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Abstract :Our aim in this article is to review recent results in the theory of exponential
attractors, both in the autonomous and the nonautonomous cases.

1. Introduction.

Our aim in this article is to discuss the behavior as time goes to infinity of partial
differential equations of the form

$\frac{\partial u}{\partial t}=F(t, u)$ , (1.1)

in a Banach space $H$ .
When the system is autonomous, $\mathrm{i}.\mathrm{e}.$ , when the time does not appear explicitly in (1.1)

$(F(t, u)\equiv F(u))$ , then, very often, the long time behavior of the system can be described
in terms of the global attractor $A$ . More precisely, assuming that the system is well-posed,
we can define the family of solving operators

$S(t)$ : $u_{0}-\neq u(t)$ , $t\geq 0$ ,

acting on $H$ , which maps the initial datum $u_{0}$ onto the solution at time $t$ . This family of
operators satisfies

$S(0)=I$ ,

$S(t+s)=S(t)\circ S(s)$ , $\forall t$ , $s\geq 0$ ,
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I denoting the identity operator, and we say that it forms a semigroup on the phase space
$H$ . Then, we say that a set $A$ is the global attractor for $S(t)$ in $H$ if

(i) It is compact in $H$ .
(ii) It is invariant, i.e., $S(t)A=A$, $\forall t\geq 0$ .
(iii) It attracts (uniformly) the bounded sets of initial data in the following sense :

$\forall B\subset H$ bounded, $\lim_{tarrow+\infty}$ dist $(S(t)\mathrm{B}, A)$ $=0$ ,

where dist denotes the Hausdorff semidistance between sets, defined by

dist $(A, B)= \sup_{a\in A}\inf_{b\in B}||a-b||_{H}$ .

This is equivalent to the following : $\forall B\subset H$ bounded, Ve $>0$ , $3\mathrm{t}0=t_{0}(B, \epsilon)$ such that
$t\geq t_{0}$ implies $S(t)B\subset \mathcal{U}_{\epsilon}$ , where $\mathcal{U}_{\epsilon}$ denotes the $\epsilon$ -neighborhood of $A$.

We note that it follows from (ii) and (iii) that the global attractor, if it exists, is
unique. Furthermore, it follows from (i) that it is essentially thinner than the original
phase space $H$ ; indeed, here, in general, $H$ is an infinite-dimensional function space and,
in infinite dimensions, a compact set cannot contain a ball and is nowhere dense. It is
not difficult to prove that the global attractor is the smallest (for the inclusion) closed set
enjoying the attraction property (iii) ; it is also the largest bounded invariant set. Finally,
in most (if not all) cases, one can prove that the global attractor has finite dimension (in
the sense of covering dimensions, such as the Hausdorff and the fractal dimensions ;the
global attractor is not a smooth manifold in general, but it can have a very complicated
geometric structure), so that, even though the initial phase space is infinite-dimensional,
the dynamics, reduced to the global attractor, is, in some proper sense, finite-dimensional
and can be described by a finite number of parameters. It thus follows that the global
attractor appears as a suitable object in view of the study of the long time behavior of the
system. We refer the reader to [BV], $[\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{V}2]$ , [H], [L2], [R] and [Te] for extensive reviews
on this subject (see also $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}6]$ ).

Now, the global attractor may present some defaults. Indeed, it may attract the
trajectories slowly (see, e.g., [Kos]). Furthermore, in general, it is very difficult, if not
impossible, to express the convergence rate in terms of the physical parameters of the
problem. A second drawback, which can also be seen as a consequence of the first one,
is that the global attractor may be sensitive to perturbations ; a given system is only an
approximation of reality and it is thus essential that the objects that we study be robust
under small perturbations. Actually, in general, the global attractor is upper semicontin-
uous with respect to perturbations, i.e.,

dist $(A_{\epsilon}, A_{0})arrow 0$ as $\epsilonarrow 0$ ,

where $A_{0}$ is the global attractor associated with the nonperturbed system and $A_{6}$ that
associated with the perturbed one, $\epsilon>0$ being the perturbation parameter. Very roughly
speaking, this property means that the global attractor cannot explode under small per-
turbations. Now the lower semicontinuity, i.e.
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dist $(4, A_{\epsilon})arrow \mathrm{O}$ as $\epsilonarrow 0$ ,
which, roughly speaking, means that the global attractor cannot implode is much more
difficult to prove (see, e.g., [R]). Furthermore, this property may not hold. This is in
particular the case when the perturbed and nonperturbed problems do not have the same
equilibria (stationary solutions). This can already be seen in finite dimensions by consid-
ering the following ordinary differential equation (see [R]) :

$x’=(1-x^{2})(1-\lambda^{2})$ , A $\in[-1,1]$ .
Then, when $\lambda=0$ , $A_{\lambda}=[0,1]$ , whereas $A_{\lambda}=\{1\}$ for $\lambda<0$ and $A_{\lambda}=[-\sqrt{\lambda}, 1]$ for A $>0$ .
Thus, there is a bifurcation phenomenon at $\lambda=0$ and the global attractor is not lower
semicontinuous at A $=0$ . It thus follows that the global attractor may change drastically
under small perturbations. Furthermore, in many situations, the global attractor may not
be observable in experiments or in numerical simulations. This can be due to the fact that
it has a very complicated geometric structure, but not necessarily, Indeed, we can consider
for instance the following Chafee-Infante equation in one space dimension :

$\frac{\partial u}{\partial t}-\iota/\frac{\partial^{2}u}{\partial x^{2}}+u^{3}-u=0$ , $x\in[0,1]$ , $\nu$ $>0$ ,

$u(0, t)=u(1, t)=-1$ , $t\geq 0$ .
Then, due to the boundary conditions, $A=\{-1\}$ . Now, this problem possesses many
metastable “almost stationary” equilibria which live up to a time $t_{\star}\sim e^{I^{J}}-\mathrm{z}1$ . Thus, for
$\nu$ small, one will not see the global attractor in numerical simulations. Finally, in some
situations, the global attractor may fail to capture important transient behaviors. This
can be observed, e.g., on some models of one-dimensional Burgers equations with a weak
dissipation term (see [Bi]). In that case, the global attractor is trivial, it is reduced
to one exponentially attracting point, but the system presents very rich and important
transient behaviors, which resemble some modified version of the Kolmogorov law. We can
also mention models of pattern formation equations in chemotaxis for which one observes
important transient behaviors which are not contained in the global attractor (see [TTY]).

So, it follows from the above considerations that it should be useful to have a (possibly)
larger object which contains the global attractor, attracts the trajectories at a fast rate, is
still finite-dimensional and is more robust under perturbations.

Our purpose in what follows is to study such an object, namely, an exponential at-
tractor, proposed by A. Eden, C. Foias, B. Nicolaenko and R. Temam in [EFNT].

