in A$ such that

$||L_{1}(f)$ $-u^{*}L_{2}(f)u||<\epsilon$ for all f $\in F$ .

An easy version of 8.2 is the following.

Theorem 8.4. Let A be a unital simple $C^{*}$ -algebra with $TR(A)\leq 1$ and B $=\oplus M_{R(i)}(C(X_{\mathrm{t}}))$ with $X_{i}=$

[O, 1], or $X_{i}$ is a point. Let $\phi_{\dot{f}}$ : B $arrow A$ be tuto monornorphisms such that

$(\phi_{1})_{*}=(\phi_{2})_{*}$ : Ko {B) $arrow K_{0}(A)$ and



25

$\tau 0$ $\phi_{1}=\tau 0$ $2

for all $\tau\in T(A)$ .
Then there is a sequence of unitaries $u_{n}\in A$ such that

$\lim_{narrow\infty}u_{n}^{*}\phi_{1}(x)u_{n}=\phi_{2}(x)$ for all $x\in B$ .
For the uniqueness theorem, we begin with the following. The proof of it depends on an approximate

version of 5.1 and results in section 7 such as 7.6 (see also [18]).

Theorem 8.5. Let $A$ be a unital separable simple amenable C’-algebra which satisfies the Universal Co-

efficient Theorem and $\mathrm{L}$ : $U(M_{\varpi}(A1,)arrow \mathrm{R}_{+}$ be a map. For any $\epsilon$ $>0$ and any finite subset $F$ $\subset A$ there
exist a positive number $\delta>0$ , a finite subset $\mathcal{G}\subset A$ , a finite subset $P$ $\subset \mathrm{P}(A)$ and an integer $n>0$
satisfying the following: for any unital simple C’-algebra $B$ with $TR(B)\leq 1$ , if $\phi$ , $\psi$ , $\sigma$ : $Aarrow C$ are three
$\mathcal{G}-\delta$-multiplicativc contractive completely positive linear maps with

$[\phi]|_{\mathcal{P}}=[\psi]|_{P}$ ,

$\mathrm{c}\mathrm{e}1(\tilde{\phi}(u)’\tilde{\psi}(u))\leq \mathrm{L}(u)$

for all $u\in U(A)\cap P$ and $\sigma$ is unital,

then there is a unitary $u\in M_{n+1}(B)$ such that

$u^{*}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\phi(a), \sigma(a)$ , $\cdots$ , $\sigma(a))u\approx_{\epsilon}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\psi(a)_{1}\sigma(a), \cdots : \sigma(a))$

for all $a\in F$ , there $\sigma(a)$ is repeated $n$ times.

if $TR(A)\leq 1$ , one can absorb the map $\sigma$ . To control $\mathrm{c}\mathrm{e}1(\tilde{\phi}(u)^{*}\tilde{\psi}(u))$ , on the other hand, is entirely a

different matter. We found when $K_{1}(A)$ has no infinite cyclic part, a uniqueness theorem could be easily

stated and not too difficult to obtain from the above and Theorem 8.3. Note that tracial information becomes

a part of invariant.

Theorem 8.6. Let $A$ be a unital separable simple $C$ ’ - algebra with $TR(A)\leq 1$ and with torsion $K_{1}(A)$ . For

any $\epsilon$ $>0$ and any finite subset $F$ $\subset A$ there exist $\delta>0$ , $\sigma>0$ , a finite subset $P$ $\subset \mathrm{P}(A)$ and a finite subset

($;\subset A$ satisfying the following:

for any unital simple $C^{*}$ -algebra $B$ with $TR(B)\leq 1$ , any two $Ci-\delta$-multiplicative completely positive linear

contractions $L_{1}$ , $L_{2}$ : $Aarrow B$ with
$[L_{1}]|_{\mathcal{P}}=[L_{2}]|_{P}$

and
$\sup_{\tau\in T(B)}\{|\tau\circ L_{1}(g) -\tau\circ L_{2}(g)|\}<\sigma$

for all $g\in \mathcal{G}$ , there exists a unitary $U\in B$ such that

$ad(U)\circ L_{1}\approx_{\epsilon}L_{2}$ on F.

An immediate consequence of the above is the following.

Theorem 8.7. Let $A$ be a unital amenable simple C’ -algebra with $TR(A)\leq 1$ and with torsion $K_{1}(A\rangle$

which satisfies the $UCT$, Then an automorphism 04 ; $Aarrow A$ is approximately inner if and only if $[\alpha]=[\mathrm{i}\mathrm{d}_{A}]$

in $KL(A, A)$ and $\tau\circ\alpha(x)=\tau(x)$ for all $x\in A$ and $\tau\in T(A)$ .

Some further references: [22] and [23]
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9 An existence theorem

Since in 8.6, tracial information is needed in the uniqueness theorem, in the statement of existence theorem,

one also needs to match the required tracial information. Theorem 9.3 is the first step in that direction.

