Representation of successor-type prooftheoretically regular ordinals via limits

O.Takaki (高木理)*

Faculty of Science, Kyoto Sangyo Univ. (京都産業大学・理学部)

Abstract

In this paper, we extend a result in [Ta04], that is, we show that every successor-type proof-theoretically regular ordinal has its own representation as a limit of a sequence consisting of certain canonical elements.

1 Introduction

In our previous paper [Ta04], we defined a set $\operatorname{Reg}(\mathcal{T}(M))$ based on $\mathcal{T}(M)$, which was a primitive recursive well-ordered set defined by M.Rathjen to establish the proof theoretic ordinal of KRM. We call elements of $\operatorname{Reg}(\mathcal{T}(M))$ "proof-theoretically regular ordinals based on $\mathcal{T}(M)$ (ptros)". In [Ta04], we also characterized some sort of ptros as proof-theoretical analogues of (hyper) inaccessible cardinals up to the least Mahlo cardinal. Since the characterization is based on $\operatorname{Reg}(\mathcal{T}(M))$ as an analogue of the set of regular cardinals up to the least Mahlo cardinal, it is significant to characterize ptros and find the relationship between $\operatorname{Reg}(\mathcal{T}(M))$ and the set of regular cardinals up to the least Mahlo cardinal. For these purpose, we are in the process of establishing a "canonical" fundamental sequence of each limit-type element of $\mathcal{T}(M)$. A coherent way to establish an appropriate fundamental sequence of each limit-type element of $\mathcal{T}(M)$ can be expected to be a coherent way to re-construct each element of $\mathcal{T}(M)$ as a more familiar concept, and hence, it turns out to provide a desirable characterization of ptros as proof-theoretical analogues of regular cardinals.

In this paper, we extend a result in [Ta04] (cf. Theorem 2.11 in this paper). The result gives a fundamental sequence of the least "successor-type" ptro $\psi_M^{\Omega_1}(\Omega_1)$, by which $\psi_M^{\Omega_1}(\Omega_1)$ can be characterized as the least fixed point of the function enumerating strongly critical ordinals. We here give a similar sequence $\{\gamma_n\}_{n\in\omega}$ of every successor-type ptro γ . Compared with the previous result in [Ta04], the proof of the property that $\gamma = \lim_{n\in\omega} \gamma_n$ needs some special attentions. Therefore, for (a certain type of) a given ordinal δ less than γ , we construct a labeled tree informing us the number $n \in \omega$ with $\delta < \gamma_n$.

In Section 2, we explain several definitions and results in [Ta04]. In Section 3, we show the extended version of the result above.

^{*}email address: tkk@cc.kyoto-su.ac.jp

2 Preliminaries

In this paper, M denotes the least Mahlo cardinal, and φ the veblin function. For more details, one can refer to [Bu92], [Ra98], [Ra99] or [Ta04].

Definition 2.1 (Rathjen98,99). For given ordinals α and β , we define a set $C^{M}(\alpha, \beta)$ called a *Skolem's hull* as well as functions χ^{α} and ψ_{M}^{α} called *collapsing functions*, as follows:

 $\begin{array}{l} (\mathrm{M1}) \ \beta \cup \{0, M\} \subset C^{M}(\alpha, \beta); \\ (\mathrm{M2}) \ \gamma = \gamma_{1} + \gamma_{2} \ \& \ \gamma_{1}, \gamma_{2} \in C^{M}(\alpha, \beta) \ \Rightarrow \ \gamma \in C^{M}(\alpha, \beta); \\ (\mathrm{M3}) \ \gamma = \varphi \gamma_{1} \gamma_{2} \ \& \ \gamma_{1}, \gamma_{2} \in C^{M}(\alpha, \beta) \ \Rightarrow \ \gamma \in C^{M}(\alpha, \beta); \\ (\mathrm{M4}) \ \gamma = \Omega_{\gamma_{1}} \ \& \ \gamma_{1} \in C^{M}(\alpha, \beta) \ \Rightarrow \ \gamma \in C^{I}(\alpha, \beta); \\ (\mathrm{M5}) \ \gamma = \chi^{\xi}(\delta) \ \& \ \xi, \delta \in C^{M}(\alpha, \beta) \ \& \ \xi < \alpha \ \& \ \xi \in C^{M}(\xi, \gamma) \ \& \ \delta < M \ \Rightarrow \ \gamma \in C^{M}(\alpha, \beta) \\ (\mathrm{M6}) \ \gamma = \psi^{\xi}_{M}(\kappa) \ \& \ \xi, \kappa \in C^{M}(\alpha, \beta) \ \& \ \xi < \alpha \ \& \ \xi \in C^{M}(\xi, \gamma) \ \Rightarrow \ \gamma \in C^{M}(\alpha, \beta); \\ \chi^{\alpha}(\delta) \simeq \mathrm{the} \ \delta^{\mathrm{th}} \ \mathrm{regular \ cardinal} \ \pi < M \ \mathrm{with} \ C^{M}(\alpha, \pi) \cap M = \pi; \\ \psi^{\alpha}_{M}(\kappa) \simeq \min\{\rho < \kappa : \ C^{M}(\alpha, \rho) \cap \kappa = \rho \land \kappa \in C^{M}(\alpha, \rho)\}. \end{array}$