We can mention that another possible object is an inertial manifold (see [FoST]). An
inertial manifold A4 is a smooth (at least Lipschitz) finite-dimensional manifold which
satisfies the following asymptotic completeness property : $\forall u\in H$, $\exists v\in \mathcal{M}$ such that

$||S(t)u-S(t)v||_{H}\leq Q(||u||_{H})e^{-\alpha t}$ , $t\geq 0$ ,

where the monotonic function $Q$ and the constant $\alpha>0$ are independent of $u$ and $v$ .
Actually, an inertial manifold would be a perfect object in view of the remarks made
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above. Indeed, since it is a smooth manifold and owing to the asymptotic completeness,
the dynamics, reduced to $\mathcal{M}$ , is equivalent, in a strong way, to that of the initial system
and can be described by a finite system of ordinary differential equations (called the inertial
form). By comparison, the finite dimensionality of the global attractor (and, more precisely,
the finite fractal dimensionality ; the same will hold for exponential attractors) only gives
an estimate of the number of unknowns which are necessary to capture all the dynamics
in, say, numerical simulations, even though one has a partial reduction principle via the so-
called Mane theorem (see [EFNT]). Unfortunately, all the known constructions of inertial
manifolds are based on a very restrictive condition, namely, the so-called spectral gap
condition (see, e.g., $[\mathrm{F}\mathrm{o}8\mathrm{T}]$ and [T]). Consequently, the existence of an inertial manifold
is not known in general. In particular, it is not known for the two-dimensional Navier-
Stokes equations and for reaction-diffusion and weakly damped wave equations in arbitrary
domains in three space dimensions ; one has even nonexistence results for reaction-diffusion
equations in higher space dimensions (see $[\mathrm{M}\mathrm{a}\mathrm{S}]$ ).

2. Exponential attractors for autonomous systems.

Let $S(t)$ , $t\geq 0$ , be the semigroup associated with the problem

$\frac{\partial u}{\partial t}=F(u)$ , (2.1)

$u|_{t=0}=u_{0}$ , (2.2)

in a Banach space $H$ (in particular, we assume that (2.1)-(2.2) is well-posed), $u_{0}\in H$ . We
have the following definition.

Definition 2.1 : A set $\mathcal{M}$ is an exponential attractor for $S(t)$ in $H$ if
(i) It is compact in $H$ .
(ii) It is positively invariant, i.e., $\mathrm{S}(\mathrm{t})\mathrm{M}\subset \mathcal{M}$ , $\forall t\geq 0$ .
(iii) It has finite fractal dimension.
(iv) It attracts exponentially fast the bounded sets of initial data in the following sense :
There exists a monotonic function $Q$ and a constant $\alpha>0$ such that

$\forall B\subset H$ bounded, dist $\mathrm{S}(\mathrm{t})$ , $\mathcal{M})\leq Q(||B||_{H})e^{-\alpha t}$ , $t\geq 0$ .

It follows from this definition that an exponential attractor always contains the global
attractor (actually, it follows from the definition that, if $S(t)$ possesses an exponential
attractor $\mathcal{M}$ , then it also possesses the global attractor $A\subset \mathrm{A}\mathrm{t}$ ; indeed, $.\Lambda \mathit{4}$ is a compact
attracting set (see, e.g., [BV] ; the continuity of $S(t)$ , $\forall t\geq 0$ , generally holds) $)$ . Thus, an
exponential attractor is still finite-dimensional, like the global attractor, and, moreover,
one now has an explicit (exponential) control on the rate of attraction of the trajectories.

Remark 2.1 :
(i) Actually, proving the existen ce of an exponential attractor is also one way of proving
the finite (fractal) dimensionality of the global attractor. In general, in order to prov
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the finite dimensionality of the global attractor, one uses the so-called volume contraction
method, based on the study of the evolution of infinitesimal $k$ -dimensional volumes in
a neighborhood of the global attractor :if the semigroup contracts the k-dimensional
volumes, then the fractal dimension of the global attractor is less than $k$ . This method
usually gives the best estimates on the dimension in terms of the physical parameters of
the problem, see, e.g., [T] ; see also $[\mathrm{E}\mathrm{f}\mathrm{M}2]$ for the derivation of sharp estimates on the
dimension of exponential attractors for reaction-diffusion systems. However, the volume
contraction method requires some differentiability of the associated semigroup. As we shall
see below, the construction of exponential attractors requires weaker assumptions, namely,
some Lipschitz or Holder property, which can be useful when the differentiability is not
known or difficult to prove, see, e.g., $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ ,

(ii) The choice of the fractal dimension over other dimensions, e.g., the Hausdorff dimen-
sion, in Definition 2.1 is related, as mentioned above, with the Mane theorem which gives
some indications on the existence of a reduced finite-dimensional system which is Holder
continuous (but, unfortunately, not Lipschitz continuous) with respect to the initial data,
see [EFNT].

Now the main drawback of exponential attractors is that an exponential attractor, if
it exists, is not unique. Therefore, the question of the best choice, if it makes sense, of an
exponential attractor is a crucial one. In order to overcome this drawback, one possibility
consists in finding a “simple” algorithm $S\vdash\Rightarrow \mathcal{M}(S)$ which maps a given mapping or
semigroup $S$ onto an exponential attractor $\mathcal{M}(S)$ ; by simple, we have in particular in
mind the numerical realization of such an algorithm.

The first construction of exponential attractors was due to A. Eden, C. Foias, B.
Nicolaenko and R. Temam [EFNT]. This construction is based on the so-called squeezing
property which, roughly speaking, says that either the higher modes are dominated by the
lower ones or that the flow is contracted exponentially. It is non-constructible (indeed,
Zorn’s lemma is used in order to construct the appropriate exponential attractor) and is
only valid in Hilbert spaces (since it makes an essential use of orthogonal projectors with
finite rank). Furthermore, based on this construction, it is possible to prove the lower
semicontinuity of proper exponential attractors under perturbations, but only up to some
time shift, so that, essentially, one only proves that

dist $(4, \mathcal{M}_{\epsilon})arrow 0$ as $\epsilonarrow 0$ ,

where $A_{0}$ is the global attractor associated with the nonperturbed system and $\mathcal{M}_{\epsilon}$ an
exponential attractor associated with the perturbed one, which is not satisfactory.

In [EfMZl], we proposed a second construction, valid in Banach spaces also (see
also [DN] for another construction of exponential attractors valid in Banach spaces ; this
second construction consists in adapting that of [EFNT] to a Banach setting and has
thus some of the drawbacks mentioned above). The key point in this construction is a
smoothing property on the difference of two solutions (which generalizes in some sense
(and, in particular, to a Banach setting) techniques proposed by $\mathrm{O}.\mathrm{A}$ . Ladyzhenskaya in
order to prove the finite dimensionality of the global attractor, see, e.g., [L1] (see also
[Chu] $))$ of the form
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$||S(t_{\star})x_{1}-S(t_{\star})x_{2}||_{H_{1}}\leq c||x_{1}-x_{2}||_{H}$ , (2.3)

where $H_{1}$ is a second Banach space which is compactly embedded into $H$ , which has to
hold for some $t_{\star}>0$ and on some bounded positively invariant subset of $H$ (see Sec-
tion 4 for generalizations and other forms of the smoothing prperty (2.3) $)$ . We can note
that, in a Hilbert setting, i.e., when $H$ and $H_{1}$ are Hilbert spaces, then (2.3) implies the
squeezing property, see $[\mathrm{E}\mathrm{f}\mathrm{M}2]$ . Furthermore, based on this construction, it is possible to
construct robust (i.e., lower and upper semicontinuous with respect to perturbations) fam-
ilies of exponential attractors (see $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}3]$ , $[\mathrm{E}\mathrm{f}\mathrm{Y}]$ , [FGMZ] and $[\mathrm{G}\mathrm{a}\mathrm{G}\mathrm{M}\mathrm{P}2]$ ) which satisfy
in particular an estimate of the form

