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Noncommutative boundaries of q-deformations

Sergey Neshveyev

Introduction

The study of random walks on duals of compact quantum groups was initiated by Masaki Izumi

in [II]. The motivation was to compute the relative commutant of the fixed point algebra for

product-type actions of compact quantum groups. In the classical case such actions are always

minimal, that is, the commutant is trivial. For quantum groups this is not so. It turns$\mathrm{n}\mathrm{s}$ out that
the relative commutant can be interpreted as the algebra of bounded measurable functions on
the Poisson boundary of the dual discrete quantum group. The general theory of noncommutative
Poisson boundaries developed in [I1] was illustrated by the computation of the boundary of $\overline{SU_{q}(2}$),

which was shown to be isomorphic to the quantum sphere $s_{q}^{2}$ . In the present note we discuss the

work of Izumi, Tuset and the author [INT] , where we computed the Poisson boundary of the dual
of $SU_{q}(n)$ for arbitrary $n\geq 2$ .

This note is based on the talk given by the author at the RIMS Symposium “Recent develop-

ments in classification problems in Operator Algebras”, January 24-26, 2005, Kyoto.

1 Main result

Let $G$ be a compact quantum group [W]. In other words, we are given a unital C’-algebra $C(G)$

and a unital homomorphism $\Delta:C(G)arrow C(G)\otimes$ $C(G)$ such that (A $($& $\iota)\Delta=(\iota\otimes\Delta)\Delta$ and that
both $\Delta(C(G))(C(G)\otimes 1)$ and $\Delta(C(G))(1\otimes C(G))$ are dense in $C(G)\otimes C(G)$ . Then we also have a
dual discrete quantum group $G^{\Lambda}$ such that the algebra $c_{0}(\hat{G})$ of functions on $\hat{G}$ vanishing at infinity
is the group $\mathrm{C}^{*}$ algebra C’ (G) of $G$ , so

$c_{0}( \hat{G})=\bigoplus_{s\in \mathrm{I}\mathrm{r}\mathrm{r}(G)}B(H_{s})$
,

where the sum is over the set $\mathrm{I}\mathrm{r}\mathrm{r}(G)$ of equivalence classes of irreducible representations of $G$ .
Given a normal state $\phi$ on $\ell^{\infty}(G)=W^{*}(G)$ , consider the convolution operator $P\psi$ on $\ell^{\infty}(\hat{G})$ ,

$P_{\phi}(x)=(\phi\otimes\iota)\hat{\Delta}(x)$ .

Then consider the space
$H^{\infty}(\hat{G}, \phi)=\{x\in\ell^{\infty}(\hat{G})|P\phi(x)=x\}$ .

of $P\phi$-harmonic elements. A priori this is just a weakly operator closed operator system. But it
has a unique von Neumann algebra structure, which is explicitly given by

$x$ . $y=wo^{*}- \lim_{narrow\infty}\frac{1}{n}\sum_{k=0}^{n-1}P_{\phi}^{k}(xy)$.
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The algebra $H^{\infty}(\hat{G}, \phi)$ should be thought of as the algebra of bounded measurable functions on
the Poisson boundary of $\hat{G}$ defined by $\phi$ $[\mathrm{I}\mathrm{I}]$ .

This algebra has a right action of the quantum group $\hat{G}$ coming from the right action by
translations of $\hat{G}$ on itself.

There exists a left adjoint action of the quantum group $G$ on $W^{*}(G)$ . We shall only consider
states $\phi$ which are invariant under this action. This gives us an additional symmetry of the Poisson
boundary, so $H^{\infty}(\hat{G}, \phi)$ becomes a von Neumann algebra with a left action of $G$ and a right action
of $\hat{G}$ . Notice that the action of $\hat{G}$ is always ergodic. It turns out that the right action of $G$ is also
ergodic, if the fusion algebra, or the representation ring, of $G$ is commutative,