Definition 2.2

(i) $\gamma =_{nf} \alpha + \beta : \Leftrightarrow \gamma = \alpha + \beta \& \gamma > \alpha \ge \beta \& \beta$ is an additive principal number.

 $\begin{array}{ll} \text{(ii)} & \gamma =_{\mathrm{nf}} \varphi \alpha \beta : \Leftrightarrow \ \gamma = \varphi \alpha \beta \ \& \ \alpha, \beta < \gamma. \\ \text{(iii)} & \gamma =_{\mathrm{nf}} \Omega_{\alpha} : \Leftrightarrow \ \gamma = \Omega_{\alpha} \ \& \ \alpha < \gamma. \\ \text{(iv)} & \gamma =_{\mathrm{nf}} \psi_{I}^{\alpha}(\kappa) : \Leftrightarrow \ \gamma = \psi_{I}^{\alpha}(\kappa) \ \& \ \alpha \in C^{I}(\alpha, \gamma). \\ \text{(v)} & \gamma =_{\mathrm{nf}} \chi^{\alpha}(\beta) : \Leftrightarrow \gamma = \chi^{\alpha}(\beta) \ \& \ \beta < \gamma \ \& \ \alpha \in C^{M}(\alpha, \gamma). \end{array}$

Definition 2.3 (Rathjen95,98). We define a set $\mathcal{T}(M)$ called an *elementary* ordinal representation system for **KPM** and the degree $d(\alpha) < \omega$ of each element α of $\mathcal{T}(M)$, as follows:

Theorem 2.4 (Rathjen91, Buchholz92). (1) Each element of $\mathcal{T}(M)$ has a unique representation with $0, M, +, \varphi, \Omega, \chi, \psi_M$. (2) $|\mathbf{KPM}| \leq \psi_M^{\varepsilon_{M+1}}(\Omega_1) = \mathcal{T}(M) \cap \Omega_1$, where $|\mathbf{KPM}|$ denotes the proof theoretic ordinal of \mathbf{KPM} . **Definition 2.5** An ordinal γ is called a *proof-theoretically regular ordinal based* on $\mathcal{T}(M)$ if γ is (expressed by) an element of $\mathcal{T}(M)$ having the form of $\psi_M^{\kappa}(\Omega_1)$ with $\kappa \in \mathbf{Reg}$, where **Reg** denotes the set of regular cardinals.

Definition 2.6 A ptro γ is called a *successor-type* ptro if γ has an element $\theta \in \mathcal{T}(M)$ satisfying that γ is the least ptro larger than θ .

Definition 2.7 An ordinal γ is called a *proof-theoretically inaccessible ordinal* based on $\mathcal{T}(M)$ if γ is an element of $\operatorname{Reg}(\mathcal{T}(M))$ as well as the supremum of $\operatorname{Reg}(\mathcal{T}(M)) \cap \gamma$, where $\operatorname{Reg}(\mathcal{T}(M))$ denotes the set of ptros based on $\mathcal{T}(M)$.

Theorem 2.8 (Takaki 04). All ptros are classified into the following two types: (i) Successor-type ptros, which are of the form $\psi_M^{\Omega_{\alpha+1}}(\Omega_1)$ or $\psi_M^{\Omega_1}(\Omega_1)$; (ii) Proof-theoretically inaccessible ordinals, which are of the form $\psi_M^{\chi^{\alpha}(\beta)}(\Omega_1)$ or $\psi_M^M(\Omega_1)$.