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m}}(\mathcal{M}_{\epsilon}, \mathcal{M}_{0})\leq \mathrm{c}\epsilon’$ , $c>0$ , $\kappa$ $\in(0,1)$ , (2.4)

where the constants $c$ and $\kappa$ are independent of $\epsilon$ and can be computed explicitly in terms of
the physical parameters of the problem and where $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m}}$ denotes the symmetric Hausdorff
distance between (closed) sets : distsym $(\mathrm{A}, B)$ $= \max(\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(A, B)$ , dist(B, $A$) $)$ . Of course,
such constructions are obtained having in mind the nonuniqueness problem.

Remark 2,2 :
(i) It is in general very diffcult, if not impossible, to prove an estimate of the form (2.4) for
global attractors. This is possible, for instance, when the stationary solutions enjoy some
hyperbolicity assumption. In that case, the global attractor (the so-called regular attractor
in the terminology of $\mathrm{A}.\mathrm{V}$ . Babin and $\mathrm{M}.\mathrm{I}$ . Vishik [BV] $)$ is regular and exponential and
one has an estimate of the form (2.4). However, even in that case, one cannot compute in
general the constants $c$ and is in terms of the physical parameters of the problem.
(ii) We refer the reader to the bibliography for many references on constructions of expo-
nential attractors and of robust families of exponential attractors in various situations (see
also Section 4 below). In particular, the existence of exponential attractors (and of families
of robust exponential attractors) is as general as that of global attractors, in the sense that
we shall have exponential attractors (and, in some sense, robust families of exponential
attractors) as soon as we have the existence of the global attractor.
(iii) We also refer to [AY] for results on the stability of exponential attractors under
numerical approximations and $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}5]$ (see also Section 4 below) for the stability of ap-
proximations of exponential attractors for equations in unbounded domains by exponential
attractors for the corresponding equation in approximating bounded domains.

In the constructions of exponential attractors mentioned above, the exponential at-
tractors $\mathcal{M}_{\epsilon}$ , $\epsilon>0$ , depend on the perturbed semigroup $S_{\epsilon}(t)$ , but also on the exponential
attractor $\mathcal{M}_{0}$ for the nonperturbed semigroup $S_{0}(t)$ . Consequently, the continuity only
holds at one point, namely, at $\epsilon=0$ .

We improved this construction in $[\mathrm{E}\mathfrak{W}\mathrm{Z}7]$ , allowing now to have a mapping $S\vdash+$

$\mathrm{M}\{\mathrm{S}$) which is Holder continuous. To state this result, we first define the class of mappings
that we shall consider (of course, the smoothing property (2.3) will play a fundamental
role)
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We consider two Banach spaces $H$ and $H_{1}$ such that $H_{1}$ is compactly embedded into
$H$ and a bounded subset $B$ of $H_{1}$ .

Definition 2.2 : A mapping $S$ : $H_{1}arrow H_{1}$ belongs to the class $\mathrm{S}_{\delta,K}(B)$ , $\delta$ , $K$ being two
positive constants, if
(i) The mapping $S$ maps a $\delta$-neighborhood (for the topology of $H_{1}$ ) $\mathcal{O}_{\delta}(B)$ of $B$ onto $B$ .
(ii) $\forall h_{1}$ , $h_{2}\in \mathcal{O}_{\delta}(B)$ ,

$||Sh_{1}-Sh_{2}||_{H_{1}}\leq K||h_{1}-h_{2}||_{H}$ .

We then have the following result (see [EfMZ7]).

Theorem 2.1 : For every $S\in \mathrm{S}_{\delta,K}(B)$ , the discrete dynamical system generated by the
iterations of $S$ ($\mathrm{i}.\mathrm{e}.$ , the discrete semigroup $S(n)=S\circ.,,$ $\circ S(n$ times), $n\in N$) possesses
an exponential attractor $\mathcal{M}(S)$ which satisfies the following properties :
(i) It is compact in $H_{1}$ .
(ii) It is positively invariant, $\mathrm{i}.e$

.; $SM(S)$ $\subset \mathcal{M}(S)$ .
(iii) It has finite fractal dimension.
(iv) It enjoys the following exponential attraction property :

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{H_{1}}(S^{n}B, \mathcal{M}(S))$ $\leq c_{1}e^{-\alpha n}$ , $n\in N$ , $\alpha>0$ .

(v) The map $S-\succ \mathcal{M}(S)$ is Holder continuous in the following sense ; $\forall S_{1}$ , $S_{2}\in \mathrm{S}_{\delta,K}(B)$ ,

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m},H_{1}}$ $(M(S_{1}), A\Lambda (S_{2}))\leq c_{2}||S_{1}-S_{2}||_{S}^{\kappa}$ , iS $>0$ ,

where $||S_{1}-S_{2}||_{\mathrm{S}}= \sup_{h\in \mathrm{O}_{\delta}(B)}||S_{1}h-S_{2}h||_{H_{1}}$ .

Furthermore, all the constants only depend on $B_{J}H$ , $H_{1}$ , $\delta$ and $K$, but they are independent
of the concrete choice of $S\in \mathrm{S}_{\delta,K}(B)$ ; they can be computed explicitly in terms of the
physical parameters of the problem.

In order to construct an exponential attractor in the continuous case, i.e., for a semi-
group $S(t)$ , $t\geq 0$ , acting on $H_{1}$ , one proceeds as follows (typically, we consider here the
semigroup $S(t)$ associated with a parabolic system ; however, the construction can be
extended to allow to construct such exponential attractors to, e.g., weakly damped wave
equations, see $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}7]$ (see also Section 4 below) $)$ .

First, one considers a bounded absorbing set $B$ of $H_{1}$ for which one can prove, e.g.,
that there exists $T>0$ such that $S(T)\mathcal{O}_{1}(B)\subset B$ (typically, this will follow from proper
a priori estimates) and such that $S(T)$ $\in \mathrm{S}_{1,K}(B)$ , for some proper constant $K>0$ . Then,
one considers the discrete dynamical system generated by the map $S_{T}=S(T)$ . It thus
follows from Theorem 2.1 that this dynamical system possesses an exponential attractor
$\mathcal{M}\tau$ which satisfies all the assertions of Theorem 2.1. Finally, one sets

$\mathcal{M}(S)=\bigcup_{t\in[0,T]}S(t)\mathcal{M}\tau$ . (2.5)
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We now assume that the mapping (?, z) $\vdash+S(t)x$ is Lipschitz with respect to the
$x$ -variable and Holder with respect to the time, with exponent $\kappa_{1}$ (this is what we usually
have in aplications).