Consider now the group $G=SU_{q}(n)$ , $q\in[-1,1]$ . By definition the algebra $C(SU_{q}(n))$ is
generated by $n^{2}$ elements $uij$ , $1\leq \mathrm{i}$ , $j\leq n$ , satisfying the relations

ikUjk $=qujkuik$ , ukiukj $=qukjUki$ for $\mathrm{i}<j$ ,

uuujk $=ujku_{il}$ for $\mathrm{i}<j$ , $k<l$ ,
$u_{ik}u_{il}-u_{gl}u_{ik}=(q-q^{-1})u_{jk}u_{il}$ for $\mathrm{i}<j$ , $k<l$ ,

$\det_{q}(U)=1$ ,

where $U=(u_{ij})_{i,j}$ and $\det_{q}(U)=\sum_{w\in S_{n}}(-q)^{\ell(w)}u_{w(1)1}\ldots$ $u_{w(n)n}$ , with $\ell(w)$ being the number of
inversions in $w\in S_{n}$ . The involution on $C(SU_{q}(n))$ is given by

$u_{ij}^{*}=(-q)^{i-i}\det_{q}(U_{\hat{j}}^{\hat{i}})$ ,

where $U_{\hat{j}}^{\hat{i}}$ is the matrix obtained from $U$ by removing the $\mathrm{i}\mathrm{t}\mathrm{h}$ row and the $j\mathrm{t}\mathrm{h}$ column. The
comultiplication is given by

$\Delta(u_{ij})=\sum_{k}u_{ik}\otimes u_{kj}$
.

Denote by $T$ the maximal torus in $SU_{q}(n)$ and consider the homogeneous space $SU_{q}(n)/T$ .
More explicitly, for $(t1, \ldots, t_{n})\in \mathrm{T}^{\tau l}$ such that $t_{1}\ldots$ $t_{n}=1$ define an automorphism of $C(SU_{q}(n))$

by
$u_{ij}\mapsto t_{j}u_{ij}$ .

This way we get an action of $T\cong \mathbb{T}^{n-1}$ on $C(SU_{q}(n))$ , and $C(SU_{q}(n)/T)$ is the fixed point algebra
for this action.

We can now formulate our main result,

Theorem If $0<q<1$ , then for any left $SU_{q}(n)$ -invariant normal generating state on $\ell^{\infty}(S\overline{U_{q}(n}))$ ,

the Poisson boundary of $S\overline{U_{q}(n}$) is $SU_{q}(n)$ - and $S\overline{U_{q}(n}$)-equivariantly isomorphic to the quantum
flag manifold $SU_{q}(n)/T$ .

Here the left action of $SU_{q}(n)$ on $SU_{q}(n)/T$ is the action by translations. The right action of
$S\overline{U_{q}(n})$ comes from the right adjoint action of $S\overline{U_{q}(n}$) on $C(SU_{q}(n))=C^{*}(S\overline{U_{q}(n}))$ . However, a
more correct way of thinking of this action is to consider it as a quantum analogue of dressing
transformations, see e.g. $[\mathrm{K}\mathrm{o}\mathrm{S}]$ . In the classical case the orbits of the action by dressing transfor-
mations are leaves of the canonical Poisson structure. The flag manifold has one open dense leave,

the Schubert cell, so that the action is ergodic. This makes it easier to believe that the action of
$S\overline{U_{q}(n})$ on the quantum flag manifold is ergodic, which should be the case if our result is true.

The above theorem says in particular that the Poisson boundary of $S\overline{U_{q}(n}$) does not depend
on the generating state. This in fact can be shown without actually computing the boundary: if
the fusion algebra of $G$ is commutative, then the space $H^{\infty}(\hat{G}, \phi)$ is the same for any G-invariant
generating state.
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2 Poisson integral and Berezin transform

