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Representation of successor-type proof-
theoretically regular ordinals via limits

O.Takaki (FEAHEE) * -
Faculty of Science, Kyoto Sangyo Univ. (RUEBEESERE - HHFED)

Abstract
In this paper, we extend a result in [Ta04], that is, we show that every
successor-type proof-theoretically regular ordinal has its own representa-
tion as a limit of a sequence counsisting of certain canonical elements.

1 Introduction

In our previous paper [Ta04], we defined a set Reg(7(M)) based on 7T(M),
which was a primitive recursive well-ordered set defined by M.Rathjen to es-
tablish the proof theoretic ordinal of KRM. We call elements of Reg(7(M))
“proof-theoretically regular ordinals based on 7(M) (ptros)”. In [Ta04], we
also characterized some sort of ptros as proof-theoretical analogues of (hyper)
inaccessible cardinals up to the least Mahlo cardinal. Since the characterization
is based on Reg(7 (M)) as an analogue of the set of regular cardinals up to the
least Mahlo cardinal, it is significant to characterize ptros and find the relation-
ship between Reg(7(M)) and the set of regular cardinals up to the least Mahlo
cardinal. For these purpose, we are in the process of establishing a “canonical”
fundamental sequence of each limit-type element of 7(M). A coherent way to
establish an appropriate fundamental sequence of each limit-type element of
T(M) can be expected to be a coherent way to re-construct each element of
T (M) as a more familiar concept, and hence, it turns out to provide a desirable
characterization of ptros as proof-theoretical analogues of regular cardinals.

In this paper, we extend a result in [Ta04] (cf. Theorem 2.11 in this pa-
per). The result gives a fundamental sequence of the least “successor-type”
ptro TP?/; (€4), by which w?j (1) can be characterized as the least fixed point
of the function enumerating strongly critical ordinals. We here give a similar
sequence {Yn}new Of every successor-type ptro . Compared with the previous
result in [Ta04], the proof of the property that v = lim,, .7, needs some special
attentions. Therefore, for (a certain type of) a given ordinal § less than v, we
construct a labeled tree informing us the number n € w with § < 7,.

In Section 2, we explain several definitions and results in [Ta04]. In Section
3, we show the extended version of the result above.
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2 Preliminaries

In this paper, M denotes the least Mahlo cardinal, and ¢ the veblin function.
For more details, one can refer to [Bu92], [Ra98], [Ra99] or [Ta04].

Definition 2.1 (Rathjen98,99). For given ordinals o and 3, we define a set
CM(a, B) called a Skolem’s hull as well as functions x® and 9§ called collapsing
functions, as follows:

(M1) BU {0, M} C C¥(a, B);

(M2) y =% +7 & 11,72 € CM(e, B) = v € CM(a,f);

(M3) 7= & 11,72 € CM(a,8) = 7€ CY(a,B);

(M4) v = Q. & 71 € CM(a, ) = 7€ e, B);

(M5) v = x4(8) & &,6 € CM(a, B) &é<a& tcCMEVN&I<M = vE
CM(a, B)

(M6) v = 0, (x) & &, 5 € CM(a, B) & E <a &t € CM(E ) = ve CM(a, B);
v*(8) =~ the 0" regular cardinal 7 < M with CM(a,m) N M =m;

% (k) ~ min{p < K : CMa,p)NK=pAreCMap)}

Definition 2.2

)y=ga+f:e& y=a+f&y>a2p &f[isan additive principal
number.

(ii) vy =prpaf: & v=paf & o, 8 <.

(ili) y=pt Qa1 & y=0a & a<y.

(iv) v =pe U5 (K) 1 & v =0F(x) & a € C{(a,).

(v) ¥ =n¢ X*(B) & 7= x(B) & B <y & a € CM(a,7).

Definition 2.3 (Rathjen95,98). We define a set 7 (M) called an elementary
ordinal representation system for KPM and the degree d(a) < w of each element
a of T(M), as follows:
() 0,M e T(M) & d(0)=d(M)=0;
() (7 =nga+ B & a,8€T(M))

= (yeT(M) & d(y)=max{d(a), d(B)} +1);
(i) (7 =prpef & a,BE€T(M) & (y<Mora=0))

S (e T(M) & di) = max{d(a),d()} +1);
(V) (7 =pf Qa <M & >0 & a€T(M))

= (yeT(M) & d(y)=d(a)+1);
(V) (y=ntx’(a) & §aeT(M))

= (yeT(M) & dy)=do)+1);
(vi) (7 =nt 93 () & K, € T(M))

= (veTWM) & d(y) = max{d(x),d(a)} + 1 ).