It is then standard to prove the

Theorem 2.2 : The set $\mathcal{M}(S)$ is an exponential attractor for $S(t)$ in $H_{1}$ which satisfies
the following properties :
(i) It is compact in $H_{1}$ .
(ii) It is positively invariant.
(iii) It has finite fractal dimension.
(iv) It enjoys the following exponential attraction property :

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{H_{1}}(S(t)B, \mathcal{M}(S))\leq c_{1}’e^{-\alpha’t}$ , $t\geq 0$ , $\alpha’>0$ .

(v) if $S_{1}(t)$ and $S_{2}(t)$ are two semigroups such that $S_{i}(T)\in \mathrm{S}_{1,K}(B)$ , $\mathrm{i}=1,2$ , then

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m},H_{1}}$

$(\mathcal{M}(S_{1}), \mathcal{M}(S_{2}))\leq c_{2}’||S_{1}-S_{2}||_{S}^{\kappa’}$ , is’ $>0$ ,

where $||S_{1}-S_{2}||_{\mathrm{S}}= \sup_{t\in[0,T],h\in \mathrm{O}_{1}(B)}||S_{1}(t)$ A $-S_{2}(t)h||_{H_{1}}$ .
Furthermore, all the constants only depend on $B$ , $H$ , Hi, $K$ and $\kappa_{1}$ and can be computed
explicitly.

Remark 2.4 :
(i) Noting that $B$ is a bounded absorbing set, one can prove that the exponential attractor
$\mathcal{M}(S)$ actually attracts exponentially fast (and uniformly) all the bounded sets of initial
data in $H_{1}$ .
(ii) It follows from the H\"older property (v) that one can now construct a robust family
of exponential attractors which are continuous at every point (and not only at 0), thus
improving the previous constructions.

3. Exponential attractors for nonautonomous systems.

We now assume that the time appears explicitly in the equation ($\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{i}\mathrm{c}\mathrm{a}\mathfrak{U}\mathrm{y}_{\mathrm{J}}$ in the
forcing terms) and we consider the problem

$\frac{\partial u}{\partial t}=F(t, u)$ , (3.1)

$u|_{t=\tau}=u_{\tau}$ , $\tau\in R$ , (3.2)

in a Banach space $H$ , $u_{\tau}\in H$ . Assuming that the problem is well-posed, we have the
family of solving operators

$U(t, \tau)$ : $Harrow H$

$u_{\tau}-+u(t)$ , $t\geq\tau$, $\tau\in R$ ,

such that
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$U(\tau, \tau)=I$ , $\forall\tau\in R$ ,

$U(t, s)\circ U(s, \tau)=U(t, \tau)$ , $t\geq s\geq\tau$, $\tau\in R$ .
We say that this family of operators forms a process on $H$ .

The theory of attractors for nonautonomous systems is less understood than that for
autonomous systems. We have essentially two approaches.

The first one, initiated by A. Haraux (see [Ha]) and further studied and developed
by $\mathrm{V}.\mathrm{V}$ . Chepyzhov and $\mathrm{M}\mathrm{i}$ . Vishik (see, e.g., [CheVl] and $[\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{V}2]$ ), is based on the
notion of a uniform attractor. Actually, in order to construct the uniform attractor, one
considers, together with (3.1)-(3.2), a whole family of equations. Then, one proves the
existence of the global attractor for a proper semigroup on an extended phase space, and,
finally, projecting this global attractor onto the first component, one obtains the uniform
attractor. The major drawback of this approach is that the extended dynamical system
is essentially more complicated than the initial one, which leads, for general (translation-
compact see [CheVl] $)$ time dependences, to an artificial infinite dimensionality of the
uniform attractor. This can already be seen for the following simple linear equation :

$\frac{\partial u}{\partial t}-\Delta \mathrm{u}$ $=h(t)$ , $u|_{\partial\Omega}=0$ ,

in a bounded smooth domain $\Omega$ , whose dynamics is simple, namely, one has one expo-
nentially attracting trajectory. However, the uniform attractor has infinite dimension and
infinite topological entropy (see $[\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{V}2]$ ). However, for periodic and quasiperiodic time
dependences, one has in general finite-dimensional uniform attractors (i.e., if the same is
true for the corresponding autonomous system). Furthermore, one can derive sharp upper
and lower bounds on the dimension of the uniform attractor so that this approach is quite
relevant in that case. We can note that, as in the autonomous case, an exponential attrac-
tor in this setting always contains the uniform attractor and, again, one has, for general
time dependences, an artificial infinite dimensionality. We shall not develop this approach
here and we refer the reader to $[\mathrm{E}\mathfrak{W}\mathrm{Z}2]$ , [FM], [Mil] and [Mi3] for more details.

The second approach is based on the notion of a pullback attractor (see, e.g., $[\mathrm{C}\mathrm{r}\mathrm{F}]$ ,
[K] and [S] $)$ . In that case, one has a time dependent attractor $\{A(t), t\in R\}$ , contrary to
the uniform attractor which is time independent. More precisely, a family $\{A(t), t\in R\}$

is a pullback attractor for the process $U(t, \tau)$ in $H$ if
(i) The set $A(t)$ is compact in $H$ , $\forall t\in R$ .
(ii) It is invariant, i.e., $U(t, \tau)A(\tau)=A(t)$ , $\forall t\geq\tau$, $\tau\in R$ .
(iii) It satisfies the following pullback attraction property :

$\forall B\subset H$ bounded, $\lim_{sarrow+\infty}$ dist (C7 ( $t$ , $t-s$) $B$ , $A(t)$ ) $=0$ .

One can prove that, in general, $A(t)$ has finite dimension, $\forall t\in R$ , see, e.g., [CLV] and
$[\mathrm{L}\mathrm{a}\mathrm{S}]$ . We also note that it follows from the above definition that the pullback attractor,
if it exists, is unique. Furthermore, if the system is autonomous, then one recovers the
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global attractor. Now, the attraction property essentially means that, at time $t$ , the
attractor $A(t)$ attracts the bounded sets of initial data coming from the past (i.e., from
$-\infty)$ . However, in (iii), the rate of attraction is not uniform in $t$ , so that the forward
convergence is not true in general (see nevertheless [CKR], [ChKS] and $[\mathrm{L}\mathrm{a}\mathrm{R}]$ for cases
where the forward convergence can be proven). We can illustrate this on the following
nonautonomous ordinary differential equation :

$y’=f(t, y)$ ,

where $f(t, y)=-y$ if $t\leq 0$ , $(-1+2t)y-ty^{2}$ if $t\in[0,1]$ and $y-y^{2}$ if $t\geq 1$ . Then, one has
the existence of the pullback attractor $\{A(t), t\in R\}$ , where $A(t)=\{0\}$ , $\forall t\in R$ . However,
for $t\geq 0$ , every trajectory, different from {0}, starting from a small neighborhood of 0,
will leave this neighborhood, never to enter it again. This clearly contradicts our intuitive
understanding of attractors. We shall see that this essential drawback will be removed
when constructing exponential attractors in this setting (indeed, in that case, one has a
control (and, more precisely, an exponential control) of the rate of attraction).