For any compact quantum group $G$ there exists a unique normal unital G- and $\hat{G}$-equivariant map $\mathrm{O}-$

from $L^{\infty}(G)$ into $\ell^{\infty}(\hat{G})$ . Explicitly,
$\Theta$ $=(\varphi\otimes\iota)\hat{\Phi}$ ,

where $\varphi$ is the Haar state on $L^{\infty}(G)$ and $\hat{\Phi}:L^{\infty}(G)arrow L^{\infty}(G)\otimes\ell^{\infty}(\hat{G})$ is the right adjoint action of
$\hat{G}$ on $G$ , which we discussed above. This map was introduced in [I1] to show that an isomorphism

between $s_{q}^{2}$ and the Poisson boundary of $\overline{SU_{q}(2}$) is $\overline{SU_{q}(2}$)-equivariant. It was also shown in [I1]

that for any $G$ and any normal left $G$-invariant state on $\ell^{\infty}(\hat{G})$ the image of this map is contained
in $H^{\infty}(\hat{G}, \phi)$ . Thus if we expect the Poisson boundary of $\hat{G}$ to be a homogeneous space $G/H$ , then
this map should be an isomorphism of $L^{\infty}(G/H)$ onto $H^{\infty}(\hat{G}, \phi)$ . But the only thing we can say
in general is that this map is completely positive. We call this map the Poisson integral.

Recall that given von Neumann algebras $N_{1}$ and $N_{2}$ , normal faithful states $\nu_{1}$ and $\nu_{2}$ on $N_{1}$

and $N_{2}$ , respectively, and a normal unital completely positive map $\theta:N_{1}arrow N_{2}$ such that $\nu_{2}\theta=\nu 1$

and $\sigma_{t}^{12}\theta J=\theta\sigma_{t}^{\nu_{1}}$ , there exists a normal unital completely positive map $\theta^{*}:$ $N_{2}arrow N_{1}$ such that

$\nu_{2}(\theta(x_{1})x_{2})=\nu_{1}(x_{1}\theta^{*}(x_{2}))$ for $x_{1}\in N_{1}$ , x2 $\in N_{2}$ .
Then by [P] an element $x\in N_{1}$ is in the multiplicative domain of $\theta$ if and only if $(\theta^{*}\theta)(x)=x$ .

We want to apply this criterion to our map $\Theta$ . For this we need to compute $\Theta^{*}$ . Let
$\Theta_{s}$ : $L^{\infty}(G)arrow B(H_{s})$ , $s\in$ Irr(G), be the components of 0. Explicitly,

$\Theta_{s}(a)=(\varphi\otimes\iota)(U^{s}(a\otimes 1)U^{s*})$ ,

where $U^{s}\in C(G)\otimes B(H_{s})$ is a fixed representative of the equivalence class $s\in$ Irr(G) of irreducible
representations of $G$ . The representation $U^{s}$ defines two adjoint actions of $G$ on $B(H_{s})$ . There exist
a unique left-invariant state $\phi_{s}$ and a unique right-invariant state $\omega_{s}$ on $B(H_{s})$ (in the classical case
they both coincide with the normalized $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$). Then it is not difficult to check that the adjoint $\Theta_{s}^{*}$

for $\Theta_{s}$ : $(L^{\infty}(G), \varphi)\mapsto(B(H_{s}), \phi_{s})$ is given by

$\Theta_{s}^{*}(x)=(\iota$ $($& $\omega_{s})(U^{s*}(1\otimes x)U^{s})$ .

On $H^{\infty}(\hat{G}, \phi)$ there is a canonical state $\nu_{0}$ given by the restriction of the counit $\hat{\epsilon}$ , that is, by
“the evaluation at the unit of $\hat{G}$ ”. Then it can be shown that the adjoint $\Theta^{*}$ to $\Theta$ : $(L^{\infty}(G), \varphi)arrow$

$(H^{\varpi}(\hat{G}, \phi)$ , $\iota/_{0})$ is
$\Theta^{*}(x)=s^{*}-\lim_{narrow\infty}$ $\sum$ $\phi^{n}(I_{s})\Theta_{s}^{*}(x)$ ,

$s\in \mathrm{I}\mathrm{r}\mathrm{r}(\mathrm{G})$

where $I_{s}$ is the unit in $B(H_{s})$ and $\phi^{n}$ is the nth convolution power of $\phi$ . Thus, if we denote $\Theta_{s}^{*}\Theta_{S}$

by $B_{s}$ , an element $a\in L^{\infty}(G)$ lies in the multiplicative domain of the Poisson integral if and only if