Theorem 2.4 (Rathjen91, Buchholz92). (1) Each element of T(M) has a

unique representation with 0, M, +, ¢, &, X, Ym-
(2) |KPM| < 93+ (1) = T(M) N Qy, where [KPM] denotes the proof theo-
retic ordinal of KPM.
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Definition 2.5 An ordinal v is called a proof-theoretically regular ordinal based
on T(M) if  is (expressed by) an element of 7(M) having the form of 7, ({1)
with s € Reg, where Reg denotes the set of regular cardinals.

Definition 2.6 A ptro «y is called a successor-type ptro if v has an element
6 € T (M) satisfying that -y is the least ptro larger than 6.

Definition 2.7 An ordinal v is called a proof-theoretically inaccessible ordinal
based on T(M) if +y is an element of Reg(7(M)) as well as the supremum of
Reg(7 (M)) Ny, where Reg(7(M)) denotes the set of ptros based on 7 (M).

Theorem 2.8 (Takaki 04). All ptros are classified into the following two types:

(i) Successor-type ptros, which are of the form wﬁ;’“ () or wff,} (Ql);a

(ii) Proof-theoretically inaccessible ordinals, which are of the form Vi & )(Ql)
M

or a7 (€1).

Definition 2.9 For each n € w, we define ¥,, by:

T = 0 if n=0;
T a0 i n> 0.

Lemma 2.10 Forecachn € w, ¥, € T(M) and ¥,, < ¥ 1.
The purpose of this paper is to extend the following theorem.

Theorem 2.11 (cf. Theorem 4 in [Ta04]). 5% () = limyeo s

3 Representation of successor-type ptros

Definition 3.1 Let « and 8 be elements of 7(M). Then, for each n € w, we
define an ordinal ¥2(a), as follows:

I} if n=0;
‘yg(a) = \.Ili_l(a) :
M (Qp41) otherwise.

In particular, ¥, (a) := ¥2(a)
TP () also satisfies properties of U,,.
Lemma 3.2 For each o, € T(M), if
B<Ya(Qu1) and  VE (a<é = feCY(8,9))

then, for each n € w,

V() e T(M) and  ¥i(a) <Th, (a). (1)
In particular, for each a € T(M) and n < w,

U, (a) € T(M) and U, (0) < ¥pp1(a).
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Proof. This lemma is shown by checking the properties in (1) as well as
Ve (a <& = T(a) e CY(T7(),8) ),
by using induction on n. O

Now we give a representation of each successor-type ptro via ¥, () and the
concept of limit.

Theorem 3.3 For each o with wﬁ&*“ (1) € T(M),

ot () = limpew Yy ™ (1) (2)

Proof. Since in [Ta04] we dealt with the case where a = 0, it suffices to show
(2) in the case where a > 0.

[1] One can show that o (Q) 2 limnew 37 (1), by the following two

claims.

Claim 1 (cf. Lemmas 9.(3) and 11 in [Ta04]). For each a and £, Y8 (1) is
defined and Qg < P (Qar1) < Dagr-

Claim 2 (cf. Lemma 10 in [Ta04]). For each e, @ and 7 (€ Reg), if ¢35 (7)
and 157 (7) are defined and if a1 S a2, then Pk (m) S Pz (m)-

[2] In order to show that 1/)53,["*1 (Q1) £ limpew f/_,“(a) (€1), we show that, for
each v < ab?/["‘“(ﬂl), there exists an n € w with v < z!)f,[“(a) (), by using

induction on d{7).
Since it is easy to check the property above in any case except the case where

v = 1/)%,_,(7?) L owelet v = v,bfw(w) in what follows.
For the given £ (and @), we now define a labeled binary tree T>(&) (more

precisely, T2(&, a)).
Definition 3.4 We define a labeled binary tree T5(£) to satisfy the following
property (i).
(i) For each node s € Ta(§), we denote the label of s by {,. Then, the label
of each node in Ty(£) is an element of T (M) satisfying:
(ii) I, is a subterm of &;
(1) s £ &
(Liil) 1, € CM (&, 95 ()

1More precisely, we should assume that v = qjjfw(w). However, we use only the symbol
“—» ynless we need special attention.
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(ii) We define each node of 73(£) and its label, by using recursion on the
distance from the root of 15(§), as follows.