We first consider a discrete process $U(l, m)$ , $l$ , $m\in Z$, $l\geq m$ , acting on the phase
space $H$ . We set $\mathcal{U}(n)=U(n+1, n)$ , $n\in Z$ . Then, the process $U$ is uniquely defined by
the family $\{\mathcal{U}(n), n\in Z\}$ . Indeed, one has

$U(n+k, n)=\mathcal{U}(n+k-1)\circ$ Z#(n $+k$ -
$2$ ) $\circ\ldots\circ \mathcal{U}(n)$ , $n\in Z$ , $k\in N$ .

We then consider a second Banach space $H_{1}$ such that $H_{1}$ is compactly embedded into $H$

and a bounded subset $B$ of $H_{1}$ .
We have the following result (see $[\mathrm{E}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{I}\mathrm{Z}7]$).

Theorem 3.1 : We assume that, $\forall n\in Z$ , $\mathcal{U}(n)\in \mathrm{S}_{\delta,K}(B)$ , where $\delta$ and $K$ are independent
of $n$ . Then, the process $U$ possesses an exponential attractor $\{\mathcal{M}_{U}(n), n\in Z\}$ which
satisfies the following properties :
(i) $\forall n\in N$ , $\mathrm{A}4_{U}(n)\subset B$ and is compact in $H_{1}$ .
(ii) It is positively invariant, $\mathrm{i}.e.$ , $U(k, m)\mathrm{A}4_{U}(m)\subset A4_{U}(k)$ , $k\geq m$ , $m\in Z$ .
(iii) $\forall n\in N$ , $\mathcal{M}_{U}(n)$ has finite fractal dimension, bounded independently of $n$ .
(iv) It enjoys the following exponential attraction property :

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{H_{1}}$ $(U(n+k, n)B$ , $\mathcal{M}_{U}(n+k))\leq c_{1}e^{-\alpha k}$ , $n\in Z$, $k\in N$, (3.3)

where $c_{1}$ and $\alpha>0$ are independent of $n$ and $k$ .
(v) The map $U\vdasharrow \mathcal{M}_{U}(n)$ is unifor$mly$ Holder continuous in the following sense : $\forall U_{1}$ , $U_{2}$

processes such that $\mathcal{U}_{i}(n)\in \mathrm{S}_{\delta,K}(B)$ , $n\in Z$, $\mathrm{i}=1,2$ ,

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m},H_{1}}(\mathcal{M}_{U_{1}}(n), \mathrm{A}4_{U_{2}}(n))\leq c_{2}$ $\sup$ $\{e^{-\beta(n-l)}||\mathcal{U}_{1}(l)-\mathcal{U}_{2}(l)||_{S}^{\kappa}\}$ , (3.4)
$l\in(-\infty,n\rangle$

$\beta>0$ , $\kappa>0$ .
Furthermore, all the constants only depend on $B_{f}H$ , $H_{1;}\delta$ and $K$ , but they are independent
of $n$ and of the concrete choice of the $U_{i}$ , $\mathrm{i}=1,2$ ; they can be computed explicitly in
terms of the physical parameters of the problem
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Remark 3.1 :
(i) It follows from (3.3) that one has an exponentially fast pullback attraction. Now, this
estimate also shows that the forward convergence holds, so that the main drawback of
pullback attractors is solved. Thus, this is the first general result on the fact that the
asymptotic behavior of nonautonomous dynamical systems is finite-dimensional, as in the
autonomous case.
(ii) It follows from the H\"older property (3.4) that the attractor $\mathcal{M}_{U}(n)$ is independent of

$\mathcal{U}(k)$ , $k\geq n$ , so that the causal principle which, roughly speaking, says that the state of
a system is uniquely determined by its past, is satisfied. Furthermore, (3.4) shows that
the influence of the past decays exponentially, which is in agreement with our physical
intuition.
(iii) We can also construct the exponential attractor $\{\lambda 4_{U}(n), n\in Z\}$ such that the
following cocycle identity holds :

$\mathrm{A}\mathrm{t}_{U}(n+k)=\mathcal{M}_{T_{k}U}(n)$ , $n$ , $k\in Z$ ,

where $T_{k}U(l, m)=U(l+k, m+k)$ , $k$ , $l$ , $m\in Z$ , $l\geq m$ .
(iv) In the autonomous case, i.e., when $\mathcal{U}(n)\equiv S$, $\forall n\in Z$ , and we consider the dynamical
system generated by the iterations of $S$ , then, $\mathcal{M}_{U}(n)\equiv \mathrm{A}t(S)$ , $n\in Z$ , is independent
of $n$ and we recover the (autonomous) exponential attractor constructed in the previous
section.
(v) If the dependence of $\mathcal{U}(n)$ on $n$ is periodic, quasiperiodic or almost periodic, then, the
same is true for the dependence of $\mathcal{M}_{U}(n)$ on $n$ .

We now consider a continuous process $U(t, \tau)$ , $t\geq\tau$ , $\tau\in R$ , acting on $H$ . In order
to construct an exponential attractor for this process, we shall typically follow the follow-
ing steps (again, typically, we consider here a process associated with a nonautonomous
parabolic system ; however, we can extend the construction to, $\mathrm{e}.\mathrm{g}.$ , nonautonomous weakly
damped wave equations, see $[\mathrm{E}\mathfrak{W}\mathrm{Z}7])$ .

First, we consider a uniform (with respect to $\tau$) bounded absorbing set $B\subset H_{1}$ (i.e.,
$\forall B_{0}\subset H_{1}$ bounded, $\exists t_{0}=t_{0}(B_{0})$ such that $t\geq t_{0}$ implies $U(t+\tau, \tau)B_{0}\subset B$ , $\forall\tau\in R)$ such
that $U(T+\tau, \tau)O_{1}(B)\subset B$ , $\forall\tau\in R$, for some $T>0$ , and $U(T+\tau, \tau)\in \mathrm{S}_{1,K}(B)$ , $\forall\tau\in R$,
for some positive constant $K$ independent of $\tau$ . Then, for every $\tau\in R$ , we consider the
discrete process

$U^{\tau}(m, l)=U(\tau+mT, \tau+lT)$ , $m$ , $l\in Z$ , $m\geq l$ .
Thanks to Theorem 3.1, we can construct, $\forall\tau\in R$ , a discrete exponential attractor
$\{\mathrm{A}4_{U}(l,\tau), l\in Z\}$ which satisfies all the assertions of the theorem. It also satisfies the
following properties :

$\mathcal{M}_{U}(l, \tau)=\mathcal{M}_{U}(0, lT+\tau)$ , $l\in Z$ , $\tau\in R$ ;

$\mathcal{M}_{T_{s}U}(l,\tau)=\mathcal{M}_{U}(l, \tau+s)$ , $l\in Z$ , $s$ , $\tau\in R$ ,

where $T_{s}U(t, \tau)=U(t+s, \tau+s)$ , $t\geq\tau$ , $\tau$, $s\in R$ . We finally set
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$\mathcal{M}_{U}(t)=\bigcup_{s\in[0,T]}U(t,$ $t-T-s\grave{)}\mathcal{M}_{U}(0, t-T-s)$ , $t\in R$ .
Then, assuming that $L$ : $(t, \tau, x)-\neq U(t, \tau)x$ is Lipschitz with respect to the x-variable
and satisfies proper Holder tyPe properties with respect to the time (i.e., $t$ and $\tau$), see
$[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}7]$ , we can prove the

Theorem 3.2 : The set $\{\mathcal{M}_{U}(t), t\in R\}$ is an exponential atrractor for the process $U$ in
$H_{1}$ which satisfies the following properties :
(i) $\forall t\in R$ , Mp(?) is compact in $H_{1}$ .
(ii) It is positively invariant, $\mathrm{i}.e.$ , $U(t, \tau)\mathcal{M}_{U}(\tau)\subset \mathcal{M}_{U}(t)$ , $t\geq\tau$ , $\tau\in R$ .
(Hi) It satisfies the following cocycle identity :

$\mathrm{A}4_{T_{s}U}(t)=M_{U}(t+s)$ , $\forall t$ , $s\in R$.