Definition 2.9 For each $n \in \omega$, we define Ψ_n by:

$$\Psi_n = \begin{cases} 0 & \text{if } n = 0; \\ \psi_M^{\Psi_{n-1}}(\Omega_1) & \text{if } n > 0. \end{cases}$$

Lemma 2.10 For each $n \in \omega$, $\Psi_n \in \mathcal{T}(M)$ and $\Psi_n < \Psi_{n+1}$.

The purpose of this paper is to extend the following theorem.

Theorem 2.11 (cf. Theorem 4 in [Ta04]). $\psi_M^{\Omega_1}(\Omega_1) = \lim_{n \in \omega} \Psi_n$.

3 Representation of successor-type ptros

Definition 3.1 Let α and β be elements of $\mathcal{T}(M)$. Then, for each $n \in \omega$, we define an ordinal $\Psi_n^{\beta}(\alpha)$, as follows:

$$\Psi_{n}^{\beta}(\alpha) = \begin{cases} \beta & \text{if } n = 0; \\ \psi_{M}^{\Psi_{n-1}^{\beta}(\alpha)}(\Omega_{\alpha+1}) & \text{otherwise.} \end{cases}$$

In particular, $\Psi_n(\alpha) := \Psi_n^0(\alpha)$

 $\Psi_n^\beta(\alpha)$ also satisfies properties of Ψ_n .

Lemma 3.2 For each $\alpha, \beta \in \mathcal{T}(M)$, if

 $\beta < \psi^{\beta}_{M}(\Omega_{\alpha+1}) \qquad \text{and} \qquad \forall \xi \ \left(\ \alpha < \xi \ \Rightarrow \ \beta \in C^{M}(\beta,\xi) \ \right)$

then, for each $n \in \omega$,

$$\Psi_{n}^{\beta}(\alpha) \in \mathcal{T}(M) \quad \text{and} \quad \Psi_{n}^{\beta}(\alpha) < \Psi_{n+1}^{\beta}(\alpha).$$
(1)

In particular, for each $\alpha \in \mathcal{T}(M)$ and $n < \omega$,

$$\Psi_n(\alpha) \in \mathcal{T}(M)$$
 and $\Psi_n(\alpha) < \Psi_{n+1}(\alpha)$.

Proof. This lemma is shown by checking the properties in (1) as well as

$$\forall \xi \ \left(\ \alpha < \xi \ \Rightarrow \ \Psi_n^\beta(\alpha) \in C^M(\Psi_n^\beta(\alpha), \xi) \ \right),$$

by using induction on n.

Now we give a representation of each successor-type ptro via $\Psi_n(\alpha)$ and the concept of limit.

Theorem 3.3 For each α with $\psi_M^{\Omega_{\alpha+1}}(\Omega_1) \in \mathcal{T}(M)$,

$$\psi_M^{\Omega_{\alpha+1}}(\Omega_1) = \lim_{n \in \omega} \psi_M^{\Psi_n(\alpha)}(\Omega_1).$$
(2)

Proof. Since in [Ta04] we dealt with the case where $\alpha = 0$, it suffices to show (2) in the case where $\alpha > 0$.

[1] One can show that $\psi_M^{\Omega_{\alpha+1}}(\Omega_1) \geq \lim_{n \in \omega} \psi_M^{\Psi_n(\alpha)}(\Omega_1)$, by the following two claims.

Claim 1 (cf. Lemmas 9.(3) and 11 in [Ta04]). For each α and β , $\psi_M^{\beta}(\Omega_{\alpha+1})$ is defined and $\Omega_{\alpha} < \psi_M^{\beta}(\Omega_{\alpha+1}) < \Omega_{\alpha+1}$.

Claim 2 (cf. Lemma 10 in [Ta04]). For each α_1, α_2 and $\pi \in \text{Reg}$, if $\psi_M^{\alpha_1}(\pi)$ and $\psi_M^{\alpha_2}(\pi)$ are defined and if $\alpha_1 \leq \alpha_2$, then $\psi_M^{\alpha_1}(\pi) \leq \psi_M^{\alpha_2}(\pi)$.