$\sum$ $\phi^{n}(I_{s})B_{s}(a)arrow a$ .
$s\in \mathrm{I}\mathrm{r}\mathrm{r}(\mathrm{G})$

It turns out that the operators $\Theta_{s}$ and $\Theta_{s}^{*}$ are analogues of well-known classical construc-
tions [Be, Per]. Let for the moment $G$ be a compact Lie group, $U:Garrow B(H)$ a finite dimensional
unitary representation. Fix a vector $\xi\in H$ , $||\xi||=1$ . Let $T\subset G$ be the stabilizer of the line $\mathbb{C}\xi$ .
For an operator $S\in B(H)$ , its covariant Berezin symbol $\sigma(S)$ is defined by $\sigma(S)(g)$ $=(SU_{g}\xi, U_{g}\xi)$ .
The covariant symbol a is a $G$-equivariant map from $B(H)$ into $C(G/T)$ . Consider the inner prod-
ucts on $C(G/T)$ and $B(H)$ given by the $G$-invariant probability measure and the normalized $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ ,
respectively. Then there exists an adjoint $\dot{\sigma}$ : $C(G/T)$ $arrow B(H)$ of $\sigma$ . Explicitly,

$\dot{\sigma}(f)=d\int f(g)U_{g}P_{\xi}U_{g}^{*}dg$,
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where $d=\dim H$ and $P_{\xi}$ is the projection onto C4. A function $f$ is called a contravariant Berezin
symbol of $\dot{\sigma}(f)$ . The map $B=\sigma\dot{\sigma}$ is called the Berezin transform.

If we consider $U$ as a corepresentation of $C(G)$ , then the definition of $\sigma$ can be written as

$\sigma(S)=(\iota \mathrm{C}\otimes\omega_{\xi})(U^{*}(1\otimes S)U)$ ,

where $\omega\xi=(\cdot\xi, \xi)$ is the vector-state defined by 4. Thus we see that our operator $\Theta_{s}^{*}$ is just a with
$\omega\xi$ replaced by $\mathrm{c}\mathrm{u}_{\mathrm{s}}$ . Then $\Theta_{s}=(\Theta_{s}^{*})^{*}$ is an analogue of $\dot{\sigma}$ .

Suppose now that $G$ is a semisimple Lie group, $U=U^{\lambda}:Garrow B(H\lambda)$ an irreducible represen-
tation with highest weight $\lambda$ , $\langle$ $=\xi\lambda$ a highest weight vector. Let $B_{\lambda}$ be the corresponding Berezin
transform. It is proved in [D] that the sequence $\{B_{n\lambda}\}_{n=1}^{\infty}$ converges to the identity on $C(G/T)$

as $narrow\infty$ . This is a key step to show that the full matrix algebras $B(H_{n\lambda})$ , $n\in \mathrm{N}$ , provide a
quantization of $C(G/T)$ , see $[\mathrm{L}, \mathrm{R}]$ . In other words, in the classical case the Berezin transforms
converge to the identity operator on the flag manifold along any ray in the Weyl chamber. While
to prove multiplicativity of the Poisson integral we have to show that certain convex combinations
of quantum Berezin transforms defined by a random walk on the Weyl chamber converge to the
identity operator on the quantum flag manifold.

The proof in the classical case is based on the observation that the operators $B_{n\lambda}$ are given by
convolution with measures which are absolutely continuous with respect to the Haar measure and
such that the Radon-Nikodym derivatives are, up to normalization, powers of a single function $h$

such that $h(g)=1$ for $g\in T$ and $h(g)<1$ for $g\not\in T$ . The proof of our $q$-analogue will be based on
the study of ergodic properties of an auxiliary operator.