(iv) $\forall t\in R$ , $\mathcal{M}_{U}(t)$ has finite fractal dimension, bounded independently of $t$ .
(v) It enjoys the following exponential attraction property :

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{H_{1}}$ $(U(t+\tau, \tau)B$ , $\mathcal{M}_{U}(t +\tau))\leq c_{1}’e^{-\alpha’t}$ , $\tau\in R$ , $t\in R^{+}$ , $\alpha’>0$ ,

where the constants $c_{1}’$ and $\alpha’$ are independent of $t$ and $\tau$ .
(vi) it satisfies the following H\"older continuity property :If $U_{1}(t, \tau)$ , Ui $(\mathrm{t}\tau)$ , $t\geq\tau$ , $\tau\in R$ ,
are two processes such that $U_{i}$ $(t+T, t)\in \mathrm{S}_{1,K}(B)$ , $\forall t\in R$ , $\mathrm{i}=1,2$ , then

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{s}\mathrm{y}\mathrm{m},H_{1}}(\mathrm{A}t_{U_{1}}(t), \mathcal{M}_{U_{2}}(t))\leq c_{2}’\sup_{+s\in R}\{e^{-\beta’s}||U_{1}(t, t-s)-U_{2}(t, t-s)||_{S}^{\kappa’}\}$,

$\beta’>0$ , $\kappa’>0$ .
Further more, all the constants only depend on $B$ , $H$ , $H_{1}$ and the Holder exponents of the
mapping $L$ with respect to the time ; they can be computed explicitly in terms of the physical
parameters of the problem.

Remark 3.2 :
(i) We again have properties that are similar to those listed in Remark 3.1.
(ii) We can also prove some Holder property of the mapping $t\vdash\neq\lambda \mathit{4}_{U}(t)$ (see $[\mathrm{E}\mathfrak{W}\mathrm{Z}7]$).

4. Applications and generalizations

As already mentioned, the smoothing property on the difference of solutions of the
dynamical system under study plays a crucial role in the above exponential attractors’
theory. For simplicity, we have only considered a smoothing property of the form (2.3),
although this concrete form is not unique and, at present, there exists several interesting
and significant generalizations of this property, which increases greatly the areas of appli-
cation of the above exponential attractors’ theory. Our aim in this concluding section is
to give a brief exposition of this topic.

We first recall that our choice of a smoothing property of the form (2.3) is well adapted
to the study of parabolic equations in bounded domains, for which we usually have a
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smoothing effect in finite times. A model problem is the following semilinear reaction-
diffusion system :

$\frac{\partial u}{\partial t}-a\Delta u+f(x, u)=0$ , $u|_{\partial\Omega}=0$ , $u|_{t=0}=u_{0}$ , (4.1)

where $\Omega$ is a bounded domain of $R^{n}$ , $u=$ $(u^{1}, \cdots, u^{k})$ is an unknown vector-valued function
and $a$ and $f$ are given diffusion matrix and nonlinear interaction function, respectively.

It is well-known (see, e.g., [BV] and [Te]) that, under proper dissipativity and growth
restrictions on the nonlinear term $f$ , equation (4.1) generates a dissipative semigroup
in the phase space $H=L^{2}(\Omega)$ and the ball $B_{R}$ (for a sufficiently large radius $R$) in the
Sobolev space $H_{1}=H_{0}^{1}(\Omega)$ is an absorbing set for the associated semigroup $S(t)$ . This ball
naturally plays the role of the set $B$ introduced in Definition 2.2. Moreover, the difference
$v(t)=u_{1}(t)-u_{2}(t)$ of two solutions of (4.1) obviously satisfies the linear parabolic equation

$\frac{\partial v}{\partial t}-a\Delta v+l(t, x)v=0$, $l(t, x)= \int_{0}^{1}f_{u}’(x, su_{1}(t, x)+(1-s)u_{2}(t, x))ds$. (4.2)

According to the classical theory of linear parabolic equations, this equation possesses a
smoothing property of the following form :

$||v(t)||_{H_{0}^{1}(\Omega)}\leq Ct^{-1/2}e^{Kt}||v(0)||_{L^{2}(\Omega)}$ , $t>0$ , (4.3)

where $C$ and $K$ are appropriate positive constants depending only on $f$ and on the norms
$||u:(0)||_{H_{0}^{1}(\Omega)}$ , $\mathrm{i}=1,2$ (in order to verify (4.3), one usually multiplies (4.2) by $tAv$ and
integrates over $[0, t]$ $\cross$

$\Omega$ , see, e.g., [BV] $)$ . Therefore, the operators $S(t)$ satisfy (2.3) for
every $t>0$ . Moreover, using the fact that $B=B_{R}$ is an absorbing set, it is not difficult
to verify that $S(t_{*})\in \mathrm{S}_{\delta,K}(B)$ for proper constants $t_{*}$ , $\delta$ and $K$ and, consequently, the
assertions of Theorem 2.1 hold for problem (4.1) (see also $[\mathrm{E}\mathfrak{W}\mathrm{Z}7]$ for the nonautonomous
case). Thus, the dissipative estimate for the solutions of (4.1) (which is usually obtained by
multiplying the equation by $u$ and integrating by parts and which yields, in particular, the
existence of a bounded absorbing set), together with the classical smoothing property (4.3)
for linear parabolic equations, guarantee (due to Theorem 2.1) the finite dimensionality of
the associated global attractor and the existence of an exponential attractor.

We note however that, for evolution equations which are not parabolic (e.g., for weakly
damped wave equations), and even for parabolic equations in unbounded domains with
finite-dimensional global attractors, a smoothing property of the form (2.3) is too strong
and should be weakened. Indeed, in contrast to the parabolic equation (4.2), the corre-
sponding linear hyperbolic equation may only possess an asymptotic smoothing property
and (4.3) may never hold. In contrast to this, very often, the difference $u_{1}(t)-u_{2}(t)$ can
be split into contracting and compact parts. This suggests the following generalization of
(2.3) :

$S(t_{*})u_{1}-S(t_{*})u_{2}=\mathrm{C}_{1}(u_{1}, u_{2})+\mathrm{C}_{2}(u_{1}, u_{2})$, (4.4)

where the operators $\mathrm{C}_{i}$ , $\mathrm{i}=1$
}

$2$ , satisfy

$||\mathrm{C}_{1}(u_{1}, u_{2})||_{H}\leq\alpha||u_{1}-u_{2}||_{H}$ , $||\mathrm{C}_{2}(u_{1}, u_{2})||_{H_{1}}\leq K||u_{1}-u_{2}||_{H}$ , (4.5)
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$\alpha<1$ and $K>0$ being independent of $u_{1}$ and $u_{2}$ . The use of a generalized smoothing
property of the form (4.4)-(4.5) indeed allow $\mathrm{s}$ to extend the above “parabolic” exponential
attractors’ theory to a wide class of damped hyperbolic and other partially dissipative
equations, see [EfMZl], $[\mathrm{E}\mathfrak{W}\mathrm{Z}4]$ , [FGMZ] and [MiZl-M $\mathrm{i}\mathrm{Z}3$].