Definition 9.1, Let $A$ and $B$ be two unital stably finite C’-algebras and let $\alpha$ : $K_{0}(A)$ $arrow K_{0}(B)$ be a

positive homomorphism and A : $T(B)arrow T(A)$ be a continuous affine map. We say A is compatible to $\alpha$ if

A $(\tau)(x)$ $=\mathrm{r}(\mathrm{a}\{\mathrm{x}\})$ for all $x\in K_{0}(A)$ , where we view $\tau$ as a state on $K_{0}(A)$ .

Let $S$ be a compact convex set. Denote by $Aff(S)$ the set of all (real) continuous affine functions

on $S$. Let A : $Sarrow T$ be a continuous affine map from $S$ to another compact convex set $T$. We denote

by $\Lambda_{\mathfrak{h}}$ : $Aff(T)arrow Aff(S)$ the unital positive linear continuous map defined by $\Lambda_{\#}(f)(s)=f(\Lambda(s))$ for

$f\in Aff(T)$ .

Definition 9.2. A positive linear map 4 : $AffT(A)arrow AffT(B)$ is said to be compatible to $\alpha$ if $\xi(\hat{p})(\tau)=$

$\tau(\alpha(p))$ for all $\tau\in T(B)$ and any projection p $\in M_{\infty}(A)$ .

Let A be a unital $C^{*}$ -algebra (with at least one normalized trace). Define Q : $A_{sa}arrow AffT(A)$ by

$Q(a)(\tau)=\mathrm{T}(\mathrm{B})$ for a $\in A$ . Then Q is a unital positive linear map.

Theorem 9.3. $Lei$ $A=M_{k}(C([0,1]))$ , let $B$ be a unital separable nuclear simple C’-algebra with $TR(B)\leq 1$ ,

let $\gamma$ : Kq(A) $arrow$ Kq(B) be a positive homomorphism and let A : $T\langle B$ ) $arrow T(A)$ be an affine continuous map

which is compatible to 7.
Then, for any $\sigma>0$ and any finite subset $\mathcal{G}\subset A$ , there exists a unital monomorphism $\phi$ : $Aarrow B$ such

that
$\sup_{\tau\in T(B)}\{|\tau 0\phi(g)-\Lambda(\tau)(g)|\}<$

a

for all $g\in Ci$ and $\phi_{*}=\gamma$ .

To construct a map with given “$KK$-data,” we use the known result for simple $\mathrm{C}^{*}- \mathrm{a}1\mathrm{g}\mathrm{e}^{1}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{s}$ with tracial

rank zero. The strategy is first to map the given unital simple C’-algebra $A$ with $TR(A)\leq 1$ to a unital

simple C’-algebra $C$ with $TR(C)=0$ whose scaled order $K$-groups are the same as that of $B$ . We then

maps $C$ to $B$ . To this end, we begin with the following.

Proposition 9.4. Let $B$ be a unital separable amenable simple C’-algebra with $TR(B)\leq 1$ . Then there

exists a unital separable amenable simple C’ -algebra $C$ with $TR(C)=0$ such that

$(K_{0}(C), K_{0}(C)_{+}$ , $[1c]$ , $K_{1}(C))=(K_{0}(B), K_{0}(B)+,$ $[1_{B}]$ , $K_{1}(B))$ .

We then to establish the follow $\mathrm{i}\mathrm{n}\mathrm{g}$ .

Lemma 9.1, Let A and B be un$\iota tal$ separable nuclear simples $C^{*}$ -algebra with $TR(A)\leq 1$ and $TR(B)\leq 1$

satisfying the UCT such that

($K_{0}(A)$ , Kq(A) , 1])), $K_{1}(A))\cong(K_{0}(B), K_{0}(B)+$ ’ [1B], $K_{1}(B))$ . (e1)
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Suppose that there exists a unital separable nuclear simple C’-algebra $C$ with $TR(C)=0$ satisfying $UCT$

and the following:

$(K_{0}(C), K_{0}(C)_{+}$ , $[1c]$ , $K_{1}(C))$ $=(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]$ , $K_{1}(B))$ .

Then there exists a sequence of contractive completely positive linear maps $\Phi_{n}$ : $Aarrow C$ such that (i)
$\lim_{narrow\infty}||\Phi_{n}(ab)-\Phi_{n}(a)\Phi_{n}(b)||=0$ for $a$ , $b\in A$ ,

(ii) For each finite subset $7$) $\subset \mathrm{P}(A)$ there exists an integer $N>0$ such that

$[\Phi_{n}]|_{\mathcal{P}}=[\alpha]|p$

for all $n\geq N$ , there $\alpha\in KL(A, B)$ which gives an identification in $(e\mathit{1})$ above.