[2] In order to show that $\psi_M^{\Omega_{\alpha+1}}(\Omega_1) \leq \lim_{n \in \omega} \psi_M^{\Psi_n(\alpha)}(\Omega_1)$, we show that, for each $\gamma < \psi_M^{\Omega_{\alpha+1}}(\Omega_1)$, there exists an $n \in \omega$ with $\gamma \leq \psi_M^{\Psi_n(\alpha)}(\Omega_1)$, by using induction on $d(\gamma)$.

Since it is easy to check the property above in any case except the case where $\gamma = \psi_M^{\xi}(\pi)^{-1}$, we let $\gamma = \psi_M^{\xi}(\pi)$ in what follows.

For the given ξ (and α), we now define a labeled binary tree $T_2(\xi)$ (more precisely, $T_2(\xi, \alpha)$).

Definition 3.4 We define a labeled binary tree $T_2(\xi)$ to satisfy the following property (i).

- (i) For each node $s \in T_2(\xi)$, we denote the label of s by l_s . Then, the label l_s of each node in $T_2(\xi)$ is an element of $\mathcal{T}(M)$ satisfying:
 - (i.i) l_s is a subterm of ξ ; (i.ii) $l_s \leq \xi$; (i.iii) $l_s \in C^M(\xi, \psi_M^{\xi}(\Omega_1))$.

¹More precisely, we should assume that $\gamma =_{\text{nf}} \psi_M^{\xi}(\pi)$. However, we use only the symbol "=" unless we need special attention.

- (ii) We define each node of $T_2(\xi)$ and its label, by using recursion on the distance from the root of $T_2(\xi)$, as follows.
 - (ii.0) If $s \in T_2(\xi)$ is the root, then l_s is ξ .

Let s be a node of $T_2(\xi)$. Then, we define the successors (successor nodes) of s as well as their labels, according to the following conditions of l_s .

- (ii.i) If $l_s = 0$, then s is a leaf, that is, s has no successor node.
- (ii.ii) If $l_s = \delta + \eta$ or $l_s = \varphi \delta \eta$, then s has successors s_1 and s_2 , and $l_{s_1} := \delta$, $l_{s_2} := \eta$.
- (ii.iii) If $l_s = \Omega_\beta$ and $l_s = \chi^{\delta}(\eta)$, then s is a leaf.
- (ii.iv) Let $l_s = \psi_M^{\delta}(\tau)$. In this case, $\tau \leq \Omega_{\alpha+1}$ since $l_s \leq \xi$. (ii.iv.i) If $\tau < \Omega_{\alpha+1}$, then s is a leaf. (ii.iv.ii) If $\tau = \Omega_{\alpha+1}$, then s has a successor s_1 and $l_{s_1} := \delta$.

Claim 3 $T_2(\xi)$ is well-defined to be a finite tree.

(Proof of Claim 3: In order to show that $T_2(\xi)$ is well-defined, we show that, for each node s of $T_2(\xi)$, l_s satisfies the properties (i.i)~(i.iii) above, by using induction on the distance from the root to s.

If s is the root, it is trivial since $l_s = \xi$.

We let $l_s = \psi_M^{\delta}(\Omega_{\alpha+1})$ and show that δ satisfies (i.i)~(i.iii), as follows. By induction hypothesis, l_s is a subterm of ξ , $l_s \leq \xi$ and $l_s \in C^M(\xi, \gamma)$. Then, δ is also a subterm of ξ . On the other hand, $l_s > \Omega_1 > \gamma$. So, we have $\delta \in C^M(\xi, \gamma)$ and $\delta < \xi$ from Definition 2.1.(M5) and $l_s \in C^M(\xi, \gamma)$.

Any other case is similar to the case above.

Moreover, for each node $s \in T_2(\xi)$ and each successor s' of s, it holds that d(s) > d(s'). So, $T_2(\xi)$ is finite. \Box

Definition 3.5 (1) A node s of $T_2(\xi)$ $(=T_2(\xi, \alpha))$ is said to be *critical* when $l_s = \psi_M^{\delta}(\Omega_{\alpha+1})$ for some δ . CN denotes the set of critical nodes (of $T_2(\xi)$).

(2) For each path p of each subtree of $T_2(\xi)$, the number of critical nodes in p is called the *weight* of p. Moreover, for each subtree T of $T_2(\xi)$, the maximum number of weights of all paths of T is called the *weight* of T, and denoted by wt(T). Furthermore, for each node s of $T_2(\xi)$, the weight of the subtree of $T_2(\xi)$ with root s is called the *weight* of s, and denoted by wt(s).