(ii.0) If s € T2(&) is the root, then I is &.

Let s be a node of T»(€). Then, we define the successors (successor nodes)
of s as well as their labels, according to the following conditions of [;.

(ii.i) If I, = 0, then s is a leaf, that is, s has no successor node.

(ii.ii) If I, = 6 +7n or I, = wdon, then s has successors s1 and sy, and
ls, =0, 15, =1

(ii.iv) Let I, = ¥4,(7). In this case, 7 < Qq41 since [, S &.
(ii.iv.i) If 7 < Q441, then s is a leaf.
(il.iv.ii) If 7 = Qaq41, then s has a successor s; and 5, = 4.

Claim 8 T3(¢) is well-defined to be a finite tree.

(Proof of Claim 3: In order to show that T5(¢) is well-defined, we show that,
for each node s of Ty(§), I, satisfies the properties (i.i)~(i.iii) above, by using
induction on the distance from the root to s.

If s is the root, it is trivial since I, = &.

We let I, = 93,(Q+1) and show that § satisfies (i.i)~(i.iii), as follows. By
induction hypothesis, I, is a subterm of ¢, I S { and [, € CM(¢,v). Then, § is
also a subterm of ¢&. On the other hand, I, > Q; > «. So, we have d € CM(&,v)
and § < £ from Definition 2.1.(M5) and I, € CM (£, 7).

Any other case is similar to the case above.

Moreover, for each node s € T5(£) and each successor s’ of s, it holds that
d(s) > d(s'). So, T5(£) is finite. a)

Definition 3.5 (1) A node s of T5(¢) (=T32(¢, )) is said to be critical when
ls = 93,(Qq41) for some §. CN denotes the set of critical nodes (of T2(€)).

(2) For each path p of each subtree of T5(¢), the number of critical nodes in p
is called the weight of p. Moreover, for each subtree T of Ty(¢), the maximum
number of weights of all paths of T is called the weight of T', and denoted by
wt(T"). Furthermore, for each node s of T5(¢), the weight of the subtree of T5(€)
with root s is called the weight of s, and denoted by wt(s).

(3) For each subtree T" of T5(¢), the maximum length of all paths of T is called
the height of T. Moreover, for each node s of T5(£), the height of the subtree of
T»(€) with root s is called the depth of s, and denoted by dp(s).

Claim 4 For each node s of 75(), it holds that I; < Wy(s)41(a)-

(Proof of Claim 4: We show the claim by induction on the depth of s.
(i) If s is a leaf, then I, £ Q. So, since Q, < ¥,(a) for each n > 0, we have
ls < \Ifl(oz).



(ii) Assume that s is not any leaf. Then, ls =p¢ 6 + 1, ls =pf @07, or l; =pf

llbgj(ﬂa-i—l)'
Let Iy =p¢ %3 (Qat1). Then, I, € CN and s has one successor s with [, = 9.

Since wt(s1) = wt(s) — 1 and dp(s1) < dp(s), the induction hypothesis implies
that 15, < Wwi(s)(@). On the other hand, since [, € T(M) and Wyi(sy41(a) €
T(M), we have Iy < Uyy(s)41(c) (cf. Lemma 16 in [Ta04]).

Any other case is similar to or easier than the case above. 0)

By Claim 4, we have £ < W7, (¢))+1 (@), and hence, by Claim 2,
Yot &
v < (a1l )(Ql)-
So, the proof of Theorem 3.3 is completed. O

We can also expect that each z/)ﬁ”(a)(ﬂl) has itself as its reglar expression,
that is, w}f{"(a)(ﬂl) € T(M). Unfortunately, we have not yet completed the
proof of the property. However, it is not hard to show this property for each

o less than a certain ordinal. For example, one can easily show the following
proposition.
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Proposition 3.6 Foreacha € T(M)andn € w,ifa € CM(\Ifn(a),wf,_,"(a}(Ql)),

then
L) € T(M) and v @ () < ().

By Theorem 3.3 and Proposition 3.6, each successor-type ptro zﬁQM““(Ql)

has a fundamental sequence {zpf\;"(“)(ﬂl)}new if g € C’M(\Iln(a),wﬂwf(a)(ﬂl)),
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