Since the maps $B_{s}$ are $G$-equivariant, it suffices to check the convergence “at the unit element
of $G”$ . More precisely, assuming that the counit $\in$ is well-defined on $C(G)$ , that is, the group $G$ is
coamenable, a subalgebra $C(G/H)$ is in the multiplicative domain of $\Theta$ if and only if

$\sum_{s}\phi^{n}(I_{s})(\epsilon B_{s})(a)arrow\epsilon(a)$

for any $a\in C(G/H)$ . We have

$(\epsilon B_{s})(a)=(\omega_{s}\Theta_{s})(a)=(\varphi\otimes \omega_{s})(U^{s}(a\otimes 1)U^{s*})$.

Consider the operator $A_{\omega_{s}}$ : $C(G)arrow C(G)$ defined by

$A_{\omega_{\theta}}(a)=(\iota\otimes\omega_{s})(U^{s}(a\otimes 1)U^{s*})$ .

Then $\epsilon B_{s}=\varphi A_{\omega_{S}}$ , and we arrive at the following criterion,

Proposition Assume $G$ is coamenable. For a normal left $G$-invariant state $\phi$ consider the corre-
sponding nght $G$ -invariant state $\omega$ $= \sum_{s}\phi(I_{s})\omega_{s}$ and the operator $A_{\omega}$ : $C(G)arrow C(G)$ ,

$A_{\omega}= \sum_{s}\phi(I_{s})A_{(v_{\mathit{8}}}$
.

Then the states $\varphi A_{d}^{n}$

‘ converge to a state on $C(G)$ as $narrow\infty$ . For a subgroup $H\subset G$ the algebra
$C(G/H)$ is in the multiplicative domain of $\Theta:L^{\infty}(G)arrow H^{\infty}(\hat{G}, \phi)$ if and only if the limit state
coincides with the counit $\epsilon$ on $C(G/H)$ .

Consider now $G=SU_{q}(2)$ . Then

$U=(\begin{array}{ll}u_{11} u_{\mathrm{l}2}u_{21} u_{22}\end{array})$ $=(\begin{array}{ll}\alpha -q\gamma^{*}\gamma \alpha^{*}\end{array})$ ,
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and the relations can be written as

$\alpha^{*}\alpha+\gamma^{*}\gamma=1$ , $\alpha\alpha^{*}+q^{2}\gamma^{*}\gamma=1$ , $\gamma^{*}\gamma=\gamma\gamma^{*}$ , $\alpha\gamma=q\gamma\alpha$ , $\alpha\gamma^{*}=q’\gamma^{*}\alpha$.

The comultiplication A is determined by the formulas

$\Delta(\alpha)=\alpha\otimes\alpha-q\gamma^{*}\otimes\gamma$ , $\Delta(\gamma)=\gamma\otimes\alpha+\alpha^{*}\otimes\gamma$ .

Since the Poisson boundary does not depend on the generating state, it suffices to consider the

state $\phi$ corresponding to the fundamental representation $U$ . So

$\phi=\frac{1}{q+q^{-1}}\mathrm{R}$ (. $(\begin{array}{ll}q 00 q^{-1}\end{array})$ ), $\omega=\frac{1}{q+q^{-1}}\mathrm{B}($ . $(\begin{array}{ll}q^{-1} \mathrm{o}0 q\end{array})$ $)3$

and thus

$A_{\omega}(a)$ $=$ $\frac{1}{q+q^{-\mathrm{l}}}\mathrm{n}($ $(\begin{array}{ll}\alpha -q\gamma^{*}\gamma \alpha^{*}\end{array})(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}\alpha^{*} \gamma^{*}-q\gamma \alpha\end{array})(\begin{array}{ll}q^{-1} 00 q\end{array})$$)$

$=$ $\frac{1}{q+q^{-1}}(q^{-1}(\alpha a\alpha^{*}+q^{2}\gamma^{*}a\gamma)+q(\gamma a\gamma^{*}+\alpha^{*}a\alpha))$.