We then combine 9.5, with 9.4 and 9.3 to prove the following.

Theorem 9.6. Let $A$ and $B$ be tuzo unital separable amenable simple C’-algebras with $TR(A)\leq 1$ and
$TR(B)\leq 1$ satisfying A $UCT$ such that

$(K_{0}(B), K_{0}(B)_{+}$ , $[1_{B}]$ , $K_{1}(B),T(B))=(K_{0}(A), K_{0}(A),$ $[13]$ $K_{1}(A),T(A))$ . $(\mathrm{e}2)$

Then there is a sequence of contractive completely positive linear maps $\{\Psi_{n}\}$ from $A$ to $B$ such that

(i) $\lim_{narrow\infty}||\Psi_{n}(ab)-\Psi_{n}(a)\Psi_{n}(b)||=0$ for all $a$ , $b\in A$ ,
(ii) for any finite subset set $P$ $\subset \mathrm{P}(A)$ ,

$[\Psi_{n}]|\mathrm{p}=\alpha|\mathrm{p}$ ,

for $dl$ sufficiently large $n$ , where a $\in Ki(A)B)$ gives the identification on $K$ -theory in (e2) and

(iii)
$\lim_{narrow\infty}\sup_{\tau\in T\langle B)}\{|\tau\circ\Psi_{n}(a\rangle-\xi(Q(a))(\tau)|\}=0$

for all $a\in A_{sa}$ , where $\xi$ : A$ffT(A)arrow AffT(B)$ is the affine isometr$ry$ given above (in (e2)).

Some further references: [13] and [46]

10 The classification theorem

Now, by applying, again, the Elliott approximate intertwining argument, and by combing the uniqueness

theorem (8.6) and the existence theorem (9.6), we establish the following classification theorem.

Theorem 10.1. Let $A$ and $B$ be two unital separable simple amenable $C^{*}$ -algebras with $TR(A)\leq 1$ and

$TR(B)\leq 1$ which satisfy the $UCT$. Suppose that $K_{1}(A)$ and $K_{1}(B)$ are torsion. Then $A\cong B$ if and only if

$(K_{0}(A), K_{0}(A)_{+}$ , $[1_{A}]$ , $K_{1}(A)$ , $T(A))\cong(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]$ , $K_{1}(B)$ , $T(B))$ .

For general case, there is no difficulty to state a right uniqueness theorem which can be easily derived

from Theorem 8.5. Let $A$ be a unital separable simPle amenable $C’arrow \mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}$ with infinite cyclic elements in

$K_{1}(A)$ . Then tracial information provides only a portion of the information about the group $U(A)/CU(A)$ .
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Inevitably, controlling exponential length of homomorphisms becomes difficult. Since maps that provided

by 9.3 are not even multiplicative, controlling the exponential length becomes even messy.

Given a unitary $u\in U(A)\backslash U_{0}(A)$ , there is nothing to measure the “length” of $u$ or $\phi(u)$ , where $\phi:Aarrow B$

is a map provided by 9.3 since they do not connect to the identity. So one cannot choose $\phi$ to meet

the requirement of controlling exponential length. The length issue comes when we have the second map

$\psi$ : $Barrow A$ . At that point, we need to control $\mathrm{c}\mathrm{e}\mathrm{l}(\psi \mathrm{c}\phi(u)u^{*})$ . If $K_{1}(A)$ (and $K_{1}(B)$ ) is a torsion group,

with the tracial information together with Theorem 7,8, $\mathrm{c}\mathrm{e}\mathrm{l}(\psi 0\phi(u)u^{*})$ is already under control. However,

in general, there is nothing one can say about $\mathrm{c}\mathrm{e}\mathrm{l}(\psi\circ\phi(u)u^{*})$ . What we need is another type of existence

theorem which can alter the known length of $(\psi 0\phi(u)u^{*})$ so that it can be bounded by a per-determined

bound. The results in section 7 helps but not sufficient. In the actual proof of Theorem 10.2 below we

will map $A$ into an $\mathrm{A}\mathrm{H}$-algebra and control the exponential length there. A few things have to be done

before this could be made possible. While the structure of $U(A)/CU(A)$ is heavily used in the proof of the

following theorem, it should be noted that $U(A)/CU(A)$ is not used as part of the isomorphic invariant in

the statement.

Theorem 10.2. ([31]) Let $A$ and $B$ be two unital separable simple amenable $C^{*}$ -algebras with $TR(A)\leq 1$

and $TR(B)\leq 1$ which satisfy the $UCT$. Then $A\cong B$ if and only if

$(K_{0}(A), K_{0}(A)_{+}$ , $[1_{A}]$ , $K_{1}(A),T(A))\cong(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]$ , $K_{1}(B)$ , $T(B))$ .

Some further references: [47] and [48],
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