Another form of the smoothing property, which is also useful for hyperbolic equations
and is very close (but not equivalent) to (4.4)-(4.5), is the following one :

$||S(t_{*})u_{1}-S(t_{*})u_{2}||_{H_{1}}\leq\alpha||u_{1}-u_{2}||_{H_{1}}+K||u_{1}-u_{2}||_{H\}}$ (4.6)

where, as above, $H_{1}\subset H$ with compact injection and $\alpha<1$ and $C$ are appropriate positive
constants, see $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}7]$ .

We now also mention the so-called $l$ -trajectories’ method for verifying the finite
dimensionality of global attractors and for constructing exponential attractors, see [MN],
[MP] and [Z1]. Here, the smoothing property for the difference of solutions is not formu-
lated in the phase space, but in appropriate functional spaces related with the pieces of tra-
jectories of the dynamical system of length $l$ . This method allows, in particular, to extend
the exponential attractors’ theory to equations of non-Newtonian fluid mechanics ([MN]),
hyperbolic equations with nonlinear damping ([Pr2]), parabolic equations with supercriti-
cal nonlinearities ([Z1]) and degenerate doubly nonlinear parabolic equations $([\mathrm{E}\mathrm{f}\mathrm{Z}3])$ . The
application of this method naturally leads to the following form of the smothing property
:

$||S(l_{*})u_{1}-S(\mathrm{J}_{*})u_{2}||_{H_{1}}\leq\alpha||u_{1}-u_{2}||_{H_{1}}$

(4.7)
$+K(||u_{1}-u_{2}||_{H}+||S(l_{*})u_{1}-S(l_{*})u_{2}||_{H})$ ,

where $S(l_{*})$ is the extension of the evolution semigroup to the space of $l_{*}$ -trajectories,
$H_{1}\subset H$ with compact injection and $\alpha<1$ and $K>0$ being positive constants. The
smoothing property (4.7), together with the Lipschitz continuity

$||S(l_{*})u_{1}-S(l_{*})u_{2}||_{H_{1}}\leq L||u_{1}-u_{2}||_{H_{1}}$ , (4.8)

are suffcient to verify the existence of an exponential attractor, see [MP].
The next relaxation of the smoothing property (2.3) uses the possibility for this prop-

erty not to be satisfied on the whole absorbing set $B$ , but only on some of its subset $B$

which enjoys appropriate recurrence properties (see $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ ), namely, we assume that there
exists $\epsilon_{0}>0$ and $M\in N$ such that, for every $\epsilon_{0}$-ball $B(\epsilon_{0}, u_{0})$ of $H$ centered at $u_{0}$ , there
exists $k=k(u_{0})\in N$ , $k\leq M$ , such that

$S(kt_{*})(B(\epsilon_{0}, u_{0})\cap B)\subset B$. (4.9)

If (4.9) is satisfied and if, in addition, $S(t_{*})$ is globally Lipschitz continuous on the whole set
$B$ for the $H$-metric and enjoys the uniform smoothing property (2.3) for every $u_{1}$ , $u_{2}\in B$ ,
then, as proven in $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ , $S(t_{*})$ possesses an exponential attractor on $B$ .

This scheme has been applied in $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ to the study of the Cahn-Hilliard equation

$\frac{\partial u}{\partial t}+\Delta(\Delta u-f_{\log}(u))=0$ , $\partial_{n}u|_{\partial\Omega}=\partial_{n}\Delta u|_{\partial\Omega}=0$ , (4.10)
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in a bounded domain $\Omega\subset R^{3}$ , with a logarithmic nonlinearity

$f_{\log}(u)=-\alpha u+\beta$ in $\frac{1+u}{1-u}$ , $\alpha$ , $\beta>0$ . (4.11)

We can note that a logarithmic nonlinearity (which is thermodynamically relevant) is
much more difficult to handle than a regular one, due to the presence of the singular
points $u=$ -bl which do not allow to prove neither the differentiability of the associated
semigroup with respect to the initial data, nor the smoothing property (2.3) in the whole
absorbing set, so that classical theories cannot be applied. Nevertheless, the smoothing
property (2.3) on a smaller set of the form

$B=\{u_{0}\in C(\Omega), ||u_{0}||_{C(\Omega)}\leq 1-\delta\}$ , $\delta>0$ , (4.12)

can be easily verified. Moreover, the recurrence assumption (4.9) can be also verified by
using the maximum principle for second order elliptic equations and appropriate regular-
ization properties, see $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ . This allows, in turn, to prove the finite dimensionality of
the global attractor for (4.10) and to construct exponential attractors.

The next generalization of the smoothing property (2.3) is related with singularly
perturbed equations. A model example is the following damped hyperbolic equation :

$\epsilon\frac{\partial^{2}u}{\partial t^{2}}+\frac{\partial u}{\partial t}-\Delta u+f(u)=g(x)_{7}u|_{t=0}=u_{0}$ , $\frac{\partial u}{\partial t}|_{t=0}=u_{1}$ , (4.11)

where $0\leq\epsilon\ll 1$ is a small parameter, $g$ corresponds to given external forces and $f$ is a
given nonlinear term which satisfies proper dissipativity and growth assumptions. In that
case, for $\epsilon>0$ , we have an hyperbolic equation with two initial data (for $u(0)$ and $\frac{\partial u}{\partial t}(0)$ )
and, in the limit case $\epsilon=0$ , we have a parabolic equation which only requires one initial
datum (i.e., $u(0)$ ). Thus, the associated family of semigroups $S_{\epsilon}(t)$ acts on different phase
spaces and, moreover, the natural energy norms

$||(u, \frac{\partial u}{\partial t})||_{\mathcal{E}^{\alpha}(e)}^{2}=\epsilon||\frac{\partial u}{\partial t}||_{H^{\alpha}(\Omega)}^{2}$ IF $|| \frac{\partial u}{\partial t}||_{H^{\alpha-1}(\Omega)}^{2}+||u||_{H^{\alpha+1}(\Omega)}^{2}$ , (4.14)

for which we can verify the smoothing property, also depend on $\epsilon$ . Therefore, in order to
treat this problem, one needs a generalization of the above theory to the case where the
semigroups $S_{\epsilon}(t)$ are defined on different spaces (depending on the values of $\epsilon$ ) and where
the spaces $H$ and $H_{1}$ in (4.5) also depend on $\epsilon$ (i.e., $H=H(\epsilon)$ and $H_{1}=H_{1}(\epsilon)$ ). Such a
generalization has been suggested in [FGMZ] in an abstract setting (see also $[\mathrm{G}\mathrm{a}\mathrm{G}\mathrm{M}\mathrm{P}2]$).
We do not give here the precise formulation of this result ; we only mention the most
important conditions :
(i) Estimates (4.5) should be satisfied with constants $\alpha$ and $K$ independent of $\epsilon$ .
(ii) The compact embedding $H_{1}(\epsilon)\subset H(\epsilon)$ should also be uniform with respect to $\epsilon$ (in
the sense of Kolmogorov’s $\epsilon$-entropy, see [FGMZ] and below).
(iii) For small $\epsilon$ , $S_{\epsilon}(t_{*})$ should be in some proper sense close to $S_{0}(t_{*})$ .
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Then, there exists a robust (at $\epsilon=0$ ) family of exponential attractors for the maps
$S_{\epsilon}(t_{*})$ .