We see in particular that $A_{\omega}$ commutes with the left and the right actions of $T\cong \mathrm{T}$ given by
$\alpha\mapsto z\alpha$ , $\gamma$

$\mapsto\overline{z}\gamma$ and $\alpha\mapsto z\alpha$ , $\gamma\mapsto 27$ , respectively. It folows that the limit of the states $\varphi A_{\omega}^{n}$

is also invariant with respect to these actions. Though the counit is not invariant on the whole
group, notice that in general $\epsilon$ is invariant with respect to the left action of $H$ on $G/H$ , as well

as with respect to the right action of $H$ on $H\backslash G$ . It follows that to prove multiplicativity of

the Poisson integral on $C(SU_{q}(2)/T)$ it suffices to prove that the limit state coincides with $\epsilon$ on
$C(T\backslash SU_{q}(2)/T)$ . The latter algebra is generated by 77. It is known that the spectrum of $\gamma^{*}\gamma$

is the set $I_{q^{2}}=\{0\}\mathrm{U}\{q^{2n}\}_{n=0}^{\infty}$ . Thus we can identify $C(T\backslash SU_{q}(2)/T)$ with the algebra $C(I_{q^{2}})$ of
continuous functions on $I_{q^{2}}$ . Since the counit is a character such that $\alpha\mapsto 1$ and $\gamma\mapsto 0$ , under this
identification it is given by the evaluation at $0\in I_{q^{2}}$ . Furthermore, using the identities

$\alpha^{*}(\gamma^{*}\gamma)^{k}\alpha=q^{-2k}(\gamma^{*}\gamma)^{k}(1-\gamma^{*}\gamma)$ , $\alpha(\gamma^{*}\gamma)^{k}\alpha^{*}=q^{2k}(\gamma^{*}\gamma)^{k}(1-q^{2}\gamma^{*}\gamma)$ ,

we see that the action of $A_{\omega}$ on the functions on $I_{q^{2}}$ is given by

$(A_{\omega}f)(t)= \frac{1}{q+q^{-1}}(q^{-1}((1-q^{2}t)f(q^{2}t)+q^{2}tf(t))+q(tf(t)+(1-t)f(q^{-2}t)))$ .

In other words, $A_{\omega}$ is the Markov operator with transition probabilities $p(\mathrm{O}, 0)=1$ ,

$p(q^{2n}, q^{2(n-1)})$ $=$ $\frac{q-q^{2n+1}}{q+q^{-1}}$ ,

$p(q^{2n}, q^{2n})$ $=$

$\underline{2q^{2n+1}}$

$q+q^{-1\}}$

$p(q^{2n}, q^{2(n+1)})$ $=$ $\frac{q^{-1}-q^{2n+1}}{q+q^{-1}}$ .

It is not difficult to show that the restriction of this random walk to $I_{q^{2}}\backslash \{0\}$ is transient. In
particular, $(A_{\omega}^{n}\delta_{x})(y)arrow 0$ for any $x,y\in I_{q^{2}}\backslash \{0\}$ . Hence for any $f\in C(I_{q^{2}})$ the functions $A_{\omega}^{n}f$

converge pointwise to the constant $f(0)$ . This completes the proof of multiplicativity of the Poisson
integral on $C(SU_{q}(2)/T)$ .
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For $n>2$ we prove that $\in$ is the only $A_{(p}$-invariant state on $C(SU_{q}(n)/T)$ . The proof is by
induction on $n$ , and it turns out that for the induction step it suffices to check that $\epsilon$ is the only
$A_{\omega}$-invariant state on

$C(S(U_{q}(n-1)\mathrm{x} \mathbb{T})\backslash SU_{q}(n)/S(U_{q}(n-1)\mathrm{x}\mathrm{F}’))\cong C(T\backslash SU_{q}(2)/T)$ ,

which is already established.

3 Random walk on the center

In the previous section we sketched an argument for multiplicativity of the Poisson integral. Since
the Haar state is faithful, we also automatically have injectivity of the Poisson integral on its
multiplicative domain. We shall next discuss surjectivity.

We need an estimate on the dimensions of the spectral subspaces of $H^{\infty}(\hat{G},\phi)$ . By a result of
Hayashi [H], which we have already mentioned, if the fusion algebra of a group $G$ is commutative,
the action of $G$ on the Poisson boundary is ergodic. This already implies that the spectral subspaces
of $H^{\infty}(\hat{G}, \phi)$ are finite dimensional.