(3) For each subtree T of $T_2(\xi)$, the maximum length of all paths of T is called the *height* of T. Moreover, for each node s of $T_2(\xi)$, the height of the subtree of $T_2(\xi)$ with root s is called the *depth* of s, and denoted by dp(s).

Claim 4 For each node s of $T_2(\xi)$, it holds that $l_s < \Psi_{\mathrm{wt}(s)+1}(\alpha)$.

(Proof of Claim 4: We show the claim by induction on the depth of s. (i) If s is a leaf, then $l_s \leq \Omega_{\alpha}$. So, since $\Omega_{\alpha} < \Psi_n(\alpha)$ for each n > 0, we have $l_s < \Psi_1(\alpha)$. (ii) Assume that s is not any leaf. Then, $l_s =_{\text{nf}} \delta + \eta$, $l_s =_{\text{nf}} \varphi \delta \eta$, or $l_s =_{\text{nf}} \psi_{\mathcal{M}}^{\delta}(\Omega_{\alpha+1})$.

Let $l_s =_{\mathrm{nf}} \psi_M^{\delta}(\Omega_{\alpha+1})$. Then, $l_s \in \mathrm{CN}$ and s has one successor s_1 with $l_{s_1} = \delta$. Since $\mathrm{wt}(s_1) = \mathrm{wt}(s) - 1$ and $\mathrm{dp}(s_1) < \mathrm{dp}(s)$, the induction hypothesis implies that $l_{s_1} < \Psi_{\mathrm{wt}(s)}(\alpha)$. On the other hand, since $l_s \in \mathcal{T}(M)$ and $\Psi_{\mathrm{wt}(s)+1}(\alpha) \in \mathcal{T}(M)$, we have $l_s < \Psi_{\mathrm{wt}(s)+1}(\alpha)$ (cf. Lemma 16 in [Ta04]).

Any other case is similar to or easier than the case above.

By Claim 4, we have $\xi < \Psi_{wt(T_2(\xi))+1}(\alpha)$, and hence, by Claim 2,

$$\gamma \leq \psi_M^{\Psi_{\mathsf{wt}(T_2(\xi))+1}(\alpha)}(\Omega_1).$$

So, the proof of Theorem 3.3 is completed.

We can also expect that each $\psi_M^{\Psi_n(\alpha)}(\Omega_1)$ has itself as its reglar expression, that is, $\psi_M^{\Psi_n(\alpha)}(\Omega_1) \in \mathcal{T}(M)$. Unfortunately, we have not yet completed the proof of the property. However, it is not hard to show this property for each α less than a certain ordinal. For example, one can easily show the following proposition.

Proposition 3.6 For each $\alpha \in \mathcal{T}(M)$ and $n \in \omega$, if $\alpha \in C^M(\Psi_n(\alpha), \psi_M^{\Psi_n(\alpha)}(\Omega_1))$, then $\psi_M^{\Psi_n(\alpha)}(\Omega_1) \in \mathcal{T}(M)$ and $\psi_M^{\Psi_n(\alpha)}(\Omega_1) < \psi_M^{\Psi_{n+1}(\alpha)}(\Omega_1)$.

By Theorem 3.3 and Proposition 3.6, each successor-type ptro $\psi_M^{\Omega_{\alpha+1}}(\Omega_1)$ has a fundamental sequence $\{\psi_M^{\Psi_n(\alpha)}(\Omega_1)\}_{n\in\omega}$ if $\alpha \in C^M(\Psi_n(\alpha), \psi_M^{\Psi_n(\alpha)}(\Omega_1))$.

Reference

- [Bu92] W. Buchholz, A note on the ordinal analysis of KPM, Proceedings Logic Colloquium '90 (Edited by J. Väänänen), (1992) p1-9.
- [Ra98] M. Rathjen, The higher infinite in proof theory, Logic Colloquium '95, Lecture Notes in Logic, 11 (1998) p275-304.
- [Ra99] M. Rathjen, The realm of ordinal analysis, Sets and Proofs, Cambridge University Press, (1999) p219-279.
- [Ta04] O. Takaki, Primitive recursive analogues of regular cardinals based on ordinal representation systems for KPi and KPM, to appear in AML.

□)