This abstract result is very useful, not only for the hyperbolic equation (4.13), but
also for a wide class of more complicated singularly perturbed problems, including phase-
field models (see [MiZl] and [GrMPZ]), hyperbolic Cahn-Hilliard equations (see [GaGMPl]
and $[\mathrm{G}\mathrm{a}\mathrm{G}\mathrm{M}\mathrm{P}3])$ , the Cahn-Hilliard equation with vanishing microforces (see $[\mathrm{M}\mathrm{i}\mathrm{Z}2]$ and
$[\mathrm{M}\mathrm{i}\mathrm{Z}3])$ and even equations with memory (see $[\mathrm{G}\mathrm{a}\mathrm{G}\mathrm{M}\mathrm{P}4]$ , [GaGMPS], [GaGPS], $[\mathrm{G}\mathrm{r}\mathrm{P}2]$

and $[\mathrm{G}\mathrm{r}\mathrm{P}3])$ .
We also mention another generalization of (2.3), in which the space $H_{1}$ depends on

the points $u_{1}$ and $u_{2}(H_{1}=H_{1}(u_{1}, u_{2}))$ and which can be used in order to construct
finite-dimensional attractors for some porous media equations, see $[\mathrm{E}\mathrm{f}\mathrm{Z}4]$ .

We conclude our exposition by considering evolution equations in unbounded domains
with infinite-dimensional global attractors (in that case, one does not have an artificial
infinite dimensionality as in the case of uniform attractors for nonautonomous systems).
A model example is the following Chafee-Infante equation in $R^{n}$ :

$\frac{\partial u}{\partial t}-\Delta u+u^{3}-u=0$ , $u|_{t=0}=u_{0}$ . (4.15)

It is well-known that this equation is uniquely solvable for every $u_{0}\in L^{\infty}(R^{n})$ and gener-
ates a dissipative semigroup $S(t)$ in this space. Furthermore, this semigroup possesses the
so-called locally compact global attractor $A$ which, in contrast to the usual global attrac-
tor, is only bounded in the phase space $=L $(R^{n})$ and compact in the local topology
$\Phi_{1\mathrm{o}\mathrm{c}},$ $=L_{1\mathrm{o}\mathrm{c}}^{\infty}(R^{n})$ ; the attraction property for such an attractor is also understood in the
sense of the local topology, see, e.g., [EfZl], [Z2] and [Z4]. It is easy to see that, in con-
trast to the case of bounded domains, the attractor $A$ has infinite dimension. Therefore,
one usually uses the concept of the so-called Kolmogorov’s $\epsilon$ -entropy in order to obtain
informations on the “size” of such attractors and their complexity.

We reecall that, by definition, see $[\mathrm{K}\mathrm{o}\mathrm{T}]$ , Kolmogorov’s $\epsilon$ -entropy $\mathcal{H}(K, M)$ of a
compact set $K$ in a metric space $M$ is the digital logarithm of the minimal number of
$\epsilon$-balls which are necessary to cover the set $K$ :

$H_{\epsilon}(K, M)=\log_{2}N_{\epsilon}(K, M)$ . (4.16)

Moreover, since the attractor $A$ is only compact in the local topology, it is natural to
consider the $\epsilon$ -entropy of its restrictions $A|_{B^{R}}$ to the balls $B_{x_{0}}^{R}$ in $R^{n}$ of radius $R$ and

$x_{0}$

centered at $x_{0}$ and to study the dependence of this quantity on the three parameters $\epsilon$ , $R$

and $x_{0}$ .
As shown in [Z2] (see also $[\mathrm{E}\mathrm{f}\mathrm{Z}2]$ , [Z3] and [Z4]), this quantity has the following

asymptotics :
$H_{\epsilon}(A|_{B_{x_{0}}^{R}},L^{\infty}) \sim(R+\log_{2}\frac{1}{\epsilon})^{n}\log_{2}\frac{1}{\epsilon}$ (4. 17)

(up to $\log_{2}\log_{2}\frac{1}{\epsilon}$ ).
The exponential attractors’ theory for reaction-diffusion equations in unbounded do-

mains has been developed in $[\mathrm{E}\mathfrak{W}\mathrm{Z}4]$ . Of course, since an exponential attractor alway
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contains the global attractor, an exponential attractor A4 for problem (4.15) should also
be infinite-dimensional. It is thus again natural to use Kolmogorov’s $\epsilon$-entropy for its con-
struction, To be more precise, as shown in $[\mathrm{E}\mathrm{f}\mathrm{M}\mathrm{Z}4]$ , there exists an infinite-dimension$\mathrm{a}1$

exponential attractor A4 \subset $ for equation (4.15) which is positively invariant, possesses
the same type of asymptotics for Kolmogorov’s entropy as that of the global attractor
(see (4.17)) and attracts exponentially fast all the bounded subsets of $\Phi$ in the uniform
topology of (1), i.e., for every $B\subset\Phi$ bounded,

$\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\Phi}(S(t)B, \mathcal{M})\leq Q(||B||)e^{-\alpha t}$ , (4.18)

where the monotonic function $Q$ and the positive constant $\alpha$ are independent of $B$ . We see
that, in contrast to the global attractor, this exponential attractor attracts the bounded
subsets in the initial topology of the phase space 4 and, moreover, as shown in $[\mathrm{E}\mathfrak{W}\mathrm{Z}5]$ ,
it can be effectively approximated by usual (i.e., finite-dimensional) exponential attractors
associated with (4.15) in large approximating bounded domains. We also note that this
result is essentially based on the following weighted analogue of the smoothing property
(2.3) :

$||S(t_{*})u_{1}-S(t_{*})u_{2}||_{H_{-\mathrm{e}1x-x_{0^{1}}}^{1}(R^{n})}\leq Kt^{-1/2}e^{Kl_{*}}||u_{1}-u_{2}||_{L_{-e|x-x_{0}|}^{2}(R^{n})}$ , (4.19)

where $x_{0}\in R^{n}$ is a parameter and the constant $K$ is independent of $x_{0}\in R^{n}$ , see [Z2] and
$[\mathrm{E}\mathfrak{W}\mathrm{Z}5]$ .
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