To obtain a bound on their multiplicities, note that ergodicity of the action of $G$ on $H^{\infty}(\hat{G}, \phi)$

is equivalent to triviality of the Poisson boundary of the restriction of $P\psi$ to the center $\ell^{\infty}(\hat{G})$ ,
since the center is exactly the fixed point algebra $\ell^{\infty}(\hat{G})^{G}$ . Identify the center with $\ell^{\infty}(I)$ , where
$I=$ Irr(G). For a fixed generating state $\phi$ , let $\{p(s, t)\}_{s,t\in I}$ be the transition probabilities defined
by the restriction of $P\phi$ to $\ell^{\infty}(I)$ , so $P\emptyset(I_{t})I_{s}=p(s, t)I_{s}$ . Let $(\Omega,\mathrm{P}_{0})$ be the path space of the
corresponding random walk,

$\Omega=\prod_{n=1}^{\infty}I$ , $\mathrm{P}_{0}(\{\underline{s}|s_{1}=t_{1}, \ldots, s_{n}=t_{n}\})=p(0, t_{1})p(t_{1}, t_{2})$ . . . $p(t_{n-1}, t_{n})$ .

Denote by $\pi_{n}$ the projection $\Omegaarrow I$ onto the $n\mathrm{t}\mathrm{h}$ factor. Let E. $\ell^{\infty}(\hat{G})arrow\ell^{\infty}(I)$ be the unique
$G$-equivariant conditional expectation, $E(x)(s)=\phi_{s}(x)$ . If $x\in l^{\infty}(\hat{G})$ is $P\psi$-harmonic, then

$x^{*}x=P\phi(x)^{*}P\phi(x)\leq P\psi(x^{*}x)$ ,

whence $E(x^{*}x)\leq P\emptyset(E(x^{*}x))$ . It follows that the sequence $\{\pi_{n}(E(x^{*}x))\}_{n}$ is a submartingale.
Hence it converges $\mathrm{a}.\mathrm{e}$ . But since the Poisson boundary of the center is trivial, the limit must be
a constant. This constant is $\nu_{0}($$’ . $x)$ . Thus we get the following result.

Proposition Let $\phi$ be a normal left $G$-invariant generating state on $\ell^{\infty}(\hat{G})$ . Assume that the
Poisson boundary of the center is trivial, Then for any $x$ , $y\in H^{\infty}(\hat{G}, \phi)$ and almost every path
$\underline{s}\in\Omega$ , ate have $\phi_{s_{n}}(xy)arrow\nu_{0}(x\cdot y)$ as $narrow\infty$ . In other words, the completely positive maps
$(H^{\infty}(\hat{G}, \phi)$ , $\nu_{0})arrow(B(H_{s_{n}})_{:}\phi_{s_{n}})$ are asymptotically isometric in $L^{2}$ -norm.

In particular, for any $\mathrm{i}$ reducible representation $V$ of $G$ the multiplicity of $V$ in $H^{\infty}(\hat{G}, \phi)$ is
not larger than the supremum of the multiplicities of $V$ in $\overline{U}\mathrm{x}$ $U$ for all irreducible representations
$U$ of $G$ .

For the $q$-deformation $G$ of a compact connected semisimple Lie group the last estimate is
optimal, see e.g. $[\check{\mathrm{Z}}, \S 131]$ . For example, for $SU_{q}(2)$ if we take the spin $s \in\frac{1}{2}\mathbb{Z}_{+}$ representation $U^{s}$

then $\overline{U}^{s}\cong U^{s}$ , and $U^{s}\mathrm{x}$ $U^{s}$ is isomorphic to the direct sum of $U^{t}$ , $t=0,1$ , . . . , $2\mathrm{s}$ , On the other
hand we know that only integer spin representations appear in $C(SU_{q}(2)/T)$ , each with multiplicity
one.

Thus if $G$ is the $q$-deformation of a compact connected semisimple Lie group, $T\subset G$ the
maximal torus, $\phi$ a generating state, then the Poisson integral $\Theta:L^{\infty}(G/T)arrow H^{\infty}(\hat{G}, \phi)$ is an
isomorphism as soon as it is multiplicative.
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4 Conclusion

A significant part of our considerations is valid for $q$-deformations of arbitrary compact connected
semisimple Lie groups. The only point where we used that the group was $SU_{q}(n)$ is the induction

step in the proof of multiplicativity of the Poisson integral. It is based on a quantum analogue of

the fact that $S(U(n-1)\mathrm{x} \mathbb{T})\subseteq SU(n)$ is a Riemarmian symmetric pair of rank one. Hence there

is hope that similar considerations could work for SO(n), $Sp(n)$ and F4, see [He, Ch. $\mathrm{X}$ , Table $\mathrm{V}$].

Nevertheless for the exceptional groups $E_{6}$ , $E_{7}$ , $E_{8}$ and $G_{2}$ this approach definitely requires more
computations than was the case for An. So it would be desirable to find a universal method. A
more difficult and interesting problem is to compute the Martin boundary.

The Poisson boundary of a noncompact semisimple Lie group $G$ was computed by Fursten-
berg [Pu], who showed that it is isomorphic to the flag manifold $B=G/P$, where $P$ is the min-
imal parabolic subgroup of $G$ . The Martin boundary of $G$ , or of the corresponding symmetric
space $S=G/K$, was computed by Olshanetsky, who announced the result more than thirty years
ago [Oil], but a detailed proof appeared only recently [012, GJT]. The result says that the Martin
compactification is the minimal compactiflcation which dominates both the visibility compactifi-
cation and the Furstenberg compactiflcation. The latter is defined as the closure of $S$ in $M_{1}(B)$ ,
the space of probability measures on $B=G/P$ , under the map $\mathrm{g}\mathrm{x}0\mapsto gm$ , where $m$ is the unique
$K$-invariant probability measure on $B$ (note that quite confusingly the boundary of $S$ in this com-
pactification does not always coincide with the Furstenberg boundary $B$ , but in the rank one case
they both do coincide with the sphere at infinity, which is the boundary in the visibility com-
pactification). More concretely the Furstenberg compactiflcation can be obtained by embedding $S$

in the projective space of matrices using certain irreducible representations of $G$ . The results of
Furstenberg were extended to arbitrary (connected) Lie groups by Raugi [R]. On the other hand,

the problem of computing Martin boundaries even for solvable Lie groups remains unsettled.
The rank one case considered in [NT1] is not sufficient to formulate a plausible conjecture about

the Martin boundary of the dual of the $q$-deformation of a compact semisimple Lie group. The
works of Biane [B] and Collins [C] suggest that the minimal boundary is a quantization of the sphere
in the dual of the Lie algebra. Since we now know that the Poisson boundary is the quantization of
the Furstenberg boundary, it is natural to conjecture that to compute the whole Martin boundary
one should look for quantizations of classical Martin boundaries.

The basis for the above conjecture is that the Poisson boundary of $SU_{q}(n)$ is the quantization
of the Poisson boundary of $5\mathrm{L}\mathrm{n}(\mathrm{C})$ . For the moment we do not have a good explanation of this
phenomenon. To really understand it we need a better understanding of what happens when

$q=1$ . The Poisson boundary of $\overline{SU(n}$), and in fact of the dual of any compact group, is trivial.
However, the limit $qarrow 1$ should rather be considered in the category of$\underline{\mathrm{H}\mathrm{o}\mathrm{p}\mathrm{f}}$-Poisson algebras.

In other words, the classical limit of $S\overline{U_{q}(n}$) is not the Pontryagin dual $SU(n)$ , but the Poisson
dual of $SU(n)$ . Thus the question is whether Furstenberg’s results have dual Poisson analogues.
This could also clarify the appearance of the Berezin transform in our work [INT], since to our
knowledge it has not played any role in the classical picture.
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